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Abstract—Most research into high-performance software
transactional memory (STM) assumes that transactions will
run on a processor with a relatively strict memory model, such
as Total Store Ordering (TSO). To execute these algorithms
correctly on processors with relaxed memory models, explicit
fence instructions may be required on every transactional
access, and neither the processor nor the compiler may be able
to safely reorder transactional reads. The overheads of fence
instructions and read serialization are a significant but unstud-
ied source of latency for STM, with impact on the tradeoffs
among different STM systems and on the optimizations that
may be possible for any given system. Straightforward ports
of STM runtimes from strict to relaxed machines may fail to
realize the latter’s performance potential.

We explore the implementation of STM for machines with
relaxed memory consistency using two recent high-performance
STM systems. We propose compiler optimizations that can
safely eliminate many fence instructions. Using these tech-
niques, we obtain a reduction of up to 89% in the number
of fences, and 20% in per-transaction latency, for common
transactional benchmarks.
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I. INTRODUCTION

Attempts to characterize the sources of latency in Soft-
ware Transactional Memory (STM) [4], [10], [12], [20]
have typically ignored the cost of memory fences, perhaps
because most STM systems have, coincidentally, been built
for x86 or SPARC platforms, on which write-before-read
(WBR) is the only ordering not guaranteed by the hardware.
Moreover atomic read-modify-write instructions, including
compare-and-swap, implicitly incorporate a WBR fence on
these machines, and such instructions are frequently used in
places where a fence would otherwise be required.

Although STM research has assumed a relatively strict
memory model, market penetration of CPUs with relaxed
memory consistency may be at an all time high, due to the
brisk sales of modern video game systems. These systems
all employ processors based on IBM’s POWER architec-
ture [25], with the XBox360 providing three multithreaded
POWER cores and the PlayStation 3 using a single POWER-
based core with seven Cell SPE cores. On these consoles,
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Figure 1. Single thread latency of a common RBTree benchmark,
normalized to an unsynchronized implementation, on an UltraSPARC III
and POWER4 processor. STM experiments used a TL2-like algorithm.

and on high-end servers, the cost of excessive memory
fences can be a significant source of latency if transactions
are used for rendering [23], thread-level speculation [15], or
library and systems code [17].

Figure 1 shows latency for a single-threaded execution
of a red-black tree microbenchmark. A single coarse lock
results in roughly 40% slowdown relative to unsynchronized
code. Transactions (using a TL2-like STM algorithm [3])
cause a 6× slowdown on the UltraSPARC III (again relative
to unsynchronized code). If we (incorrectly) leave out fences
on the POWER4, the slowdown for transactions is almost ex-
actly the same. When we add the necessary fences, however,
slowdown increases to 11×. Even if efforts to minimize the
difference between coarse locks and transactions (the second
and third bars of Figure 1) succeed, transactions may not be
viable on CPUs with relaxed memory consistency due to the
overhead of fences.

The fundamental problem causing the dramatic perfor-
mance gap between correctly fenced STM code and un-
fenced code in Figure 1 is not that fences are needed, but that
naive transactional instrumentation based on a simple API
results in more fences than are necessary for correctness.
In this paper, we present optimizations to specifically target
these fences. Our optimizations allow temporary read incon-
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sistencies within transactional code, but do not introduce the
need for sandboxing.

The simplest way to eliminate fences is to batch transac-
tional reads within a basic block. This batching is beyond the
ability of traditional redundancy elimination, as it requires
knowledge of the underlying STM implementation to safely
reorder accesses to volatile metadata while aggregating read-
before-read (RBR) memory fences. We augment batching
of reads with optimizations that hoist or delay metadata
accesses beyond the boundaries of basic blocks, thereby
removing fences in loop bodies and across complex con-
trol flows. Our techniques are different from—and comple-
mentary to—existing techniques for eliminating redundant
transactional instrumentation [1], [7], [26].

Our base set of optimizations is conservative and could be
applied by an STM-aware compiler without violating isola-
tion or introducing races between transactional and private
use of any location. Programmer-supplied annotations may
enable additional optimizations for certain applications and
run-time systems (such as those that are not publication-
safe [13]), allowing us to eliminate memory fences for reads
that cannot safely be reordered in the general case.

In Section II we discuss the circumstances that necessitate
memory fences in various STM systems, focusing on run-
times that manage conflicts at the granularity of individual
memory words. We then present safety criteria that the
compiler must obey when removing memory fences in Sec-
tion III. Section IV discusses safe and unsafe optimizations.
In Section V we give performance results, based on hand-
transformation of code according to our optimizations. Using
the transformed code, we show reductions of up to 89% in
fences, and performance improvements of up to 20%.

