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Abstract. The proliferation of multiprocessor servers and multithreaded appli-
cations has increased the demand for high-performance synchronization. Tradi-
tional scheduler-based locks incur the overhead of a full context switch between
threads and are thus unacceptably slow for many applications. Spin locks offer
low overhead, but they either scale poorly (test-and-set style locks) or handle
preemption badly (queue-based locks). Previous work has shown how to build
preemption-tolerant locks using an extended kernel interface, but such locks are
neither portable to nor even compatible with most operating systems.

In this work, we propose a time-publishing heuristic in which each thread
periodically records its current timestamp to a shared memory location. Given
the high resolution, roughly synchronized clocks of modern processors, this con-
vention allows threads to guess accurately which peers are active based on the
currency of their timestamps. We implement two queue-based locks, MCS-TP
and CLH-TP, and evaluate their performance relative to traditional spin locks on
a 32-processor IBM p690 multiprocessor. These results show that time-published
locks make it feasible, for the first time, to use queue-based spin locks on multi-
programmed systems with a standard kernel interface.

1 Introduction

Historically, spin locks have found most of their use in operating systems and dedicated
servers, where the entire machine is dedicated to whatever task the locks are protecting.
This is fortunate, because spin locks typically don’t handle preemption very well: if the
thread that holds a lock is suspended before releasing it, any processor time given to
waiting threads will be wasted on fruitless spinning.

Recent years, however, have seen a marked trend toward multithreaded user-level
programs, such as databases and on-line servers. Further, large multiprocessors are in-
creasingly shared among multiple multithreaded programs. As a result, modern appli-
cations cannot in general count on any specific number of processors; spawning one
thread per processor does not suffice to avoid preemption.
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For multithreaded servers, the high cost of context switches makes scheduler-based
locking unattractive, so implementors are increasingly turning to spin locks to gain
performance. Unfortunately, this solution comes with hidden drawbacks: queue-based
locks are highly vulnerable to preemption, but test-and-set locks do not scale beyond a
modest number of processors. Although several heuristic strategies can reduce wasted
spinning time [12, 15], multiprogrammed systems usually rely on non-queue-based
locks [19]. Our goal is to combine the efficiency and scalability of queue-based spin
locks with the preemption tolerance of the scheduler-based approach.

1.1 Related Work

One approach to avoiding excessive wait times can be found in abortable locks (some-
times called try locks), in which a thread “times out” if it fails to acquire the lock within
a specified patience interval [11, 26, 27]. Although timeout prevents a thread from being
blocked behind a preempted peer, it does nothing to improve system-wide throughput
if the lock is squarely in the application’s critical path. Further, any timeout sequence
that requires cooperation with neighboring threads in a queue opens yet another win-
dow of preemption vulnerability. Known approaches to avoiding this window result in
unbounded worst-case space overhead [26] or very high base time overhead [11].

An alternative approach is to adopt nonblocking synchronization, eliminating the
use of locks [8]. Unfortunately, while excellent nonblocking implementations exist for
many important data structures (only a few of which we have room to cite here [20, 22,
23, 28, 29]), general-purpose mechanisms remain elusive. Several groups (including our
own) are working on this topic [6, 10, 17, 25], but it still seems unlikely that nonblocking
synchronization will displace locks entirely soon.

Finally, several researchers have suggested operating system mechanisms that pro-
vide user applications with a limited degree of control over scheduling, allowing them
to avoid [4, 5, 13, 18, 24] or recover from [1, 2, 30, 32] inopportune preemption. Com-
mercial support for such mechanisms, however, is neither universal nor consistent.

Assuming, then, that locks will remain important, and that many systems will not
provide an OS-level solution, how can we hope to leverage the fairness and scalability
of queue-based spin locks in multithreaded user-level programs?

