
Delaunay Triangulation with Transactions and Barriers

Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe

Department of Computer Science, University of Rochester
{scott, spear, luked, vmarathe}@cs.rochester.edu

Abstract

Transactional memory has been widely hailed as a simpler
alternative to locks in multithreaded programs, but few nontriv-
ial transactional programs are currently available. We describe
an open-source implementation of Delaunay triangulation that
uses transactions as one component of a larger parallelization
strategy. The code is written in C++, for use with the RSTM
software transactional memory library (also open source). It
employs one of the fastest known sequential algorithms to
triangulate geometrically partitioned regions in parallel; it
then employs alternating, barrier-separated phases of transac-
tional and partitioned work to stitch those regions together. Ex-
periments on multiprocessor and multicore machines confirm
excellent single-thread performance and good speedup with
increasing thread count. Since execution time is dominated by
geometrically partitioned computation, performance is largely
insensitive to the overhead of transactions, but highly sensitive
to any costs imposed on sharable data that are currently
“privatized”.

1. Introduction

With the recent end of thirty years of steady improve-
ment in the speed of CMOS uniprocessors, all the major
vendors are now building multicore chips. As a result, pro-
gramming techniques and challenges once reserved to high-
end scientific computing have become relevant across the
computing spectrum: every software vendor will soon need to
be writing multithreaded code. This prospect poses enormous
challenges for the software industry, among them the tradi-
tional synchronization-based tradeoff between scalability and
the complexity of fine-grain locking protocols. Transactional
memory (TM) promises to soften this tradeoff. In a nutshell,
TM allows programmers simply to mark their critical sections
atomic and rely on lower levels of the system to run those
sections in parallel with one another whenever possible.

Some two dozen TM systems have been described in
the literature over the past few years, some implemented
in hardware, some in software, and some in a combination
of the two [11]. Unfortunately, the field has yet to develop

This work was supported in part by NSF grants CNS-0411127 and CNS-
0615139, equipment support from Sun Microsystems Laboratories, and finan-
cial support from Intel and Microsoft.

standard benchmarks to capture application characteristics or
to facilitate system comparisons. The closest we have at the
moment are (multiple versions of) shared data structures (hash
tables, red-black trees, linked lists) that are likely to be useful
within transactional applications, but that do not convincingly
capture the behavior of (still mostly hypothetical) “real world”
applications.

Several groups are currently developing more ambitious
applications, either from scratch or from existing lock-based
code. One challenge is the lack of a standard language and
API. To date, TM systems have been developed for (at least)
C, C++, Java, C#, Haskell, OCaml, Python, and Common Lisp,
and the multiple proposals for C, C++, Java, and C# employ
mutually incompatible syntax. This diversity of notation is
unlikely to disappear soon. Until standards emerge, bench-
marks written for one system will require translation to be
used on other systems. Even so, they can serve a useful role
by codifying application-level algorithms and by increasing
the degree to which experiments run on different systems can
fairly be compared to one another.

This paper describes an implementation of Delaunay trian-
gulation [5]. Given a set of points P in the plane, a triangula-
tion partitions the convex hull of P into a set of triangles such
that (1) the vertices of the triangles, taken together, are P , and
(2) no two triangles intersect except by sharing an edge. A
Delaunay triangulation has the added property that no point
lies in the interior of any triangle’s circumcircle (the unique
circle determined by its vertices). If not all points are colinear,
a triangulation must exist. If no four points are cocircular, the
Delaunay triangulation is unique.

A Delaunay triangulation maximizes the minimum angle
across all triangles. It is a superset of the Euclidean minimum
spanning tree of P . It is also the geometric dual of Voronoi
tessallation, used to quickly identify, for a given point in the
plane, the closest member of P . It is widely used in finite
element analysis, where it promotes numerical stability, and in
graphical rendering, where it promotes aesthetically pleasing
shading of complex surfaces. In practice, Delaunay meshes are
typically refined by introducing additional points where needed
to eliminate remaining narrow triangles.

