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Abstract

A high-concurrency Transactional memory (TM) implementation needs to track concurrent accesses,
buffer speculative updates, and manage conflicts. We propose that the requisite hardware mechanisms be
decoupled from one another. Decoupling (a) simplifies hardware development, by allowing mechanisms
to be developed independently; (b) enables software to manage these mechanisms and control policy
(e.g., conflict management strategy and laziness of conflict detection); and (c) makes it easier to use the
hardware for purposes other than TM.

We present a system, FlexTM (FLEXible Transactional Memory), that employs three decoupled hard-
ware mechanisms: read and write signatures, which summarize per-thread access sets; per-thread con-
flict summary tables, which identify the threads with which conflicts have occurred; and a lazy versioning
mechanism, which maintains the speculative updates in the local cache and employs a thread-private
buffer (in virtual memory) only in the rare event of an overflow. The conflict summary tables allow lazy
conflict management to occur locally, with no global arbitration (they also support eager management).
All three mechanisms are kept software-accessible, to enable virtualization and to support transactions
of arbitrary length. In experiments with a prototype on the Simics/GEMS testbed, FlexTM provides a 5×
speedup over high-quality software TM, with no loss in policy flexibility. Our analysis highlights the im-
portance of lazy conflict detection, which maximizes concurrency and helps to ensure forward progress.
Eager detection provides better overall system utilization in a mixed-programming environment. We also
present a preliminary case study in which FlexTM components aid in the development of a tool to detect
memory-related bugs.

1 Introduction

Transactional Memory (TM) addresses one of the key challenges of programming multicore systems:
namely, the complexity of lock-based synchronization. At a high level, the programmer or compiler labels
sections of the code in a single thread as atomic. The underlying system is expected to execute this code
atomically, consistently, and in isolation from other transactions, while exploiting as much concurrency as
possible.

Most TM systems execute transactions speculatively, and must thus be prepared for data conflicts, when
concurrent transactions access the same location and at least one of the accesses is a write. Conflict detection
refers to the mechanism by which such conflicts are identified. Conflict management is responsible for
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arbitrating between conflicting transactions and deciding which should abort. Pessimistic (eager) systems
perform both conflict detection and conflict management as soon as possible. Optimistic (lazy) systems
delay conflict management until commit time (though they may detect conflicts earlier). TM systems must
also perform version management, either buffering new values in private locations (a redo log) and making
them visible at commit time, or buffering old values (an undo log) and restoring them on aborts. In the
taxonomy of Moore et al. [27], undo logs are considered an orthogonal form of eagerness (they put updates
in the “right” location optimistically); redo logs are considered lazy.

The mechanisms required for conflict detection, conflict management, and version management can be
implemented in hardware (HTM) [1, 14, 16, 27, 28], software (STM) [11, 12, 15, 23, 29], or some hybrid
of the two (HyTM) [10, 18, 26, 35]. Full hardware systems are typically inflexible in policy, with fixed
choices for eagerness of conflict management, strategies for conflict arbitration and back-off, and eagerness
of versioning. Software-only systems are typically slow by comparison, at least in the common case.

Several systems [6, 35, 40] have advocated decoupling of the hardware components required for TM,
giving each a well-defined API that allows them to be implemented and invoked independently. Hill et
al. [17] argue that decoupling makes it easier to refine an architecture incrementally. Shriraman et al. [34,35]
argue that decoupling helps to separate policy from mechanism, thereby enabling flexibility in the choice
of policy. Both groups suggest that decoupling may allow TM components to be used for other, non-
transactional purposes [17] [35, TR version].

Several papers have found performance pathologies with certain policy choices (eagerness of conflict
management; arbitration and back-off strategy) in certain applications [4, 32, 35, 36]. RTM promotes policy
flexibility by decoupling version management from conflict detection and management—specifically, by
separating data and metadata, and performing conflict detection only on the latter. While RTM hardware
provides a single mechanism for both conflict detection and management, software can choose (by control-
ling the timing of metadata inspection and updates) when conflicts are detected. Unfortunately, metadata
management imposes significant software costs [35].

In this paper, we propose more fully decoupled hardware, allowing us to maintain the separation between
version management and conflict management without the need for software-managed metadata. Specif-
ically, our FlexTM (FLEXible Transactional Memory) system introduces conflict summary tables (CSTs)
to concisely capture conflicts between transactions. It also uses Bloom filter signatures (as in Bulk [6] and
LogTM-SE [40]) to track and summarize a transaction’s read and write sets, and adapts the versioning sys-
tem of RTM (programmable data isolation—PDI), extending it to directory-based coherence and adding a
hardware-filled overflow mechanism.

Though FlexTM relies on read and write signatures to maintain CSTs, the signatures are first-class ob-
jects, and can be used for other purposes as well. The CSTs, for their part, can be polled by software or
configured to trigger a user-level handler when conflicts occur; this allows us to separate conflict detection
from conflict management. In other words, while the hardware always detects conflicts immediately, soft-
ware chooses when to notice, and what to do about it. FlexTM enables lazy conflict management without
commit tokens [14], broadcast of write sets [6, 14], or ticket-based serialization [7]. It is, to our knowledge,
the first hardware TM to implement lazy commits and aborts as entirely local operations, even with parallel
commits in multiple threads.

As in RTM, PDI buffers speculative writes in local (private) caches, allowing those caches to grow inco-
herent under software control. Rather than fall back to software-only TM in the event of overflow, however,
FlexTM moves evicted speculative lines to a thread-private overflow table (OT) in virtual memory. Both
signatures and CSTs are independent of the versioning system.

Signatures, CSTs, and OTs are fully visible in software, and can be read and (at the OS level) written
under software control. This allows us to virtualize these structures, extending transactions through context
switches and paging. As in LogTM-SE, summary signatures capture the read and write sets of swapped-
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out transactions. However, because we flush speculative state from the local cache when descheduling a
transaction, unlike LogTM-SE, the summary signature is not on the path of every L1 access, but rather, is
checked only on a miss.

We have developed a 16-core FlexTM CMP prototype on the Simics/GEMS simulation framework. We
investigate performance using benchmarks that stress the various components of the system and the policy
decisions implemented in software. Our results suggest that FlexTM’s performance is comparable to that
of fixed policy HTMs, and 2× and 5× better than that of hardware accelerated STMs and plain STMs,
respectively. The results also indicate that lazy conflict management (for which FlexTM is ideally suited)
serves to maximize concurrency and encourages forward progress of TM applications. On the other hand,
Eager detection tries to maximize overall system utilization in a mixed-programming environment. These
results underscore the importance of hardware that permits such policy specifics to be controlled in software.

2 Related Work

Transactional memory is a very active area. Larus and Rajwar [19] provide an excellent summary as of fall
2006. Due to limited space, we discuss only the most relevant proposals here.

The Bulk system of Ceze et al. [6] decouples conflict detection from cache tags by summarizing transac-
tion read/write sets in Bloom filter signatures [2]. To commit, a transaction broadcasts its write signatures
to all other transactions, which then compare to their own read and write signatures to detect conflicts. Con-
flict management (arbitration) is first-come-first-served, and requires global synchronization in hardware to
order commit operations.