In this work, we answer this question with two new abortable queue-based spin locks
that combine fair and scalable performance with good preemption tolerance: the MCS
time-published lock (MCS-TP) and the CLH time-published (CLH-TP) lock. In this
context, we use the term time-published to mean that contending threads periodically
write their wall clock timestamp to shared memory in order to be able to estimate
each other’s run-time states. In particular, given a low-overhead hardware timer with
bounded skew across processors and a memory bus that handles requests in bounded
time1 we can guess with high accuracy that another thread is preempted if the current
system time exceeds the thread’s latest timestamp by some appropriate threshold. We
can then selectively pass a lock only between active threads. Although this doesn’t solve

1 Our requirements are modest: While it must be possible to read the clock within, say, 100ns,
clock skew or remote access times of tens of microseconds would be tolerable. Most modern
machines do much better than that.
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the preemption problem completely (threads can be preempted while holding the lock,
and our heuristic suffers from a race condition in which we read a value that has just
been written by a thread immediately before it was preempted), experimental results
(Sections 4 and 5) confirm that our approach suffices to make the locks preemption
adaptive: free, in practice, from virtually all preemption-induced performance loss.

2 Algorithms

We begin this section by presenting common features of our two time-published (TP)
locks; Sections 2.1 and 2.2 cover algorithm-specific details.

Our TP locks are abortable variants of the well-known MCS [19] and CLH [3, 16]
queue-based spin locks. Their acquire functions return success if the thread ac-
quired the lock within a supplied patience interval parameter, and failure otherwise.
In both locks, the thread owning the head node of a linked-list queue holds the lock.

With abortable queue-based locks, there are three ways in which preemption can
interfere with throughput. First, as with any lock, a thread that is preempted in its critical
section will block all competitors. Second, a thread preempted while waiting in the
queue will block others once it reaches the head; strict FIFO ordering is a disadvantage
in the face of preemption. Third, any timeout protocol that requires explicit handshaking
among neighboring threads will block a timed-out thread if its neighbors are not active.

The third case can be avoided with nonblocking timeout protocols, which guarantee
a waiting thread can abandon an acquisition attempt in a bounded number of its own
time steps [26]. To address the remaining cases, we use a timestamp-based heuristic.
Each waiting thread periodically writes the current system time to a shared location. If
a thread A finds a stale timestamp for another thread B, A assumes that B has been
preempted and removes B’s node from the queue. Further, any time A fails to acquire
the lock, it checks the critical section entry time recorded by the current lock holder.
If this time is sufficiently far in the past, A yields the processor in the hope that a
suspended lock holder might resume.

There is a wide design space for time-published locks, which we have only begun to
explore. Our initial algorithms, described in the two subsections below, are designed to
be fast in the common case, where timeout is uncommon. They reflect our attempt to
adopt straightforward strategies consistent with the head-to-tail and tail-to-head linking
of the MCS and CLH locks, respectively. These strategies are summarized in Table 1.
Time and space bounds are considered in the technical report version of this paper [7].

2.1 MCS Time-Published Lock

Our first algorithm is adapted from Mellor-Crummey and Scott’s MCS lock [19]. In the
original MCS algorithm, a contending thread A atomically swaps a pointer to its queue
node α into the queue’s tail. If the swap returns nil, A has acquired the lock; otherwise
the return value is A’s predecessor B. A then updates B’s next pointer to α and spins
until B explicitly changes the A’s state from waiting to available. To release
the lock, B reads its next pointer to find a successor node. If it has no successor, B
atomically updates the queue’s tail pointer to nil.
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Table 1. Comparison between MCS and CLH time-published locks

Lock MCS-TP CLH-TP

Link Structure Queue linked head to tail Queue linked tail to head
Lock handoff Lock holder explicitly grants the

lock to a waiter
Lock holder marks lock available and
leaves; next-in-queue claims lock

Timeout precision Strict adherence to patience Bounded delay from removing timed-
out and preempted predecessors

Queue
management

Only the lock holder removes timed-
out or preempted nodes (at handoff)