At the 2006 Workshop on Transactional Workloads, Kulka-
rni et al. proposed refinement of a (preexisting) Delaunay
mesh as an ideal application of transactional memory [10]. The
current paper complements that work by using transactions to

mls
IISWC '07



construct the original triangulation. In future work we hope to
extend our code to include the refinement process.

Our algorithm begins by sorting points into geometric
regions, one for each available processor. It then employs
a fast sequential solver to find, in parallel, the Delaunay
triangulations of the points in each region. Specifically, we
employ Dwyer’s refinement [7] of Guibas and Stolfi’s divide-
and-conquer algorithm [8]. For uniformly distributed points,
Dwyer’s algorithm runs in O(n log log n) time. Given trian-
gulations of each region, we employ a mix of transactions
and thread-local computation to “stitch” the regions together,
updating previously chosen triangles when necessary to main-
tain the Delaunay circumcircle property. Related, hierarchical
stitching algorithms for a message-passing model have been
presented by Blelloch et al. [1], Hardwick [9], and Chen et
al. [2], among others. All of these remain efficient when points
are not uniformly distributed. Our code could be extended
with a parallel median-finding algorithm (as in Chen et al.) to
provide this property; in its current form it distributes points
with a simple bucket sort.

The following section provides a brief overview of the
Rochester Software Transactional Memory (RSTM) system
and its API, sufficient to understand the mesh application
code. Section 3 describes our parallel solver, focusing on its
use of transactions and of barrier-separated transactional and
geometrically-partitioned (“private”) phases. Section 4 presents
a brief summary of performance results on both a conventional
multiprocessor and a more recent multicore machine.

2. The RSTM API

RSTM [19] is a transactional memory library for
C++/pthreads programs. Its API and programming model [4],
while too baroque for naive users, are simple and flexible
enough to express sophisticated applications and to support
experimentation with a wide variety of underlying implementa-
tions. Applications written to the RSTM API can be compiled
and linked with several different implementations, most of
which have several variants. Three of these appear in the
results of Section 4: The original RSTM back end [12] is a
nonblocking software system that uses a level of indirection to
install new versions of modified objects atomically at commit
time.1 The redo-lock back end is a blocking system that
resembles Dice et al.’s TL2 [6]. It copies new versions back
on top of the originals at commit time, avoiding the need
for indirection when reading. The CGL (coarse-grain-lock)
back end is intended for comparison purposes: its transactions
compete for a single, global lock, yielding very low overhead
in the uncontended case, but no concurrency. Several other
systems employ a mix of hardware and software support; they
currently run only on our hardware simulator [15]–[17].

1. In a nonblocking system, no reachable state of the system as a whole
precludes forward progress by any given thread; among other things, a thread
need never wait for a preempted peer.

2.1. Transactional Objects

Every thread in an RSTM program begins by calling the
function stm_init. Transactions are delimited by the macros
BEGIN_TRANSACTION and END_TRANSACTION. These
introduce a nested scope; they must be syntactically paired.
When two concurrent transactions conflict (they access the
same object, and at least one of them tries to write it), one is
allowed to proceed and the other waits or retries, under control
of a software contention manager. By default, RSTM employs
the “Polka” contention manager [14], which gives preference
to transactions in which substantial work has already been
invested.

The programming model distinguishes between transac-
tional and nontransactional objects. When a transaction re-
tries, transactional objects revert to the values they had at
the beginning of the transaction. Nontransactional objects do
not. Any class of shared objects T whose instances are to
be protected by transactions must derive from generic class
stm::Object<T>, which provides metadata and (hidden)
methods for conflict detection. T must also provide a clone
method, used to initialize new versions of an object and, for
redo-lock, a redo method, used to copy an updated version
back to the original. If any action is required when discard-
ing an outdated version, the user can provide an optional
deactivate method.