II. THE PROBLEM OF MEMORY ORDERING FOR STM

STM systems that perform conflict detection and version-
ing at the granularity of individual words typically expose
a simple interface with four functions [3], [20], as depicted
in Listing 1. These functions interact with volatile global
metadata to ensure that the transaction remains atomic, iso-
lated, and consistent throughout its execution. Each function
requires ordering between its metadata accesses and its
accesses to program data. In the following subsections we
outline the situations that force this explicit ordering.

A. Ordering Transactional Reads

The ordering requirements for read instrumentation de-
pend on many STM internals. Accesses to metadata must
be ordered relative to accesses to main memory in all cases.

1) Ownership Records with Sandboxing or Indirection:
In systems like LibLTX [5], McRT [20], and Bartok [7],
sandboxing is used to detect inconsistencies during transac-
tion execution. A transactional read checks metadata before
accessing a location, but not afterward, and a read-before-
read fence is necessary to ensure that the location is not

Listing 1 A simple API for word-based STM.
TM_BEGIN initializes the transaction
TM_END finalizes all writes and commits

the transaction, if possible
TM_READ(addr) returns logical value at addr,

or aborts
TM_WRITE(addr, val) logically sets addr to hold val

read until the metadata is checked. Similarly, indirection-
based nonblocking STM [8], [11], [12] requires a metadata
access that is ordered before the first read of an object.

2) Ownership Records without Sandboxing: In word-
based STM without sandboxing [3], [6], [10], metadata must
be read before a location is accessed transactionally, to en-
sure the location is not locked, and again after the access to
ensure that there was no intervening write. This requirement
introduces a need for two read-before-read fences. The first
performs the same role as in systems that use sandboxing.
The second orders the access to memory before the post-
read test. Depending on the STM algorithm, post-read test
may entail checking either a single global variable [22] or
a location-specific timestamp [3], [18], [19], [26].

3) No Ownership Records: In JudoSTM without sand-
boxing [14], and in RingSTM [24], no ordering is required
before accessing program data, but a read-before-read fence
is required between the access of program data and a test
of global metadata. This test may trigger a full validation of
previously-read locations, which must also be ordered after
the read of the program data. The validation can introduce
additional ordering requirements, but in the common case
the post-read test indicates that no additional validation—or
memory fence—is required.

B. Ordering Acquisition Before Update

STM implementations may acquire ownership of to-be-
written locations eagerly (upon first call to TM_WRITE for
each address) or lazily (at commit time). When eager acquire
is used, the STM may choose to perform the write directly
to main memory (direct update) and store the old value in an
undo log, or to buffer the write (buffered update) in a redo
log that is written to main memory during commit. With
lazy acquire, writes must be buffered in a redo log.

With eager acquire and direct update, a fence is required to
provide write-before-read/write ordering after an ownership
record is acquired, to ensure that the record is owned before
the transaction modifies locations protected by the record.
The fence also ensures that any undo logging performed
for the location uses a consistent value. For W writes to
distinct locations, this results in W atomic read-modify-
write (RMW) operations and W fences. On the x86 and
SPARC, an atomic compare-and-swap (CAS) provides the
memory fence implicitly. On POWER, an explicit fence
is required after each atomic RMW (a load-linked/store-
conditional (LL/SC) instruction pair). The last of these



fences also orders all metadata acquisition before the final
validation in the commit sequence.

In systems that use lazy acquire and buffered update, the
W memory fences can be collapsed into a single fence.
During execution, the transaction issues its writes to a private
buffer without the need for any memory ordering. Then,
at commit time, all W locations are acquired in a tight
loop that issues W atomic RMW operations. Following the
last of these, a single write-before-read/write fence orders
acquisition before subsequent validation and writing. Simi-
larly, when eager acquire is coupled with buffered update,
only a single fence is necessary to ensure write-before-write
ordering between all acquire operations and all write-backs,
even though locations are acquired throughout the execution
of the transaction (via W RMW operations). In JudoSTM
and RingSTM, which use buffered update but no ownership
records, there is only a single RMW operation at commit
time, which requires a fence.

Regardless of the acquisition protocol, an additional write-
before-write fence is required during the commit sequence
before releasing ownership, to order the last update to
memory before the first ownership record release. On x86
and SPARC, this ordering is implicit; on POWER, it is
provided through an LWSYNC. For eager acquire with direct
update, the total memory fence overhead for W distinct
writes is W + 1 fences. For buffered update (with either
lazy or eager acquire), the total overhead is 2 fences. On
relaxed machines such as POWER, buffered update thus
avoids a linear fence overhead. It also allows the processor
to reorder the instructions comprising write instrumentation;
with direct update, per-write fences preclude this.