Concurrent removal by all waiting
threads

Space
management

Semi-dynamic allocation: waiters
may reinhabit abandoned nodes un-
til removed from the queue

Dynamic allocation: separate node per
acquisition attempt

waiting

path for reusing spacedriven by self driven by the lock holder

(My attempt
  failed)

The lock holder
        sees me inactive

(I abort my
acquisition attempt)

I rejoin the 
queue at
my former
position

my node from the queue.
The lock holder removes

available

left removed

removedI time out

critical section

The lock holder passes
me the lock

(New Attempt)

(New Attempt)

Fig. 1. State transitions for MCS-TP queue nodes

The MCS-TP lock uses the same head-to-tail linking as MCS, but adds two addi-
tional states: left and removed. When a waiting thread times out before acquiring
the lock, it marks its node left and returns, leaving the node in the queue. When a
node reaches the head of the queue but is either marked left or appears to be owned
by a preempted thread (i.e., has a stale timestamp), the lock holder marks it removed,
and follows its next pointer to find a new candidate lock recipient, repeating as neces-
sary. Figure 1 shows the state transitions for MCS-TP queue nodes. Source code can be
found in the technical report version of this paper [7]. It runs to about 3 pages.

The MCS-TP algorithm allows each thread at most one node per lock. If a thread that
calls acquire finds its node marked left, it reverts the state to waiting, resuming
its former place in line. Otherwise, it begins a fresh attempt from the tail of the queue.
To all other threads, timeout and retry are indistinguishable from an execution in which
the thread was waiting all along.

2.2 CLH Time-Published Lock

Our second time-published lock is based on the CLH lock of Craig [3] and Landin and
Hagersten [16]. In CLH, a contending thread A atomically swaps a pointer to its queue
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node α into the queue’s tail. This swap always returns a pointer to the node β inserted
by A’s predecessor B (or, the very first time, to a dummy node, marked available,
created at initialization time). A updates α’s prev pointer to β and spins until β’s
state is available. Note that, in contrast to MCS, links point from the tail of the
queue toward the head, and a thread spins on the node inserted by its predecessor. To
release the lock, a thread marks the node it inserted available; it then takes the
node inserted by its predecessor for use in its next acquisition attempt. Because a thread
cannot choose the location on which it is going to spin, the CLH lock requires cache-
coherent hardware in order to bound contention-inducing remote memory operations.

CLH-TP retains the link structure of the CLH lock, but adds both non-blocking time-
out and removal of nodes inserted by preempted threads. Unlike MCS-TP, CLH-TP al-
lows any thread to remove the node inserted by a preempted predecessor; removal is not
reserved to the lock holder. Middle-of-the-queue removal adds significant complexity
to CLH-TP; experience with earlier abortable locks [26, 27] suggests that it would be
very difficult to add to MCS-TP. Source code for the CLH-TP lock can be found in the
technical report version of this paper [7]. It runs to about 5 pages.

We use low-order bits in a CLH-TP node’s prev pointer to store the node’s state,
allowing us to atomically modify the state and the pointer together. If prev is a valid
pointer, its two lowest-order bits specify one of three states: waiting, transient,
and left. Alternatively, prev can be a nil pointer with low-order bits set to indicate
three more states: available, holding, and removed. Figure 2 shows the state
transition diagram for CLH-TP queue nodes.

In each lock acquisition attempt, thread B dynamically allocates a new node β and
links it to predecessor α as before. While waiting, B handles three events. The sim-
plest occurs when α’s state changes to available; B atomically updates β’s state to
holding to claim the lock.