To catch common mistakes, and to provide hooks for hidden
initial-access and every-access methods, transactional objects
must be accessed only through generic “smart pointers” pro-
vided by the API. These come in four varieties: sh_ptr<T>,
rd_ptr<T>, wr_ptr<T>, and un_ptr<T>. Pointer fields
within transactional objects must be sh_ptrs. They can
safely be copied and tested for equality, both inside and
outside transactions, but cannot be dereferenced. The other
three pointer types can be initialized from sh_ptrs. Within
a transaction, a wr_ptr allows both reading and writing;
a rd_ptr allows only reading. An un_ptr allows both
reading and writing, but avoids transactional overhead; its use
constitutes a promise from the programmer that the object
in question has been “privatized”, and is visible to only one
thread.

To allow hidden methods to be called at appropriate times,
fields of transactional objects must be read and written only
through accessor methods. These are generated automatically
by field-declaring macros. In the mesh application, for ex-
ample, the edge class appears as in Figure 1. Given this
declaration, we can update fields as follows:

p->set_tentative(true);
p->set_neighbors(0, cw, other_edge);

With the original RSTM back end, they are read as follows:

status = p->get_tentative();
nbor = p->get_neighbors(0, cw);

To ensure correct behavior in the presence of in-place up-
dates, the redo-lock back end requires an additional “validator”



class edge : public stm::Object<edge> {
public:
GENERATE_ARRAY(point*,points,2)
// point* points[2];

GENERATE_2DARRAY(sh_ptr<edge>,neighbors,2,2)
// sh_ptr<edge> neighbors[2][2];
// indexed by edge end and direction

GENERATE_FIELD(bool,tentative)
// Is this edge potentially non-Delaunay?

}

Figure 1. Declaration of transactional edge class.

argument:

status = p->get_tentative(p.v());
nbor = p->get_neighbors(0, cw, p.v());

Validators are also required for some forms of privatization
(Section 2.3). They are ignored in the mesh application when
using the RSTM back end.

2.2. Programming Model Restrictions

To avoid violating assumptions in one or more of the back-
end systems, programmers must respect several additional
(unenforced) restrictions on the programming model.
• Transactional types must have trivial constructors and

destructors, and only static methods. Specifically, a constructor
must not, under any circumstances, throw an exception or con-
flict with another transaction (which might cause it to abort). A
destructor must not do anything that has to happen at delete
time—the memory manager delays space reclamation to avoid
errors in concurrent transactions. And since fields must be
accessed through smart pointers, this cannot safely be used.
• Control must leave a transaction only by falling off the

end—never via return, break, or goto. A throw from
inside a transaction causes the transaction to abort, and then
continues to propagate.
• An un_ptr cannot be used once its object has become

visible to other threads. If an object is “privatized” repeatedly,
an un_ptr to it cannot be retained across phases.

2.3. Privatization

Many natural uses of transactions embody what Larus
and Rajwar call privatization [11, Section 2.1.2]: program
logic that ensures an object is accessible to only one thread
during some particular program phase. In the mesh appli-
cation, privatization is achieved via global consensus, using
barriers. During a “private phase”, we partition the point
space geometrically, and each thread operates only on edges
guaranteed to lie entirely within its region. In other programs,
a transaction may privatize an object by removing it from a
shared data structure. Such privatizing transactions introduce
implementation complexities not considered here [18].

2.4. Useful Idioms

In several cases, utility routines in the mesh application
are called in both transactional and private phases. Examples
include routines to create a new edge, destroy an existing
edge, or reconsider the inclusion of an edge that may not
be Delaunay. Each of these has smart pointer parameters
that will be un_ptrs in private code and rd_ptrs or
wr_ptrs in transactional code. We use generics (templates)
to generate both versions from a common code base. In
a few cases we use a txnal<pointer type>() generic
predicate to choose between alternative code paths. We
also provide generic type constructors that allow the user
to declare pointer types analogous to (i.e., transactional
or nontransactional, as appropriate) some other pointer
type. For example, if edgeRp is a template parameter
that may be either rd_ptr<edge> or un_ptr<edge>,
then edgeRp::w_analogue<foo>::type will be
wr_ptr<foo> or un_ptr<foo>, respectively.