C. Additional Ordering Constraints

Certain additional constraints can be ignored in the com-
mon case. When remote abort is possible, transactions must
test their status regularly (often on every transactional read
or write). To avoid allowing a transaction to acquire locks or
abort others when it is aborted, it may be preferable to check
this status early in the read or write sequence. However, it is
correct to wait until the end of the sequence, in which case
the previously described fences are sufficient. We assume
that remote aborts are uncommon; when they are performed,
additional ordering may be required.

When a transaction reads a location it has already written,
some fences can be avoided: Under lazy acquire (with or
without ownership records), all fences can be skipped if
the value is found in the write set. Under eager acquire
without sandboxing, the second test of metadata can usually
be avoided. Lastly, if transactions read global metadata at
begin time, it may be necessary to order such reads prior
to the transaction’s execution. Similarly, when epoch-based
memory reclamation is used in unmanaged languages [9],
epoch updates must be ordered, via a constant number of
memory fences during transaction begin and end.

Listing 2 Naive and optimized transformation of two trans-
actional reads, using a TL2-like runtime.
a = TM_READ(X);
b = TM_READ(Y);

Naive Transformation:

1 if (is_in_write_set(&X))
2 a = value_from_redo_log(&X);
3 else
4 prevalidate(&X);
5 read-before-read;
6 a = X;
7 read-before-read;
8 postvalidate(&X);
9 if (is_in_write_set(&Y))
10 b = value_from_redo_log(&Y);
11 else
12 prevalidate(&Y);
13 read-before-read;
14 b = Y;
15 read-before-read;
16 postvalidate(&Y);

Optimized Transformation:

1 prevalidate(&X);
2 prevalidate(&Y);
3 read-before-read;
4 if (is_in_write_set(&X))
5 a = value_from_redo_log(&X);
6 else
7 a = X;
8 if (is_in_write_set(&Y))
9 b = value_from_redo_log(&Y);
10 else
11 b = Y;
12 read-before-read;
13 postvalidate(&X);
14 postvalidate(&Y);

III. SAFETY CRITERIA FOR REDUCING MEMORY
FENCES

Typically, fence instructions are expensive, both because
the fence causes a pipeline stall, and because the fence
prevents the processor from exploiting potential instruction-
level parallelism (an opportunity cost). Previous studies
suggest that choosing lazy acquire does not reduce per-
formance [3], is most compatible with the Java memory
model [13], and avoids livelock. Since lazy acquire with
buffered update also avoids the requirement for fences on
transactional writes, for the remainder of this paper we focus
on reducing the fence requirements for transactional reads.

The top half of Listing 2 depicts a naive transformation of
a program with two transactional reads. A delay cost is ex-
perienced on lines 5, 7, 13, and 15. Quantifying opportunity
cost is more subtle; one example is that the write set lookup
on lines 9–10 is explicitly ordered after line 7, though it
could be executed in parallel with the lookup on lines 1–2.



The lower half of the listing depicts a reordering that halves
the number of fences without compromising correctness.
Additionally, this reordering increases the window in which
the CPU can leverage out-of-order execution. In this section
we discuss the safety criteria that a compiler must obey when
eliminating memory fences incurred during transactional
instrumentation.

For our optimizations, we assume that the compiler con-
verts high-level code to low-level instructions in four steps.
First, the compiler performs traditional analysis and opti-
mization, such as pointer analysis, redundant read elimina-
tion, silent store elimination, and register promotion. Second,
the compiler instruments the begin and end sequence of the
transactional block, to ensure that metadata is initialized at
transaction begin, and that transactional state is committed
on all possible exit paths from the transactional context. For
functions called from both transactional and nontransactional
contexts, this step may require that the functions be cloned.
Third, the compiler inserts checkpoint instructions to pre-
serve the state of local variables that may be modified by
a transaction that aborts. Lastly, the compiler replaces heap
accesses (loads and stores) within a transaction with their
instrumented equivalents.

A. Decomposing Read Instrumentation

In the naive transformation of Listing 2, each heap access
is replaced with a sequence of instructions that correspond
to a transactional read. We describe the read as occurring in
three phases. The prevalidation step (line 4) ensures that
the address to be accessed is not currently locked. The
dereference step (lines 1, 2, and 6) searches for a speculative
write to the location, and if none is found, reads from
main memory. The postvalidation step (line 8) ensures that
the address remained constant during the read step; that is,
postvalidation ensures that a concurrent write did not take
place between the prevalidation and read steps.