The second event occurs when B believes A to be preempted or timed out. Here,
B performs a three-step removal sequence to unlink A’s node from the queue. First,
B atomically changes α’s state from waiting to transient, to prevent A from
acquiring the lock or from reclaiming and reusing α if it is removed from the queue
by some successor of B (more on this below). Second, B removes α from the queue,

waiting

holding

finish
critical section

reclaimed

reclaimed

removed

driven by successordriven by self

left

available

New Attempt

reclaimedtransient

return failure

return failure

return success critical section

Fig. 2. State transitions for CLH-TP queue nodes
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simultaneously verifying that B’s own state is still waiting (since β’s prev pointer
and state share a word, this is a single compare-and-swap). Hereafter, α is no longer
visible to other threads in the queue, and B spins on A’s predecessor’s node. Finally, B
marks α as safe for reclamation by changing its state from transient to removed.

The third event occurs when B times out or when it notices that β is transient. In
either case, it attempts to change β’s state atomically from transient or
waiting to left. If the attempt succeeds, B has delegated responsibility for recla-
mation of β to a successor. Otherwise, B has been removed from the queue and must
reclaim its own node. Either way, whichever of B and its successor notices last that β
has been removed from the queue handles the memory reclamation.

A corner case occurs when, after B marks α transient, β is marked
transient by some successor thread C before B removes α from the queue. In
this case, B leaves α for C to clean up; C recognizes this case by finding α already
transient.

The need for the transient state derives from a race condition in which B de-
cides to remove α from the queue but is preempted before actually doing so. While
B is not running, successor C may remove both β and α from the queue, and A may
reuse its node in this or another queue. When B resumes running, we must ensure that
it does not modify (the new instance of) A. The transient state allows us to so, if
we can update α’s state and verify that β is still waiting as a single atomic operation.
A custom atomic construction (ommitted here but shown in the TR version [7]) imple-
ments this operation using load-linked / store-conditional. Alternative solutions might
rely on a tracing garbage collector (which would decline to recycle α as long as B has
a reference) or on manual reference-tracking methodologies [9, 21].

3 Scheduling and Preemption

TP locks publish timestamps to enable a heuristic that guesses whether the lock holder
or a waiting thread is preempted. This heuristic admits a race condition wherein a
thread’s timestamp is polled just before it is descheduled. In this case, the poller will
mistakenly assume the thread to be active. In practice, the timing window is too narrow
to have a noticeable impact on performance. Although space limitations preclude fur-
ther discussion of scheduler-conscious locks, a full analysis and an empirical study of
the matter may be found in the TR version of this paper [7].

4 Microbenchmark Results

We test our TP locks on an IBM pSeries 690 (Regatta) multiprocessor with 32 1.3 GHz
Power4 processors, running AIX 5.2. For comparison purposes, we include a range of
user-level spin locks: TAS, MCS, CLH, MCS-NB, and CLH-NB. TAS is a test-and-
test-and-set lock with (well tuned) randomized exponential backoff. MCS-NB
and CLH-NB are abortable queue-based locks with non-blocking timeout [26]. We also
test spin-then-yield variants [12] in which threads yield after exceeding a wait threshold.

In our microbenchmark, each thread repeatedly attempts to acquire a lock. We sim-
ulate critical sections (CS) by updating a variable number of cache lines; we simulate
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non-critical sections (NCS) by varying the time spent spinning in an idle loop between
acquisitions. We measure the total throughput of lock acquisitions and we count suc-
cessful and unsuccessful acquisition attempts, across all threads for one second, aver-
aging results of 6 runs. For abortable locks, we retry unsuccessful acquisitions immedi-
ately, without executing a non-critical section. We use a fixed patience of 50 µs.

4.1 Single Thread Performance

Because low overhead is crucial for locks in real systems, we assess it by measuring
throughput absent contention with one thread and empty critical and non-critical sec-
tions. We present results in Figure 3.
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Fig. 3. Single-thread performance results

As expected, the TAS variants are the most efficient for one thread, absent con-
tention. MCS-NB has one compare-and-swap more than the base MCS lock; this ap-
pears in its single-thread overhead. Similarly, other differences between locks trace
back to the operations in their acquire and release methods. We note that time-
publishing functionality adds little overhead to locks.