LogTM-SE [40] integrates the cache-transparent eager versioning mechanism of LogTM [27] with Bulk
style signatures. LogTM-SE supports efficient virtualization (i.e., context switches and paging), but this is
closely tied to eager versioning (undo logs), which in turn requires eager conflict detection and management
to avoid inconsistent reads in a transaction. Also, since LogTM does not allow transactions to abort one
another, it is possible for running transactions to “convoy” behind a suspended transaction.

UTM [1] and VTM [28] both perform lazy versioning using virtual memory, although they employ dif-
ferent data structures. UTM uses a log pointer per memory block. On a cache miss (local or forwarded
request), a hardware controller walks an uncacheable in-memory data structure that specifies access permis-
sions. VTM employs tables maintained in software and uses software routines to walk the table only on
cache misses that hit in a locally cached lookaside filter. Like LogTM, both VTM and UTM require eager
conflict management.

Hybrid TMs [10, 18] explore software approaches to handle transactions that overflow time and space
resources while employing the underlying HTM system to handle common case bounded transactions. Hy-
brid TMs must maintain metadata compatible with the fallback STM and use policies compatible with the
underlying HTM. SigTM [26] employs hardware signatures for conflict detection but uses a (always on)
TL-2 [11] style software redo-log for versioning. Similar to the hybrid systems, it suffers from per-access
metadata bookkeeping overheads. Furthermore, it supports only limited policies for contention manage-
ment (i.e., only self aborts) and requires expensive commit time arbitration on every speculatively written
location.

RTM [34,35] explored hardware acceleration of a TM fundamentally controlled in software. Specifically,
it introduced (1) Alert-On-Update (AOU), which triggers a software handler when pre-specified lines are
modified remotely, and (2) Programmable Data Isolation (PDI), which buffers speculative writes in (poten-
tially incoherent) local caches. To decouple version management from conflict detection and management,
however, RTM software had to segregate data and metadata, retaining much of the bookkeeping cost of
all-software TM systems.
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3 FlexTM Architecture

FlexTM provides hardware mechanisms for conflict detection, conflict management, and versioning. We
first describe these separately, then discuss how they work together to enable flexible TM.

3.1 Access Tracking: Read-Set and Write-Set Signatures

Bulk [6] and LogTM-SE [40] use Bloom filter signatures [2] to summarize the read and write sets of trans-
actions in a concise but conservative fashion (i.e., false positives but no false negatives). Signatures decouple
conflict detection from critical L1 tag arrays and enable remote requests to test for conflicts using local pro-
cessor state, without walking in-memory structures [1, 28]. As in these systems, every FlexTM processor
maintains a read signature (Rsig) and a write signature (Wsig) for the current transaction. The signatures
are updated by the processor on transactional loads and stores. They allow the controller to detect conflicts
when it receives a remote coherence request.

3.2 Conflict Tracking: Conflict Summary Tables

Existing proposals for both eager [1,27] and lazy [6,14,26] conflict detection track information on a cache-
line-by-cache-line basis. FlexTM, by contrast, tracks conflicts on a processor-by-processor basis (virtualized
to thread-by-thread). Specifically, each processor has three Conflict Summary Tables (CST)s, each of which
contains one bit for every other processor in the system. Named R-W, W-R, and W-W, the CSTs indicate
that a local read (R) or write (W) has conflicted with a read or write (as suggested by the name) on the
corresponding remote processor. On each coherence request, the controller reads the local Wsig and Rsig,
sets the local CSTs accordingly, and includes information in its response that allows the requestor to set its
own CSTs to match.

3.3 Versioning Support: Programmable Data Isolation (PDI)

RTM [35] proposed a lazy versioning protocol (programmable data isolation (PDI)) that allowed software
to exploit incoherence (when desired) by utilizing the inherent buffering capabilities of private caches. Pro-
grams use explicit TLoad and TStore instructions to inform the hardware of transactional memory opera-
tions: TStore requests isolation of a speculative write, whose value will not propagate to other processors
until commit time. TLoad allows local caching of (previous values of) remotely TStored lines.

FlexTM adapts PDI to a directory protocol and extends it to incorporate signatures and CSTs. It also
simplifies the management of speculative reads, adding only two new stable states to the base MESI protocol,
rather than the five employed in RTM [35]. Details appear in Figure 1.

FlexTM CMP’s base cache protocol for private L1s and a shared L2 is an adaptation of the SGI ORIGIN
2000 [20] directory-based MESI, with the directory maintained at the L2 tags (see Figure 2). Local L1
controllers respond to both the directory and the requestor (response to the directory is used to indicate
whether the cache line has been dropped or retained). Requestors make three different types of requests:
GETS on a read (Load/TLoad) miss in order to get a copy of the data, GETX on a normal write (Store)
miss/upgrade in order to get exclusive permissions as well as potentially an updated copy, and TGETX on a
transactional store (TStore) miss/upgrade.1

A TStore results in a transition to the TMI state in the private cache (encoded by setting the T bit and
dirty bit in conventional MESI – see Figure 2). A TMI line reverts to M on commit (propagating the
speculative modifications) and to I on abort (discarding speculative values). On the first TStore to a line in

1GETX and TGETX represent either a request for data with exclusive access or an upgrade-to-exclusive message.
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M, TMESI writes back the modified line to L2 to ensure subsequent Loads get the latest non-speculative
version. To the directory, the local TMI state is analogous to the conventional E state. The directory realizes
that the processor can transition to M (silent upgrade) or I (silent eviction), and any data request needs to
be forwarded to the processor to detect the latest state. The only modification required at the directory is
the ability to support multiple owners. We accommodate this need by adding a mechanism similar to the
existing support for multiple sharers. We track owners when they issue a TGETX request and ping all of
them on other requests. In response to any remote request for a TMI line, the local L1 controller sends a
Threatened response, analogous to the Shared response to a GETS request on an S or E line. In addition to
transitioning the cache line to TMI, a TStore also updates the Wsig. TLoad likewise updates the Rsig.

I

S

E

PDI States

ABORT

Store / −

/ GETS(S,T)
Load

/ GETS(T)
Load

GETS / −

/ GETS(S,T)
Load,TLoad

TStore
/ TGETX

TI

TMI

TStore
/ TGETX

TStore
/ TGETX

TStore / Flush

X / INV

X / INV

X / Flush

/ S

GETS
/ Flush

Load,TLoad / −

Store
/ GETX

GETS / S

Load,TLoad,TStore / −
TGETX / T
GETX / T
GETS / T

TLoad / GETS(T)

M

COMMIT
Load,Store,TLoad / −

TStore / −

GETX / INV

X / INV

/ GETX
Store

TGETX / Exposed−Read
TLoad / −

GETSLoad

Figure 1: Dashed boxes enclose the MESI and PDI subsets of
the state space. Notation on transitions is conventional: the part
before the slash is the triggering message; after is the ancillary
action (‘–’ means none). GETS indicates a request for a valid
sharable copy; GETX for an exclusive copy; TGETX for a copy
that can be speculatively updated with TStore. X stands for the
set {GETX, TGETX}. “Flush” indicates a data block response
to the requestor and directory. S indicates a Shared message; T
a Threatened message. Plain, they indicate a response by the
local processor to the remote requestor; parenthesized, they indi-
cate the message that accompanies the response to a request. An
overbar means logically “not signaled”.