In one natural realization of the mesh algorithm, point
objects contain x and y coordinates and a smart pointer
reference to some adjacent edge. While the first_edge
field is occasionally read or written, such references are over-
whelmingly outnumbered by simple reads of the (immutable)
coordinates. To avoid transactional overhead on every such
immutable reference, we manually split the point class into
mutable and immutable portions and use address arithmetic
to find one given the other (such structure splitting [3] is a
well-known optimization in high-end compilers). References
to coordinates can now proceed with zero overhead.

Because nontransactional (nonshared) objects do not revert
their values on abort, care must be taken when communicating
information across transaction boundaries. In particular, a
transaction can safely read or write a nontransactional variable
(assuming, in the latter case, it always writes before commit-
ting), but not both.

3. Parallel Delaunay Triangulation

All told, the mesh application comprises approximately
3200 lines of code and 24 source files. It is included in the
RSTM distribution [19].

3.1. Algorithm

Function main parses command line arguments, creates a
set of random points (or reads them from standard input), logs
the application start time, forks and joins a set of worker
threads, and prints the final run time. Workers run function
do_work in worker.cc. This function has three major
phases:
1) (2 internal barriers) Workers partition the point space into

vertical bands (regions) by giving each worker a contigu-
ous, equal-size slice of the x coordinate range. As noted
in Section 1, a more sophisticated algorithm would be
required to accommodate nonuniform point distributions.



2) Each worker triangulates the points in its own region, using
Dwyer’s sequential algorithm. This phase consumes most
of the execution time. It falls short of ideal speedup because
of memory bandwidth limitations.

3) (8 internal barriers) Each worker stitches its region together
with the region to the right. The last worker (and any other
whose own or neighboring region is empty) bows out of the
computation. This phase has several sub-phases, illustrated
in Figure 2:
a) (one internal barrier) Each worker connects its right-

most point to the neighbor’s left-most point. This initial
cross edge is guaranteed not to intersect any intra-region
edge, but it may not be Delaunay, and it may (in the
case of singleton regions) share a point with some other
initial cross edge. To avoid races, each worker uses a
transaction to create its first cross edge.

b) Working down from the cross edge, each worker uses
function baste to create additional edges between
its region and its right hand neighbor’s, so long as it
never touches a point that is geometrically closer to a
neighbor’s seam. Both the newly created edges and the
edges traversed on the regions’ convex hulls may be
non-Delaunay.

c) Continuing down the seam, each worker uses function
synchronized_baste to create additional cross
edges. Because responsibility for points is no longer
geometrically determined, this phase uses transactions
to mediate conflicts.

d, e) Mirroring sub-phases 3b and 3c, workers return to the
initial cross edge and work upward, first on known-to-
be-private edges, then on transaction-mediated edges.
Through all these sub-phases, workers keep a record
of “tentative” (potentially non-Delaunay) edges. With
the completion of this sub-phase, we have a complete
triangulation, but not one known to be Delaunay.

f) Each worker w iterates over its list of tentative edges. If
edge ab is a diagonal of a convex quadrilateral, all four
points of which are closest to w’s seam, w considers
“flipping” the edge as shown in Figure 3. For each
flip 〈 ab → cd 〉, w adds ac, ad, bc, and bd to its
list of tentative edges. If ab lies on the global convex
hull, no further action is required. If any of a, b, c,
or d lies closer to some other worker’s seam, w defers
consideration of a possible flip to the next sub-phase.

g) Workers iterate over deferred tentative edges (and any
other edges rendered tentative by the flipping of a ten-
tative neighbor), using transactions to protect potential
flips. If a worker runs out of work it steals from the
tentative edge lists of other workers.

3.2. Data Structures

Three types are derived from stm::Object; instances of
these are the only data whose values revert on transaction
abort:

seam 0

region 0 region 1

initial cross edge private basting

synchronized basting

hull edges rendered tentative

unaffected hull edges

Figure 2. Stitching together Delaunay regions. Worker
thread k is responsible for triangulating region k and,
subsequently, stitching seam k.

edge: This is the benchmark’s central type. As suggested
by Guibas and Stolfi [8], it contains pointers to the
edge’s two endpoints and to the four neighboring edges
found by rotating clockwise and counter-clockwise
about those endpoints.

edge_ref: As noted in Section 2.4, the information about
a point is split across two structures. The heavily-
used part is immutable. The other is a reference to
one adjacent edge, from which others can be found
by following neighbor links. An edge_ref is this
mutable part.