A single-thread atomic update on our p690 takes about 60 ns. Adding additional
threads introduces contention from memory and processor interconnect bus traffic and
adds cache coherence overhead when transferring a cache line between processors. We
have measured atomic update overheads of 120 and 420 ns with 2 and 32 threads.

4.2 Multi-thread Performance

Under high contention, serialization of critical sections causes application performance
to depend primarily on the overhead of handing a lock from one thread to the next; other
overheads are typically subsumed by waiting. We examine two typical configurations.

Our first configuration simulates contention for a small critical section with a 2-
cache-line-update critical section and a 1 µs non-critical section. Figure 4 plots lock
performance for this configuration. Up through 32 threads (our machine size), queue-
based locks outperform TAS; however, only the TP and TAS locks maintain throughput
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Fig. 4. 2 cache line-update critical section (CS). 1 µs non-critical section (NCS). Critical section
service time (left) and success rate (right) on a 32-processor machine.
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Fig. 5. 40 cache line CS; 4µs NCS. CS service time (left) and success rate (right).

in the presence of preemption. MCS-TP’s overhead increases with the number of pre-
empted threads because it relies on the lock holder to remove nodes. By contrast, CLH-
TP distributes cleanup work across active threads and keeps throughput more steady.
The right-hand graph in Figure 4 shows the percentage of successful lock acquisition
attempts for the abortable locks. MCS-TP’s increasing handoff time forces its success
rate below that of CLH-TP as the thread count increases. CLH-NB and MCS-NB drop
to nearly zero due to preemption while waiting in the queue.

Our second configuration uses 40-cache-line-update critical sections 4 µs non-
critical sections. It models larger longer operations in which preemption of the lock
holder is more likely. Figure 5 shows lock performance for this configuration. That the
TP locks outperform TAS demonstrates the utility of cooperative yielding for preemp-
tion recovery. Moreover, the CLH-TP–MCS-TP performance gap is smaller here than
in our first configuration since the relative importance of removing inactive queue nodes
goes down compared to that of recovering from preemption in the critical section.

In Figure 5, the success rates for abortable locks drop off beyond 24 threads. Since
each critical section takes about 2 µs, our 50 µs patience is just enough for a thread to
sit through 25 predecessors. We note that TP locks adapt better to insufficient patience.



Preemption Adaptivity in Time-Published Queue-Based Spin Locks 15

� � �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���

���

���

	��

����

����

����

����


�������

����������

����������

���
�

��������

���
�

��������

�������

�
�
!
���
��
��
"
�

� � �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��

�

��

��

��

��

��

��

��

��

	�

���

���

�������

#
�
�$
�
�
�
�
%
$
$
�
�
�

Fig. 6. Spin-then-yield variants; 2 cache line CS; 1 µs NCS

One might expect a spin-then-yield policy [12] to allow other locks to match TP
locks in preemption adaptivity. In Figure 6 we test this hypothesis with a 50 µs spin-
ning time threshold and a 2 cache line critical section. (Other settings produce similar
results.) Although yielding improves the throughput of non-TP queue-based locks, they
still run off the top of the graph. TAS benefits enough to become competitive with
MCS-TP, but CLH-TP still outperforms it. These results confirm that targeted removal
of inactive queue nodes is much more valuable than simple yielding of the processor.

4.3 Time and Space Bounds

Finally, we measure the time overhead for removing an inactive node. On our Power4
p690, we calculate that the MCS-TP lock holder needs about 200–350ns to delete
each node. Similarly, a waiting thread in CLH-TP needs about 250–350ns to delete
a predecessor node. By combining these values with our worst-case analysis for the
number of inactive nodes in the lock queues [7], one can estimate an upper bound on
delay for lock handoff when the holder is not preempted.