For a single transactional read, order must be preserved
between the prevalidation step and the dereference within
the read step, and between the dereference and the post-
validation step. However, for multiple transactional reads to
independent locations, there is no required order between the
reads themselves. If there is no data dependence between
two reads, then it is safe for the compiler to reorder the
corresponding sub-steps of the corresponding transactional
reads.1 With regard to memory fence reduction, the ideal
schedule (ignoring read-after-write accesses) would move
the prevalidation of a set of K reorderable reads into a single
batch before any of the K accesses, and would move the
postvalidation of those reads into a single batch after the
last of the K accesses. In this manner, 2K fences could
be replaced with 2 fences, and the CPU would be given

1For certain weak semantics, this criterion may not suffice due to
potential races with nontransactional code [13]. Throughout this paper we
assume a strong semantics that precludes such races [21].

the greatest opportunity for dynamic optimization, since the
instruction windows between the memory fences would be
larger. Note, however, that an ideal memory fence reduction
may lead to increased windows for inter-transaction conflict
(we will discuss this in Section III-C), and that it may
introduce additional fences in workloads with frequent read-
after-write accesses. Finally, we must impose several limits
on the use of read values prior to postvalidation.

B. Safety Criteria for Postvalidation Delay

Reads that are candidates for fence-reduction optimiza-
tions may appear in separate basic blocks. We outline criteria
for reducing fences below. We begin with the following
two invariants, where “precede” implies the existence of a
read-before-read memory fence between the corresponding
instructions:

• Prevalidation of location X must precede the derefer-
ence of X.

• Postvalidation of location X must precede any poten-
tially unsafe use of the value read from X.

(Note that our optimizations do not reorder reads of pro-
gram data.) Of these invariants, the first is straightforward.
For the second, there is a potential unsafe window after
the value is read and before postvalidation. To determine
how far one can safely delay a postvalidation, we begin
with the following seed: A value that has been read but
not postvalidated is considered unsafe. We conservatively
require that on any criterion that terminates postvalidation
delay, all deferred postvalidation is performed. There are six
categories of operations that require analysis:

1) “+” (arithmetic operation that causes no fault) : This
operation does not generate a fault, but propagates unsafe-
ness, i.e., if any of its operands is unsafe, the result is unsafe.
Divide may be placed in this category if the compiler inserts
a dynamic check for a non-zero divisor, and if the check
fails, inserts a postvalidation before the division. We include
nonfaulting type casts (e.g., C++ reinterpret and const casts)
in this category: these casts do not generate a fault, but
propagate unsafeness to their result. Comparison operations
also fall into this category, with branches addressed below.

2) “*” (address dereferencing): Dereferencing may gen-
erate a segmentation fault or bus error. Thus none of its
operands can be unsafe. This is a leaf condition to terminate
a postvalidation delay.

3) “=” (assignment): When the right hand side is unsafe,
this operation does not generate a fault, but propagates un-
safeness through memory. In particular, any value (possibly)
read from the store address prior to the next postvalidation
must also be treated as unsafe.

If the assignment uses transactional write instrumentation,
then the store address may be unsafe, since the address will
not be used in a true assignment until after the transaction
validates at commit time. However, if the assignment is
not performed via transactional instrumentation (for either



a heap or stack variable), then if the address is unsafe,
postvalidation is required before the assignment. Failure
to perform postvalidation may expose speculative reads to
concurrent, nontransactional threads if the store address is
visible to concurrent threads. This criterion may be softened
for uninstrumented stores to provably thread-local locations,
such as those that have been checkpointed by the compiler.

4) “branch / jump” (control flow): Use of an unsafe con-
dition in a conditional jump may be dangerous as it may lead
to erroneous execution and infinite loops. To ensure safety,
a postvalidation can be placed before an unsafe conditional
jump or at the beginning of the jump target and the fall
through path. The latter alternative exposes opportunities for
further postvalidation batching. Additionally, the jump target
must not be unsafe (e.g., unsafe function pointers). Allowing
otherwise could permit jumps to arbitrary transactional or
nontransactional code, which could then cause externally
visible effects (as a simple example, consider branching to an
unsafe address that stores the instruction mov [r1], r2.
The instruction may be in a block that assumes r1 to hold
the address of a stack variable, but the unsafe jump may
follow an instruction that sets r1 to a value that looks like
a global address). Using these criteria, back-edges taken due
to nonspeculative conditions (e.g., most for loops) will not
terminate postvalidation delay.