State Encoding
M bit V bit T bit

I 0 0 0
S 0 1 0
M 1 0 0
E 1 1 0

TMI 1 0 1
TI 0 0 1

Responses to requests that hit in Wsig or Rsig
Hit in Wsig Hit in Rsig

Request Msg Response Msg Response Msg
GETX Threatened Invalidated

TGETX Threatened Exposed-Read
GETS Threatened Shared

TLoads when threatened move to the TI state (encoded by setting the T bit when in the I (invalid) state).
(Note that a TLoad from E or S can never be threatened; the remote transition to TMI would have moved the
line to I.) TI lines must revert to I on commit or abort, because if a remote processor commits its speculative
TMI block, the local copy could go stale. The TI state appears as a conventional sharer to the directory.

On forwarded L1 requests from the directory, the local cache controller tests the signatures and appends
the appropriate message type to the response message. On a miss in the Wsig, the result from testing the Rsigis
used; on a miss in both, the L1 cache responds as in normal MESI. The local controller also piggybacks
a data response if its deemed necessary (M state). Signature-based response types are shown in Figure 1.
Threatened indicates a write conflict (hit in the Wsig), Exposed-Read indicates a read conflict (hit in the Rsig),
and Shared or Invalidated indicate no conflict. When it sends a Threatened or Exposed-Read message, a
responder B sets the bit corresponding to the requestor in its R-W, W-W, or W-R CSTs, as appropriate.
The requestor likewise sets the bit corresponding to the responder in its own CSTs, as appropriate, when it
receives the response.

Transaction commit is requested with a special variant of the CAS (compare-and-swap) instruction. If a
CAS-Commit succeeds, the controller simultaneously reverts all local TMI and TI lines to M and I, respec-
tively (achieved by flash clearing the T bits); if the CAS-Commit fails, the controller reverts all such lines to
I (achieved by conditionally clearing the M bits based on the T bits and then flash clearing the T bits).

FlexTM enforces the single-writer or multiple-reader invariant for non-transactional lines. For transac-
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tional lines, FlexTM also enforces (1) TStores can only update lines in TMI state and (2) TLoads that are
threatened can only cache the block in TI state. Software is expected to ensure that at most one of the con-
flicting transactions commits. It can restore coherence to the system by triggering an Abort on the remote
transaction’s cache, without having to re-acquire exclusive access to store sets like other lazy systems [6,14].

3.4 Explicit Aborts: Alert-On-Update (AOU)

The Alert-On-Update (AOU) mechanism, borrowed from RTM [34, 35], provides fast and flexible notifica-
tion of conflicts. To use AOU, a program marks (ALoads) one or more cache lines, and the cache controller
effects a subroutine call to a user-specified handler if the marked line is invalidated. Alert traps require
simple additions to the processor pipeline. Modern processors already include trap signals between the
Load-Store-Unit (LSU) and Trap-Logic-Unit (TLU) [41]. AOU adds an extra message to this interface and
an extra mark bit, ‘A’, to each line in the L1 cache. (An overview of the FlexTM hardware required in the
processor core, the L1 controller, and the L2 controller appears in Figure 2.) RTM used AOU both to detect
changes to transaction status words (initiated by conflict managers) and to perform conflict detection on
metadata associated with objects accessed in the transaction. FlexTM uses AOU for the transaction status
word only in order to obtain immediate notification of aborts performed by conflict management (it uses
signatures and CSTs for conflict detection). Hence, FlexTM requires AOU support for only one cache line
(i.e., the status word of the transaction, see Section 3.6) and can therefore use the simplified hardware mech-
anism (avoiding the bit per cache tag) proposed by Spear et al. [38]. More general AOU support might still
be useful for non-transactional purposes [37].

AOU Control
PDI Control
Manager PC

User
Registers

R−W conflicts
W−R conflicts

W−W conflicts

OSig

Commtd/Spec.
Overflow Count

Hash Param.

Thread Id
Base Address

DataSharer ListStateTag

Processor Core

Shared L2$

Access Tracking Regs.

W

Conflict Tracking Regs.

RS

WSSig

Sig

SigRSig

Cores Summary

Tag State A T Data

L1 D$
Private L1 Cache Controller

Regs.
Overflow Table Controller Miss

L1

Shared L2 Cache Controller
Context Switch Support

Figure 2: FlexTM Architecture Overview (dark lines surround FlexTM-specific state).

3.5 Programming Model

A FlexTM transaction is delimited by BEGIN_TRANSACTION and END_TRANSACTION macros. The
first of these establishes conflict and abort handlers for the transaction, checkpoints the processor registers,
configures per-transaction metadata, sets the transaction status word to active, and ALoads that word
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(for notification of aborts). The second macro aborts conflicting transactions and tries to atomically update
the status word from active to committed using CAS-Commit. In this paper, we have adopted the
subsumption model for nesting with support for transactional pause and restart.

Within a transaction, a processor issues TLoads and TStores when it expects transactional semantics, and
conventional loads and stores when it wishes to bypass those semantics. While one could imagine requiring
the compiler to generate instructions as appropriate, our prototype implementation follows typical HTM
practice and interprets ordinary loads and stores as TLoads and TStores when they occur within a transaction.
This convention facilitates code sharing between transactional and nontransactional program fragments.
Ordinary loads and stores can be requested within a transaction by issuing special instructions; while not
needed in our experiments, these could be used to implement open nesting, update software metadata, or
reduce the cost of thread-private updates in transactions that overflow cache resources (Section 4).

As captured implicitly in Figure 1, transactional and ordinary loads and stores to the same location can
occur concurrently. While we are disinclined to require strong isolation [3] as part of the user programming
model (it’s hard to implement on legacy hardware, and is of questionable value to the programmer [39]),
it can be supported at essentially no cost in HTM systems (FlexTM among them), and we see no harm
in providing it. If the GETX request resulting from a nontransactional write miss hits in the responder’s
Rsig or Wsig, it aborts the responder’s transaction, so the nontransactional write appears to serialize before
the (retried) transaction. A nontransactional read, likewise, serializes before any concurrent transactions,
because transactional writes remain invisible to remote processors until commit time (in order to enforce
coherence, the corresponding cache line, which is threatened in the response, is uncached).

3.6 Bounded Transactions

In this section, we focus on bounded transactions (those that fit in the L1 cache and complete within an OS
quantum); subsequent sections describe OS and hardware extensions to support unboundedness.

Every FlexTM transaction is represented by a software descriptor (Table 1) containing, among other
fields, the transaction status word (TSW).

Name Description
TSW active/committed/aborted/committing
State running / suspended
Wsig (Rsig) Write (Read) Signature
CST Conflict Summary Tables (R-W, W-R, W-W)
OT Pointer to Overflow Table descriptor
AbortPC Alert handler (for AOU on TSW

and for enforcing strong isolation)
CMPC Conflict Management handler (for Eager conflicts)
E/L Eager(1)/Lazy(0) conflict detection.