LLNode: The benchmark accumulates its triangulation in a
set of edges, represented by an array of hash tables, one
per geometric region. Type LLNode is used to build
hash chains.

A Standard Template Library queue is used to hold ten-
tative edges identified in steps 3b through 3e above. Edges
that cannot be reconsidered locally in step 3f are moved to a
nonblocking M&S queue [13], from which work can safely be
stolen by other threads.

Geometric calculations are more-or-less straightforward, if
tedious. Several operations are realized as methods of a side
data structure designed for crawling along a convex hull.
Separate versions of this structure are used for nontransac-
tional (baste) and transactional (synchronized_baste)
phases of the algorithm.



a

b

c

d

Figure 3. Reconsidering an edge. Edge ab should be
flipped (replaced with edge cd) if adbc is a convex quadri-
lateral and circumcircle bca contains point d (or, symmet-
rically, circumcircle adb contains point c).

3.3. Static Transactions

Only 3 transaction blocks appear in the source code. The
first, used in step 3a, protects a call to the static method
that plays the role of edge constructor. This in turn calls
11 additional (non-accessor, non-library) routines, directly or
indirectly, for a total (not including headers) of 72 lines of
code. The second transaction, used in steps 3c and 3e, protects
a 40-line block of code. The call tree under this includes
17 nontrivial subroutines, the bodies of which comprise an
additional 115 lines of code. The third transaction, used in
step 3g, protects a call to function reconsider. Together
with the bodies of its 16 callees, it comprises 214 lines of
code. 11 separate functions are templated for instantiation of
transactional and nontransactional versions.

4. Sample Performance Results

Figure 4 summarizes performance of the mesh application
on representative multiprocessor and multicore machines. We
show curves for the RSTM and Redo-lock back ends described
at the beginning of Section 2, together with coarse-grain (CGL)
and fine-grain (FGL) locks. The CGL results use an alternative
back end that adds no metadata or indirection to transac-
tional objects, and implements BEGIN_TRANSACTION and
END_TRANSACTION as acquisition and release, respectively,
of a single, global, test-and-set lock. The FGL results use the
same back end, to avoid metadata and indirection, and use
#ifdefs to replace transactions with critical sections that
acquire per-point locks. A critical section that touches multiple
points identifies them speculatively, sorts them into canonical
order, acquires their locks, and then double-checks to make
sure the set of points is still valid. If not, it backs out and retries
while basting, much as transactions do automatically. When
reconsidering edges it simply backs out: a conflict indicates
that another thread has already handled the edge.

All experiments triangulate a set of 200,000 uniformly
distributed points. This is close to the data set size at which the

Niagara (multicore) machine achieves its maximum speedup,
and a little beyond the point at at which the SunFire (mul-
tiprocessor) does best. With fewer points the serial fraction
of the application is proportionally larger; with more points
cache locality deteriorates, making memory bandwidth the
dominant factor in run time. Numbers shown are the average
over three runs, with different seeds for the pseudorandom
number generator used to create the point set. Speedups
(effective processors) are relative to an optimized, single-
threaded implementation of Dwyer’s sequential algorithm.

Perhaps the most striking behavior in the graphs is the ∼2×
overhead of the RSTM back end. This is a direct consequence
of its use of indirection to ensure nonblocking progress: the
application is memory bound, and indirection doubles the cost
of accessing transactional objects, even in private code. The
extensive private computation in our Delaunay benchmark pro-
vides a powerful argument for zero-indirection TM systems.