In our analysis of the CLH-TP lock’s space bounds [7] we show a worst-case bound
quadratic in the number of threads, but claim an expected linear value. In tests designed
to maximize space contention (full details available in the TR version [7]), we find
space consumption to be very stable over time. Even with very short patience, we obtain
results far closer to the expected linear than the worst-case quadratic space bound.

5 Application Results

In this section we measure the performance of our TP locks on the Raytrace and Barnes
benchmarks from the SPLASH-2 suite [31].

Application Features: Raytrace and Barnes are heavily synchronized [14, 31]. Ray-
trace uses no barriers but features high contention on a small number of locks. Barnes
uses few barriers but numerous locks. Both offer reasonable parallel speedup.
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Fig. 7. Parallel execution times for Raytrace and Barnes on a 32-processor IBM p690 Regatta.
Test M.N uses M application threads and (32 − M) + N external threads.

Experimental Setup: We test the locks from Section 4 and the native pthread
mutex on our p690, averaging results over 6 runs. We choose inputs large enough to
execute for several seconds: 800×800 for Raytrace and 60K particles for Barnes. We
limit testing to 16 threads due to the applications’ limited scalability. External threads
running idle loops generate load and force preemption.

Raytrace: The left side of Figure 7 shows results for three preemption adaptive locks:
TAS-yield, MCS-TP and CLH-TP. Other spin locks give similar performance absent
preemption; when preemption is present, non-TP queue-based locks yield horrible per-
formance (Figures 4, 5, and 6). The pthread mutex lock also scales very badly; with
high lock contention, it can spend 80% of its time in kernel mode. Running Raytrace
with our input size took several hours for 4 threads.

Barnes: Preemption adaptivity is less important here than in Raytrace because Barnes
distributes synchronization over a very large number of locks, greatly reducing the im-
pact of preemption. This can be confirmed by noting that a highly preemption-sensitive
lock, MCS, “only” doubles its execution time given heavy preemption. We therefore
attribute Barnes’ relatively severe preemption-induced performance degradation to the
barriers it uses.

With both benchmarks, we find that our TP locks maintain good throughput and
adapt well to preemption. With Raytrace, MCS-TP in particular yields 8-18% improve-
ment over a yielding TAS lock with 4 or 8 threads. Barnes is less dependent on lock
performance in that different locks have similar performance. Overall, MCS-TP outper-
forms CLH-TP; this is consistent with our microbenchmark results. We speculate that
this disparity is due to lower base-case overhead in the MCS-TP algorithm combined
with short-lived lock acquisitions in these applications.

6 Conclusions and Future Work

In this work we have demonstrated that published timestamps provide an effective
heuristic by which a thread can accurately guess the running state of its peers, without
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support from a nonstandard scheduler API. We have used this published-time heuris-
tic to implement preemption adaptive versions of standard MCS and CLH queue-based
locks. Empirical tests confirm that these locks combine scalability, strong tolerance for
preemption, and low observed space overhead with throughput as high as that of the
best previously known solutions. Given the existence of a low-overhead time-of-day
register with low system-wide skew, our results make it feasible, for the first time, to
use queue-based locks on multiprogrammed systems with a standard kernel interface.

For cache-coherent machines, we recommend CLH-TP when preemption is frequent
and strong worst-case performance is needed. MCS-TP gives better performance in
the common case. With unbounded clock skew, slow system clock access, or a small
number of processors, we recommend a TAS-style lock with exponential backoff com-
bined with a spin-then-yield mechanism. Finally, for non-cache-coherent (e.g. Cray)
machines, we recommend MCS-TP if clock registers support it; otherwise the best
choice is the abortable MCS-NB try lock.

As future work, we conjecture that time can be used to improve thread interaction in
other areas, such as preemption-tolerant barriers, priority-based lock queueing, dynamic
adjustment of the worker pool for bag-of-task applications, and contention management
for nonblocking concurrent algorithms. Further, we note that we have examined only
two points in the design space of TP locks; other variations may merit consideration.
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