Table 1: Transaction Descriptor Fields

Commit() /* Non-Blocking, Pre-emptible */
1. copy-and-clear W-R and W-Wregisters
2. foreach i set in W-R or W-W
3. CAS(TSW[i], active, aborted)
4. CAS-Commit(TSW[my id], active,
committed)

5. If TSW[my id] == active then Goto 1

Figure 3: Simplified Commit Routine for
Lazy transactions

Transactions of a given application can operate in either Eager or Lazy conflict detection mode. In Eager
mode, when conflicts appear through response messages (i.e., Threatened and Exposed-Read), the processor
effects a subroutine call to the handler specified by CMPC. The conflict manager either stalls the requesting
transaction or aborts one of the transactions (lines 1-3 in Figure 3). The remote transaction can be aborted
by atomically updating its TSW from active to aborted, thereby triggering an alert (since the TSW
is always ALoaded). Other eager conflict management systems [1, 27, 28] provide no way to abort remote
transactions. In eager mode, when a transaction reaches its commit point, its CSTs will be empty since all
prior conflicts will have been resolved. A transaction attempts to commit by executing a CAS-Commit to its
TSW. If the CAS-Commit succeeds in replacing the expected old value (e.g., active) with the desired new
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value (e.g.,committed), the hardware flash-commits all locally buffered (TMI) state. The CAS-Commit
will fail if the local W-R or W-W CST is not zero.

In Lazy mode, transactions are not alerted into the conflict manager. The hardware simply updates re-
questor and responder CSTs. At commit time, a transaction T needs to abort only the transactions found
in its W-R and W-W sets in order to ensure serialization. No tokens [14], broadcast of store sets [6, 14], or
ticket-based serialization [7] are required. To avoid spurious aborts, T may also clean itself out of X’s W-R,
where X is the transaction in T ’s R-W. Lazy transactions employ the Commit() routine shown in Figure 3.
Eager transactions manage conflicts as soon as they are detected and only need to CAS-Commit their TSW
to committed in Commit().

All of the work for the Commit() routine occurs in software, with no need for global arbitration, blocking
of other transactions, or special hardware states. Lazy Commit() uses a copy and clear instruction (similar
to, e.g., clruw on the SPARC) to atomically access its own W-R and W-W. In lines 2–3 of Figure 3, for
each of the bits that was set, transaction T aborts the corresponding transaction R by atomically changing
R’s TSW from active to aborted. Transaction R, of course, could try to CAS-Commit its TSW and race
with T , but since both operations occur on R’s TSW, conventional cache coherence guarantees serialization.
After T has successfully aborted all conflicting peers, it performs a CAS-Commit on its own status word. If
the CAS-Commit fails and the failure can be attributed to a non-zero W-R or W-W (i.e., new conflicts), the
Commit() routine is restarted.

For common case transactions that do not overflow the cache [8], FlexTM uses the buffering capabilities
(PDI support) of the cache without requiring any extra logging or software overhead. The read-write signa-
tures and conflict summary table help eliminate the software overheads of indirection typically incurred by
STM systems, while retaining/enabling policy flexibility.

4 Unbounded Space Support

To provide the illusion of unbounded space to transactions, the underlying system needs to support transac-
tions in the presence of (1) L1 cache overflows and (2) physical memory virtualization (i.e., paging).

4.1 Cache Evictions

Cache evictions must be handled carefully in FlexTM. First, signatures rely on forwarded requests from
the directory to trigger lookups and provide conservative conflict hints (Threatened and Exposed-Read mes-
sages). Second, TMI lines holding speculative values need to be buffered and cannot be merged into the
shared level of the cache.

Conventional MESI performs silent eviction of E and S lines, to avoid the bandwidth overhead of noti-
fying the directory. In FlexTM, silent evictions of E, S, and TI lines also serve to ensure that a processor
continues to receive the coherence requests it needs to detect conflicts. (Directory information is updated
only in the wake of L1 responses to L2 requests, at which point any conflict is sure to have been noticed.)
When evicting a cache block in M, FlexTM updates the L2 copy but does not change the directory state.
Processor sharer information can be lost due to L2 evictions. To preserve the access conflict tracking mech-
anism, L2 misses result in querying all L1 signatures in order to recreate the sharer list. This mechanism
behaves much like the sticky bits used in LogTM [27].

FlexTM employs a per-thread overflow table (OT) to buffer evicted TMI lines. The OT is organized in
virtual memory in a manner similar to tagged memories in COMA [9] and remote-address-caches [21]. It
is accessed both by software and by the L1 cache controller. The latter implements fast lookups on cache
misses, allowing software to be oblivious to the overflowed status of a cache line, and fast cleanup and
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atomic commit of overflowed state.
The controller registers required for OT support appear in Figure 2. They include a thread identifier, a

signature (Osig) for the overflowed cache lines, a count of the number of such lines, a committed/speculative
flag, and parameters (virtual and physical base address, number of sets and ways) used to index into the
table.

On the first overflow of a TMI cache line, the processor traps to a handler, which allocates an OT, fills the
registers in the L1 cache controller, and returns control to the transaction. We assume the OS ensures that
OTs of active transactions lie in physically contiguous memory. If an active transaction’s OT is swapped out,
then the OS invalidates the Base-Address register in the controller. If subsequent activity requires the OT,
then the hardware traps to a software routine that establishes a re-mapping, taking care that TMI lines aren’t
evicted (the L1 cache controller could easily support this routine by ensuring at least one entry in the set is
free for non-TMI lines.) On any subsequent TMI eviction, the cache controller calculates the set index using
the physical address of the line, accesses the set tags of the OT region to find an empty way, and writes the
data block back to the OT instead of the L2. The controller tags the line with both its physical address (used
for associative lookup) and its logical address (used to accommodate page-in at commit time; see below).
The controller also adds the physical address to the overflow signature (Osig) and increments the overflow
count.

The Osig provides quick lookaside checks for entries in the OT. Reads and writes that miss in the L1 are
checked against the signature. On hits, they fetch the line from the OT and invalidate the OT entry. Misses
are forwarded to the L2. Remote requests need to check only committed OTs (since speculative lines are
private) and for only a brief span of time (during OT copy-back). When a remote request hits in the Osig of
a committed transaction, the controller could perform lookup in the OT, much as it does for local requests,
or it could NACK the request until copy-back completes. Our current implementation does the latter.

In addition to functions previously described, the CAS-Commit operation sets the Committed bit in the
controller’s OT state. This indicates that the OT content should be visible, activating NACKs or lookups. At
the same time, the controller initiates a micro-coded copy-back operation. Note that there are no constraints
on the order in which lines from the OT are copied back to their natural locations. This stands in contrast
to time-based logs [27], which must proceed in reverse order (for undo logs) of insertion. On aborts, the
OT is returned to the operating system. The next overflowed transaction allocates a new OT. When an OT
overflows a way, the hardware generates a trap to the OS, which expands the OT appropriately.

With the addition of the overflow table controller, software is involved only for the allocation and deal-
location of the OT structure. Indirection to the OT on misses, while unavoidable, is performed in hardware
rather than in software, thereby reducing the resulting overheads. Furthermore, FlexTM’s copyback is per-
formed by the controller and occurs in parallel with other useful work on the processor.