Unsurprisingly, CGL has the best single-thread times,
though it doesn’t beat FGL and redo-lock by much. More
surprisingly, CGL continues to equal or tie the performance
of FGL and redo-lock at higher thread counts. We had orig-
inally expected serialization on a single lock to become a
bottleneck as concurrency increased. The fact that it does
not would seem to imply that transactional memory offers no
advantage over coarse-grain locks in this particular program—
neither performance nor convenience. The problem with this
conclusion is that we see it only in hindsight. While CGL
and TM are equally easy to use, they are not equally easy to
refine. To choose CGL over TM at the outset is to gamble that
bottlenecks will not arise. If they do, the conversion to fine-
grain locks may take considerable time and introduce subtle
errors.

The SunFire machine continues to obtain speedups out to
the full complement of 16 processors, at which point stitching
(the part of the execution that actually contains transactions)
consumes just over 8% of total run time. The Niagara machine
tops out at 8 threads—the same as the number of cores. While
each core has 4 thread contexts, they don’t help at this data
set size, due to lack of memory bandwidth (they do help with
smaller data sets). Here stitching consumes less than 1.2% of
total run time, presumably due to the lower relative cost of
multicore coherence misses.

The time consumed by stitching is highly repeatable for a
given set of points, but varies across point sets (random number
seeds) and numbers of worker threads. Together, these deter-
mine the pattern of transaction conflicts. At 200,000 points, the
total amount of work required to stitch the graph together isn’t
enough to hide the variations. (The graph becomes smoother at
larger point counts.) Nonetheless, we can see that the RSTM
back end incurs a higher relative penalty on the SunFire
machine as the number of threads increases, again due, we
believe, to the higher relative cost of coherence misses, of
which RSTM has about twice as many as the other back ends.



0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

threads

s
e
c
o
n
d
s

CGL

FGL

RSTM

Redo-lock

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

threads

s
e
c
o
n
d
s

CGL

FGL

RSTM

Redo-lock

0

50

100

150

200

250

0 5 10 15 20 25 30 35

threads

m
il
li
s
e
c
o
n
d
s

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35

threads

m
il
li
s
e
c
o
n
d
s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 5 10 15 20 25 30 35

threads

e
ff

e
c
ti

v
e
 p

r
o

c
e
s
s
o

r
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10 15 20 25 30 35

threads

e
ff

e
c
ti

v
e
 p

r
o

c
e
s
s
o

r
s

Figure 4. Total time (top), stitching time (middle), and speedup (bottom) for 200K-point triangulation. Left column:
16-processor, 1.2 GHz SunFire 6800. Right column: 8-core (32-thread), 1 GHz Sun T1000 (Niagara).



5. Conclusions

We have presented a parallel implementation of Delaunay
triangulation. Among transactional benchmarks, our code is
unusual in its extensive use of privatization and its mix of
transactions and barriers. While somewhat memory-bound, it
devotes relatively little time to synchronization, and scales well
on the ∼16-processor machines on which it has been tested.

Our code was written to run above the RSTM C++ li-
brary package, available for open source download [19]. We
draw three main conclusions from our work. First, it makes
sense to mix transactions and barriers, and in particular
to use transactions to “stitch together” spatially partitioned
work performed between barrier episodes. Second, for such
an application, a TM system must minimize—or better yet,
eliminate—extraneous overhead on access to privatized data.
This requirement argues strongly for “zero-indirection” TM
systems. Third, while the RSTM API suffices to build non-
trivial applications, it remains too complex to give to naive
users [4]. Several groups have proposed compiler support
as a way to improve the performance of transactions. We
conjecture that compiler—and language—support will be even
more important as a way to improve the programming model.

Acknowledgments

Our thanks to colleagues, past and present, who have con-
tributed to the RSTM runtime and its variants: Athul Acharya,
Sandhya Dwarkadas, David Eisenstat, Chris Heriot, Hemayet
Hossain, Corey Proscia, Aaron Rolett, Bill Scherer, Arrvindh
Shriraman, Vinod Sivasankaran, and Andrew Sveikauskas.

References

[1] G. E. Blelloch, G. L. Miller, and D. Talmor. Developing a
Practical Projection-Based Parallel Delaunay Algorithm. In
Proc. of the 12th ACM Symp. on Computational Geometry,
Philadelphia, PA, May 1996.