Virtual Memory Paging Though presumably infrequent [8], page faults may nonetheless occur in the
middle of a transaction. To accommodate paging, OT tags include both logical and physical addresses. The
physical addresses are used for associative lookup, and to eliminate synonym and homonym problems [5].
The logical addresses are used during copy-back, to ensure automatic page-in of any nonresident pages.
Though for simplicity we currently require that OTs be physically contiguous, they can themselves be paged,
albeit as a single unit. In particular, it makes sense for the OS to swap out the OTs of de-scheduled threads. A
more ambitious FlexTM design could allow physically non-contiguous OTs, with controller access mediated
by more complex mapping information.

The only two challenges left to consider are (1) when a logical page is swapped out and its physical frame
is reused for a different page in the application, and (2) when a logical page is re-mapped to a different
physical frame. Since signatures are built using physical addresses (1) can only lead to false positives,

9



which can cause spurious aborts. For (2) we adapt a solution first proposed in LogTM-SE [40]: as part of
the unmap operation, the OS (as in all systems) sends invalidations to the directory that are forwarded to all
appropriate L1 caches. The L1 controllers move invalidated TMI lines to the OT, where they are visible to
the OS instance that initiated the unmap. When the logical page is assigned to a new physical frame, the OS
interrupts all the threads that mapped the page. The OS tests each thread’s Rsig Wsig and Osig for the old
address of each block and, if the block is present, adds the new address. Furthermore, it also updates the
corresponding tags of the OT entries with the new physical address.

5 Context Switch Support

STMs provide effective virtualization support because they maintain conflict detection and versioning state
in virtualizable locations and use software routines to manipulate them. For common case transactions,
FlexTM uses scalable hardware support to bookkeep the state associated with access permissions, conflicts,
and versioning while controlling policy in software. In the presence of context switches, FlexTM separates
the transactional state of an application from the hardware and manages it in software. This enables support
for transactions to extend across context switches (i.e., to be unbounded in time [1]).

To track the accesses of descheduled threads, FlexTM maintains two summary signatures, RSsig and
WSsig, at the directory of the system. When suspending a thread in the middle of a transaction, the OS
unions (i.e., ORs) the signatures (Rsig and Wsig) of the thread into the current RSsig and WSsig installed at
the directory.2

Following this the OS scheduler invoke routines to merge the current transaction’s hardware state into
the process’s virtual memory. This hardware state consists of (1) the TMI lines in the local cache, (2) the
OT registers, (3) the current Rsig and Wsig, and (4) the CSTs. After saving this state (in the order shown),
the OS issues an abort instruction, causing the cache controller to revert all TMI and TI lines to I, and to
clear the signatures, CSTs, and OT registers. This ensures that any subsequent conflicting access will miss
in the private cache and generate a directory request. In other words, for any given location, the first conflict
between the running thread and a descheduled thread always results in a miss in the private cache. The
L2 controller consults the summary signatures on each L1 miss, and traps to software on the requesting
processor when a conflict is detected.

The software handler mimics hardware operations on a per-thread basis, testing signature membership
and updating the CSTs of suspended transactions. No special instructions are required, since the CSTs and
signatures of the de-scheduled conflicting thread are all visible in virtual memory. Nevertheless, updates
need to be performed atomically to ensure consistency when multiple active transactions conflict with a
common de-scheduled transaction and update the CSTs concurrently. To support the handler’s operations,
the OS maintains a global conflict management table (CMT), indexed by processor id, with the following
invariant: if transaction T is active, and executed on processor P when in the transaction, irrespective of the
state of the thread (suspended/running), the transaction descriptor will be included in the active transaction
list corresponding to processor P. The handler uses the processor ids in its CST to index into the CMT and
to iterate through transaction descriptors, testing the saved signatures for conflicts, updating the saved CSTs
(if running in lazy mode), or invoking conflict management (if running in eager mode). Similar perusal of
the CMT occurs at commit time if running in lazy mode. As always, we abort a transaction by writing its
TSW. If the remote transaction is running, an alert is triggered since it would have previously ALoaded
its TSW. If suspended, the OS virtualizes the AOU operation by causing the transaction to wake up in a

2FlexTM updates RSsig and WSsig using a Sig message. The Sig message uses the coherence L1 request network and carries the
processor’s Rsig and Wsig. The directory updates the summary signatures and ACKs on the forwarding network. This avoids races
between the ACK and remote requests that were forwarded before the summary signature was updated.
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software specified handler that checks the TSW and re-ALoads it if still active.
When re-scheduling a thread, if the thread is being scheduled back to the same processor from which

it was swapped out, the thread’s Rsig, Wsig, CST, and OT registers are restored on the processor. The OS
then re-calculates the summary signatures for the currently swapped out threads with active transactions
and re-installs them at the directory. Thread migration is a little more complex, since FlexTM performs
lazy versioning and does not re-acquire ownership of previously written cache lines. To avoid the inherent
complexity, FlexTM adopts a simple policy for migration: abort and restart.

Along with RSsig and WSsig, the directory maintains a bitmap indicating the processors on which trans-
actions are currently de-scheduled (the “Cores Summary” register in Figure 2). When the directory would
normally remove a processor from the sharers list (because a response to a coherence request indicates that
the line is no longer cached), the directory refrains from doing so if the processor is in the Cores Summary
list and the line hits in RSsig or WSsig. This ensures that the L1 continues to receive coherence messages for
lines accessed by de-scheduled transactions. It will need these messages if the thread is swapped back in,
even if it never reloads the line.

Unlike LogTM-SE [40], FlexTM is able to place the summary signature at the directory rather than on
the path of every L1 access, thereby avoiding the need for inter-processor interrupts to install summary
signatures. Since speculative state is flushed from the local cache when descheduling a transaction, after
a transaction is scheduled back in, the first access to a conflicting line is guaranteed to miss, and the con-
flict will be caught by the summary signature at the directory. Furthermore, LogTM-SE does not provide
mechanisms to abort remote transactions, and this could lead to convoying of running transactions behind
suspended transactions.

6 Complexity Analysis

In this section we quantify the area overhead of FlexTM and comment on its level of design complexity.
Area estimates appear in Table 6. We consider processors from a uniform (65nm) technology generation
to better understand microarchitectural tradeoffs. To simplify the analysis we consider only those add-ons
required at the processor core: Rsig and Wsig, CSTs, cache state bits, and the OT controller. Requirements
at the L2 level should be less cost and performance-critical, and no more onerous.

FlexTM shares its signature design with Bulk [6], LogTM-SE [40], and SigTM [26]. Only for the 8-way
multithreaded Niagara-2 do these have a noticeable area impact: 2.2%; on Merom and Power6 they add only
∼0.1%. These results appear to be consistent with those of Sanchez et al. [31]. The CSTs for their part are
full-map bit-vector registers (as wide as the number of processors), with three per hardware context.

FlexTM adds two state bits (‘A’ and ‘T’) to each cache line, plus ID bits on an SMT to identify the owner
of a TMI cache line. We do not expect the extra bits to affect the latency of the L1 cache because (a) they
have minimal impact on the L1 area (less than 4% on Niagara-2, well under 1% on Merom and Power6),
and (b) the state array is typically accessed in parallel with the higher latency data array. For the uncommon
overflow case, the OT controller adds less than 0.5% to core area. Its FSM is very similar to the existing
translation storage buffer (TSB) walker in Niagara-2 [41]; the dominant sub-structures are the buffers and
MSHRs required to interface with the L1 and L2.

To conclude, FlexTM’s add-ons have noticeable area impact (∼2.6%) only in the case of high core mul-
tithreading (e.g., Niagara-2’s 8-way SMT) with small caches lines. The overheads imposed on out-of-order
CMP cores (Merom and Power6) are well under 1%. These overheads seem particularly small given that
FlexTM makes a number of important contributions towards supporting redo-logging and lazy conflict man-
agement without embedding policy in hardware. First, CSTs enable commit/abort management (for eager
or lazy conflict management) to occur entirely locally, and enable transactions to commit in parallel. Previ-
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Processor Merom [30] Power6 [13] Niagara-2 [41]
Actual Die

SMT (threads) 1 2 8
Feature Size 65nm 65nm 65nm
Die (mm2) 143 340 342
Core (mm2) 31.5 53 11.7
L1 D (mm2) 1.8 2.6 0.4

line size (bytes) 64 128 16
L2 (mm2) 49.6 126 92

CACTI Prediction
Signature (mm2) .033 .066 0.26
CSTs (registers) 3 6 24

OT controller 0.16 0.24 0.035
Extra state bits 2(T,A) 3(T,A,ID) 5(T,A,ID)

% Core increase 0.6% 0.59% 2.6%
% L1 Dcache increase 0.35% 0.29% 3.9%

Processor component sizes were estimated using published
die images. FlexTM component areas were estimated using
CACTI 6.

The signatures are 2048 bits wide and 4-banked, with sepa-
rate read and write ports. CACTI indicates that these should be
readable and writable in less than the L1 access latency.

Cache line ID bits are required to identify the hardware con-
text that wrote a TMI line (e.g., 3 for Niagara-2’s 8-way SMT).
State bit overhead includes the transistor per bit required to sup-
port flash-clearing.

The OT controllers have been designed to handle 8 write-
backs and 8 miss requests from the L1 cache. The buffer entries
are sized based on the line size of the L1 cache.

Table 2: Area Estimation

ously, systems that exploited cache incoherence either required elaborate commit protocols (e.g., TCC [14]
and Bulk [6]) or high overhead software bookkeeping (e.g., RTM-F [35]). Second, AOU makes it easy to
implement a variety of conflict management policies, including those that abort remote peers. Both LogTM-
SE [40] and SigTM [26] support only self-aborts, and limit conflict management policies.

Perhaps most important, PDI allows caches to hold speculative updates in the common case (i.e., no over-
flow) and removes redo-log insertion from the critical path. The OT controller streamlines the commit path
even for overflow transactions, and overlaps the physical commit with subsequent real work. Both LogTM-
SE and SigTM require log updates on the critical path (possibly every speculative write) and consume extra
L1 bandwidth for these writes even for transactions that don’t overflow.

7 FlexTM Evaluation

7.1 Evaluation Framework

We evaluate FlexTM through full system simulation of a 16-way chip multiprocessor (CMP) with private
L1 caches and a shared L2 (see Table 2(a)), on the GEMS/Simics infrastructure [25]. We added support
for the FlexTM instructions using the standard Simics “magic instruction” interface. Our base protocol is
an adaptation of the SGI ORIGIN 2000 [20] for a CMP, extended to support FlexTM’s requirements: (1)
the alert-on-update mechanism, (2) programmable-data-isolation, and (3) signatures and conflict summary
tables. Software routines (setjmp) were used to checkpoint registers.

Simics allows us to run an unmodified Solaris 9 kernel. Simics also provides a “user-mode-change” and
“exception-handler” interface, which we use to trap user-kernel mode crossings. On crossings, we suspend
the current transaction mode and allow the OS to handle TLB misses, register-window overflow, and other
kernel activities required by an active user context in the midst of a transaction. On transfer back from the
kernel, we deliver any alert signals received during the kernel routine, triggering the alert handler if needed.

7.2 Runtime Systems

We evaluate FlexTM using the seven benchmarks described in Table 2(b). In the data-structure tests, we
execute a fixed number of transactions in a single thread to warm-up the data structure, then fork off threads
to perform the timed transactions. Workload set 1 (WS1) interfaces with three TM systems: (1) FlexTM,
(2) RTM-F [35], a hardware accelerated STM system, and (3) RSTM [24], a non-blocking STM for legacy
hardware (configured to use invisible readers, with self validation for conflict detection). Workload-Set 2
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(a) Target System Parameters
16-way CMP, Private L1, Shared L2

Processor Cores 16 1.2GHz in-order,
single issue,
non-memory IPC=1

L1 Cache 32KB 2-way split,
64-byte blocks,
1 cycle latency,
32 entry victim buffer,
2Kbit signature
[6, Table 8, S14]

L2 Cache 8MB, 8-way, 4 banks,
64-byte blocks, 20
cycle

Memory 2GB, 250 cycle
latency

Interconnect 4-ary tree, 1 cycle
latency, 64-byte links

(b) Workload Description
Workload-Set 1
HashTable: Transactions attempt to lookup, insert, or delete (33% each) a value (range 0 . . .255) with
equal probability into a hash table with 256 buckets and overflow chains.
RBTree: Transactions attempt to insert, remove, or delete (33% each) values in the range 0 . . .4095
with equal probability. At steady state there are about 2048 objects, with 50% of the values in leaves.
Node size is 256 bytes.
LFUCache: Simulates a web cache using a large (2048) array based index and a smaller (255 entry)
priority queue to track the page access frequency. Pages to be accessed are randomly chosen using a
Zipf distribution: p(i) ∝ Σ0< j≤i j−2.
RandomGraph Transactions insert or delete vertices (50% each) in an undirected graph represented
with adjacency lists. Edges are chosen at random, with each new vertex initially having up to 4 randomly
selected neighbors.
Delaunay [33] Solves the original triangulation problem. Sorts the points into geometric regions, em-
ploys sequential solvers in parallel to triangulate the regions, then uses transactions to “stitch” together
the seams.
Workload-Set 2
Vacation [26]: Implements a travel reservations system. Client threads interact with an in-memory
database in which tables are implemented as a Red-Black tree. This workload is similar in design to
SPECjbb2000. We configure the workload in two contention modes: Low – 90% of relations queried,
read-only tasks dominate; High – 10% of relations queried, 50-50 mix of read-only and read-write tasks.

Table 3: Experimental Set-Up

(WS2) interfaces with two TM systems: (1) FlexTM and (2) TL-2, a blocking STM for legacy hardware [11].
We use the same conflict manager (Polka [32]) across all systems. While all runtime systems execute on our
simulated hardware, RSTM and TL-2 make no use of FlexTM extensions. RTM-F uses only AOU and PDI.
FlexTM uses all the presented mechanisms.