[2] M.-B. Chen, T.-R. Chuang, and J.-J. Wu. Parallel Divide-
and-conquer Scheme for 2D Delaunay Triangulation. Con-
currency and Computation—Practice and Experience, 18:1595-
1612, 2006.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-Conscious
Structure Definition. In Proc. of the SIGPLAN 1999 Conf. on
Programming Language Design and Implementation, Atlanta,
GA, May 1999.

[4] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L. Scott.
Capabilities and Limitations of Library-Based Software Trans-
actional Memory in C++. In Proc of the 2nd ACM SIGPLAN
Workshop on Transactional Computing, Portland, OR, Aug.
2007.

[5] B. Delaunay. Sur la Sphère Vide. Bulletin of the USSR Academy
of Sciences, Classe des Sciences Mathématiques et Naturelles,
7:793-800, 1934.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In Proc. of the 20th Intl. Symp. on Distributed Computing,
Stockholm, Sweden, Sept. 2006.

[7] R. A. Dwyer. A Faster Divide and Conquer Algorithm for
Constructing Delaunay Triangulation. Algorithmica, 2:137-151,
1987.

[8] L. Guibas and J. Stolfi. Primitives for the Manipulation of Gen-
eral Subdivisions and the Computation of Voronoi Diagrams.
ACM Trans. on Graphics, 4(2):74-123, Apr. 1985.

[9] J. C. Hardwick. Implementation and Evaluation of an Efficient
Parallel Delaunay Triangulation Algorithm. In Proc. of the
9th Annual ACM Symp. on Parallelism in Algorithms and
Architectures, Newport, RI, June 1997.

[10] M. Kulkarni, L. P. Chew, and K. Pingali. Using Transactions
in Delaunay Mesh Generation. In Workshop on Transactional
Memory Workloads, Ottawa, ON, Canada, June 2006.

[11] J. R. Larus and R. Rajwar. Transactional Memory, Synthesis
Lectures on Computer Architecture. Morgan & Claypool, 2007.

[12] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. Scherer III, and M. L. Scott. Lowering the Overhead
of Software Transactional Memory. In Proc of the 1st ACM
SIGPLAN Workshop on Transactional Computing, Ottawa, ON,
Canada, June 2006. Expanded version available as TR 893,
Dept. of Computer Science, Univ. of Rochester, Mar. 2006.

[13] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. In Proc.
of the 15th ACM Symp. on Principles of Distributed Computing,
Philadelphia, PA, May 1996.

[14] W. N. Scherer III and M. L. Scott. Advanced Contention
Management for Dynamic Software Transactional Memory. In
Proc. of the 24th ACM Symp. on Principles of Distributed
Computing, Las Vegas, NV, July 2005.

[15] A. Shriraman, M. F. Spear, H. Hossain, S. Dwarkadas, and
M. L. Scott. An Integrated Hardware-Software Approach to
Flexible Transactional Memory. In Proc. of the 34th Intl. Symp.
on Computer Architecture, San Diego, CA, June 2007. Earlier
but expanded version available as TR 910, Dept. of Computer
Science, Univ. of Rochester, Dec. 2006.

[16] M. F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and
M. L. Scott. Alert-on-Update: A Communication Aid for
Shared Memory Multiprocessors (poster paper). In Proc. of
the 12th ACM Symp. on Principles and Practice of Parallel
Programming, San Jose, CA, Mar. 2007.

[17] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and
M. L. Scott. Nonblocking Transactions Without Indirection
Using Alert-on-Update. In Proc. of the 19th Annual ACM Symp.
on Parallelism in Algorithms and Architectures, San Diego, CA,
June 2007.

[18] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization Techniques for Software Transactional Memory.
TR 915, Dept. of Computer Science, Univ. of Rochester, Feb.
2007.

[19] The Rochester Software Transactional Memory Runtime. 2006.
www.cs.rochester.edu/research/synchronization/rstm/.