7.3 Throughput and Scalability

Result 1a: Separable hardware support for conflict detection, conflict management, and versioning can
provide significant acceleration for software controlled TMs; eliminating software bookkeeping from the
common case critical path is essential to realize the full benefits of hardware acceleration.
Result 1b: CSTs are an important optimization: even when transactions conflict, the number of transactions
that conflict with any given transaction is less than the total number of transactions active in the system.

Figure 4 shows normalized throughput (transactions/sec) and scalability across our applications and run-
time systems. FlexTM, RTM-F, and RSTM have all been set up to perform eager conflict management (TL-2
is inherently lazy). Throughput is normalized to that of single-thread coarse-grain-locks (CGL), which is
very close to sequential thread performance. To illustrate the usefulness of CSTs (see the table in Figure 4),
we also report the number of conflicts encountered and resolved by an average transaction—the number of
bits set in the W-R and W-W CST registers.

STM performance suffers from the bookkeeping required to track data versions (copying [35]), detect
conflicts, and guarantee a consistent view of memory (validation [35]). RTM-F [35] exploits AOU and
PDI to eliminate copying and validation but still incurs bookkeeping overhead amounting to 40–50% of
execution time. For single-thread runs, RTM-F achieves a speedup of 3.5× over RSTM, but at higher
threads, bookkeeping limits the speedup to ∼2×. FlexTM’s hardware tracks conflicts, buffers speculative
state, and fetches the buffered data transparent to software. FlexTM’s main overhead, register checkpointing,
involves spilling of local registers into the stack and is nearly constant across thread levels. Eliminating per-
access software overheads (metadata tracking, validation, and copying) allows FlexTM to realize the full
potential of hardware acceleration, with an average speedup of 2× over RTM-F, 5.5× over RSTM, and
4.5× over TL2.

HashTable and RBTree both scale well. In RSTM, validation and copying account for 22% of execution
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(a) HashTable
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(b) RBTree
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(c) LFUCache
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(d) RandomGraph
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(e) Delaunay
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(f) Vacation-Low
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(g) Vacation-High
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Conflicting Transactions
8T 16T

Md Mx Md Mx
Hash 0 2 0 3
RBTree 1 2 1 3
LFUCache 3 5 6 10
Graph 2 4 5 9
Vac-Low 1 2 1 4
Vac-High 1 3 1 4
Delaunay. 0 2 0 2

Md-Median Mx-Maximum
CGL FlexTM RTM-F STM

Figure 4: Throughput (transactions/106 cycles), normalized to 1-thread CGL. X-axis specifies the number
of threads. In plots (a)-(e) STM represents RSTM [24]; in (f)-(g) it represents TL2 [11].

time in HashTable and 50% in RBTree; metadata management accounts for 40% and 30%, respectively.
Tree rebalancing in RBTree is non-trivial: insertion proceeds bottom-up while searching moves top-down.
At higher thread levels, eager conflict management precludes read-write sharing and increases the likelihood
of aborts, though the back-off strategy of the Polka conflict manager limits aborts to about 10% of total
transactions committed.

LFUCache and RandomGraph do not scale. Conflict for popular keys in the Zipf distribution forces trans-
actions in LFUCache to serialize. Stalled writers lead to extra aborts with larger numbers of threads, but
performance eventually stabilizes for all TM systems. In RandomGraph, larger numbers of more random
conflicts cause all TM systems to livelock at higher thread levels, due to eager contention management. The
average RandomGraph transaction reads ∼80 cache lines and writes ∼15. In RSTM, read-set validation
accounts for 80% of execution time. RTM-F eliminates this overhead, after which per-access bookkeep-
ing accounts for 60% of execution time. FlexTM eliminates this overhead as well, to achieve 2.7× the
performance of RTM-F at 1 thread. At higher thread levels, all TM systems livelock due to eager conflict
management. In the language of Bobba et al. [4], RandomGraph suffers from the FriendlyFire, FutileStall,
and DuellingUpgrade pathologies.

Delaunay [33] is fundamentally data parallel (less than 5% of execution time is spent in transactions) and
memory bandwidth limited. FlexTM and CGL track closely out to 16 threads. RSTM and RTM-F also track
closely, but at half the throughput, because the extra indirection required for metadata bookkeeping induces
a ∼ 2× increase in the number of cache misses.

Vacation as written is incompatible with the object-based API of RSTM and RTM-F. We therefore
evaluate its performance on CGL, word-based TL2, and Flex-TM. Transactions read ∼100 entries from
a database and stream them through an RBTree. TL-2 suffers from the bookkeeping required prior to the
first read (i.e., for checking write sets), for post-read validation, and at commit time [11]. FlexTM avoids
this bookkeeping, yielding 4× the performance of TL-2 at 1 thread. Low contention Vacation-low displays
good scalability (Figure 4f)—10× CGL’s performance at 16 threads. Vacation-high displays less scalability
(Figure 4g): at 16 threads it attains 6× the performance of CGL. Multiple threads introduce (1) a mix
of read-only (e.g., ticket lookups) and read-write (e.g., ticket reservation) tasks and (2) sets of dueling
transactions that try to rotate common sub-tree nodes. These lead to an increase in the level of conflicts and
aborts.
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(a) RBTree
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(b) Vacation-High
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(c) LFUCache
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(d) RandomGraph
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Eager Lazyl

(e) RandomGraph+Prime
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(f) LFUCache+Prime
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X; X-Y represents throughput of X when X and Y run simul-

taneously on the machine with Eager (E) or Lazy (L) conflict

management. Throughput is normalized to a 1-thread run of

X, running in isolation.

P;P-App(E) P;P-App(L) App(E);P-App(E) App(L);P-App(L)

Figure 5: Eager vs. lazy conflict management in FlexTM. In plots (a)-(d), Throughput normalized to FlexTM
Eager, 1 thread. In plots (e)-(f), a prime factoring program (P) is mixed with RandomGraph and LFUCache
respectively.

As shown in the table at the end of Figure 4, the number of conflicts encountered by a transaction is small
compared to the total number of transactions in the system. Even in workloads that have a large number
of conflicts (LFUCache and RandomGraph) a typical transaction encounters only 30% of total transactions
as conflicts. Scalable workloads (e.g., HashTable and Vacation) encounter essentially no conflict. This
clearly suggests that global arbitration and serialized commits will not only waste bandwidth but also restrict
concurrency. FlexTM’s CSTs permit local arbitration and parallel commits, thereby unlocking the full
concurrency potential of the application.

In the event of an overflow, FlexTM buffers the new values in a redo-log and needs to perform copy-update
at commit-time. Almost all of our benchmark use the overflow mechanism sparingly, with a maximum of
up to 5 cache lines overflowed in RandomGraph. Because our benchmarks have small write sets, cache
set conflicts account for all cases of overflow. In separate experiments, we extended the L1 with an un-
bounded victim buffer. In applications with overflows, we found that redo-logging reduced performance by
an average of 7% and a maximum of 13% (in RandomGraph) compared to the ideal case, mainly because
re-starting transactions have their accesses queued behind the committed transaction’s copy-back phase. As
expected, benchmarks that don’t overflow the cache (e.g., Hash) don’t experience any slowdown.

7.4 Conflict Management Analysis

Result 2a: When applications get to use the machine in isolation, lazy conflict management exploits avail-
able resources to maximize concurrency and encourage forward progress.
Result 2b: With multiprogramming, lazy management results in doomed but executing transactions occupy-
ing physical resources that could be otherwise utilized. Eager management may free-up physical resources
for other useful work.

Figure 5(a)-(d) illustrates the potential benefit of lazy conflict management in FlexTM—specifically,
the ability to eliminate the performance pathologies observed in RBTree, Vacation-High, LFUCache, and
RandomGraph. (In applications with very few conflicts [e.g., HashTable and Vacation-Low], eager and lazy
management yield almost identical results.)
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RBTree and Vacation-High embody similar trade offs in conflict management policy. At low contention
levels, Eager and Lazy yield similar performance. Beyond 4 threads Lazy scales better than Eager. Lazy
management permits reader-writer concurrency, which pays off when the readers commit first. At 16 threads,
Lazy’s advantage over Eager is 16% in RBTree and 27% in Vacation-High.

LFUCache admits no concurrency, since transactions conflict on the same cache line with high probabil-
ity. On conflict, the contention manager performs back-off within the active transaction. With high levels of
contention, eager management causes a cascade of futile stalls in doomed transactions. It also reduces con-
currency by creating a large window of conflict vulnerability (first-access to commit-time). In lazy mode,
transactions abort enemies at commit-time, by which time the likelihood of committing is very high. Hence,
with lazy management, throughput improves only marginally (10% at 16 threads), while eager management
causes performance to degrade.

RandomGraph transactions livelock in eager mode at higher thread levels. In eager mode, it is highly
likely for transactions to detect and arbitrate conflicts on a highly contended object, giving rise to multi-
transaction duelling aborts. With lazy conflict management, once a transaction aborts an enemy at commit-
time, the remaining window of vulnerability is very small, and the transaction is quite likely to commit.
With lazy management, RandomGraph attains a flat scalability curve.

In a second set of experiments (see Figure 5(e) and 5(f) ), we analyze the impact of conflict management
on background applications. We experimented with both transactional and non-transactional workloads;
for brevity we present only the latter here: a CPU intensive application (Prime Factorization) sharing the
machine with a non-scalable transactional workload (LFUCache or RandomGraph). We minimized extra-
neous overheads by controlling workload schedules at the user level: on transaction abort the thread yields
to compute-intensive work.

We found that Prime scales better when running with eager mode transactions (∼20% better than lazy in
RandomGraph), because eager mode detects doomed transactions earlier and immediately yields the CPU to
useful work. Lazy mode is optimistic and takes longer to detect impending aborts. It also delays the restart of
commit-worthy transactions. Significantly, yielding to the background application did not negatively impact
the throughput of the transactional application, since LFUCache and RandomGraph have little concurrency
anyway. By effectively serializing transactions, yielding also avoids the livelock encountered by Eager
RandomGraph.

8 FlexWatcher

Result 3: FlexTM’s signatures and AOU are useful for general purpose memory monitoring
Modern microprocessors provide limited support for debuggers through watchpoint registers (e.g., 4 on

the x86). FlexTM provides two mechanisms to watch memory: (1) AOU – precisely monitors cache-block
aligned regions but is limited by private cache size, and (2) Signatures – provide unbounded monitoring
support but are vulnerable to false positives. AOU provides a naturally simple interface [35]. To enable
software to use signatures effectively we explore a limited extension to the interface of Section 3 (see Ta-
ble 3(a)). Essentially, all loads and stores test membership in the signature and on a hit the hardware effects
an alert to a registered handler. Armed with this interface, we develop a tool, FlexWatcher, to detect buffer
overflows and memory leaks. FlexWatcher adds the addresses to be monitored to Rsig and Wsig and activates
monitoring. All local accesses are checked against the activated signature. On an alert, the software handler
disambiguates and checks to see if the address was actually being watched.

We evaluate the efficiency of FlexWatcher using “BugBench” [22], a set of real-life programs with
known memory bugs. Table 3(b) displays the slowdown encountered when running the application with
FlexWatcher. These are compared to slowdowns for “Discover”, a SPARC binary instrumenter distributed
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by OpenSPARC.net.3 The overheads depend on a variety of factors, including number of mallocs, heap
allocated, and frequency of memory accesses. They vary between 5% and 2.5× for FlexTM, compared to
17×–75× for Discover. In the future we hope to develop software tools to exploit other FlexTM hardware
components (i.e., CST and PDI).

(a) Signature API

insert [%r],Sig Add address [%r] into
signature

member [%r],Sig Test membership of [%r]
and set/clear flag

read-hash [%r] Return hashed value
of address [%r]

activate Sig Switch On local
access monitoring

clear Sig Zero-out signature

Sig. can be Rsig or Wsig

(b) FlexWatcher Vs Software

Program Bug FxW Dis
BC-BO BO 1.50× 75×
Gzip-BO BO 1.15× 17×
Gzip-IV IV 1.05× N/A
Man BO 1.80× 65×
Squid ML 2.5× N/A

FxW– FlexWatcher , Dis– Discover
N/A– Discover did not sup-
port this benchmark

BO(Buffer Overflow) -
Solution: Pad all heap allocated
buffers with 64bytes and watch
padded locations for modifica-
tion.
ML(Memory Leak) -
Solution: Monitor all heap allo-
cated objects and update the ob-
ject’s timestamp on each access
trap.
IV(Invariant Violation) -
Solution: ALoad the cache block
corresponding to variable X.
When the software handler is in-
voked on access, assert program
specific invariants.

Table 4: FlexWatcher

9 Conclusions and Future Work

FlexTM introduces Conflict Summary Tables; combines them with Bloom filter signatures, alert-on-update,
and programmable data isolation; and virtualizes the combination across context switches, overflow, and
page-out. It (1) decouples access tracking and conflict detection from conflict management; (2) tracks
conflicts on a thread-by-thread basis, rather than a location-by-location basis; (3) allows software to dictate
policy without the overhead of separate metadata; and (4) enables individual TM components to be used
for non-transactional purposes. To the best of our knowledge, it is the first hardware TM in which lazy
transactions can commit or abort in parallel on the basis of purely local information (It also supports eager
transactions.).

By eliminating the need for metadata bookkeeping, FlexTM outperforms both pure and hardware-
accelerated STM systems [35]. Specifically, on a variety of benchmarks, our experiments reveal perfor-
mance comparable to that of fixed-policy HTM systems, and 5× faster than RSTM and TL2. Our results
also confirm that the choice between eager and lazy conflict management depends on the offered workload,
highlighting the value of policy flexibility. Our experiments with FlexWatcher, a memory debugger tool
that uses signatures and AOU for low-overhead memory monitoring, illustrate the applicability of FlexTM
hardware to nontransactional tasks.

In the future, we hope to enrich our semantics with hardware support for nesting, and to study the interplay
of conflict detection and management policies. We would also like to develop more general interfaces to
FlexTM style hardware, and to apply it to problems in security, debugging, and fault tolerance [17, 37] [35,
TR version].

3FlexWatcher slowdown is measured on our simulator; Discover slowdown is measured on a real Sun T1000.
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