5) “transaction end” (control flow): Some STM runtimes
do not perform a final validation of read-only transactions.
If the compiler is not certain that a transaction will perform
at least one speculative write (which forces the transaction
to validate all reads at commit time), then no values may be
unsafe at the point where the transaction attempts to commit.
This condition may be provided implicitly by the underlying
STM, if it always validates before committing a read-only
transaction with un-postvalidated reads.

6) “function call” (control flow): When the side effects
of a function call are unknown, postvalidation cannot be
delayed beyond the function call. When the function is
known not to use unsafe values, then postvalidation can be
delayed until after the function call.

C. Performance Concerns

While the above safety criteria appear sufficient to prevent
incorrect behavior, analysis and optimization using these
criteria may lead to unexpected performance degradation,
which may necessitate some tuning by the programmer. The
following tradeoffs preclude any static notion of optimal
fence reduction.

1) Instrumentation and Function Call Overhead: In
STM systems that use ownership records, the set of un-
postvalidated addresses must be tracked dynamically. Fur-
thermore, the corresponding pre- and postvalidation code
may be too large for consideration for inlining by the
compiler. When fences are removed for a set of K reads,
up to two additional function calls may be required.

2) Early False Conflicts: Let us suppose that a loop
performs K reads, and that prevalidation of those K reads
can be hoisted out of the loop. At the point where preval-
idation completes, the transaction has effectively added all
K locations to its read set, and a concurrent write to any
of those K locations by another transaction will force the
reader to abort during postvalidation. If a write to the Kth
location occurs before the reader’s Kth read, then perform-
ing early prevalidation of the Kth location prevents a valid
schedule in which the writer commits during the reader’s
loop, but prior to the read of K. Thus early prevalidation can
prevent transactions from succeeding.2 For RingSTM, where
the postvalidation of one read is effectively a prevalidation
of the next read, deferred postvalidation causes the same
unnecessary abort.

3) Delayed Abort Detection: Conversely, in the same
loop performing K instrumented reads, it may happen that
after the first read, to location K1, a concurrent writer
commits a change to K1. If the reader defers postvalidation
of K1 until after all K reads, then the subsequent K − 1
reads are all unnecessary; earlier postvalidation could have
identified the conflict, and enabled the reader to restart
earlier. Thus postvalidation delay can prolong the execution
of a doomed transaction.

D. Implementation Challenges

The above safety criteria form the foundation of a com-
piler algorithm to eliminate memory fences by moving the
pre- and postvalidation calls that must accompany any trans-
actional heap access. However, several challenges remain,
which favor the use of correct approximations of a general
algorithm, as discussed in the following section. The main
challenges to implementing a general algorithm are:

• Pointer analysis precision – The precision of the com-
piler’s pointer analysis determines the degree to which
the compiler can ensure that an unsafe address is not
aliased.

• Logging overhead – In STM algorithms that use owner-
ship records, such as TL2 and tinySTM, the individual
locations that have not been pre- or postvalidated must
be logged. This complicates the process of delaying
validation across complex control flows.

• STM specificity – In addition to not requiring per-
location postvalidation, the JudoSTM and RingSTM
algorithms do not require any form of prevalidation. A
compiler targeted to these specific runtimes can elide
much analysis, logging, and instrumentation. Addition-
ally, in these systems postvalidation delay serves to
reduce both the instruction count and the memory fence
count, since the common-case instruction count for
postvalidation is not input-dependent.

2With TL2-style timestamps, the successful schedule is explicitly forbid-
den regardless of the timing of prevalidation.



IV. ELIMINATING REDUNDANT MEMORY FENCES

We now consider five techniques to reduce memory fences
while obeying the above safety criteria. These techniques
are largely independent, but all benefit from a transaction-
aware partial redundancy elimination. This analysis serves
two roles. First, it removes provably redundant transactional
heap accesses, that is, multiple transactional reads to the
same variable without an intervening write. Second, when a
transactional read is performed on all paths of a flow graph,
the analysis hoists that read to the root of the graph.

A. Removing Fences Within a Basic Block

The first, and most straightforward, mechanism to reduce
memory fences analyzes individual basic blocks. For a single
block with transactional reads to locations X and Y , if both
addresses are known at the entry of the basic block, then
the reads may both be hoisted to the top of the block, and
then transformed via the simple transformation in Listing 2.
In practice, this technique typically permits multiple fields
of a single object to be read in a single batch.

More generally, for a set of addresses {A1 . . . An}, where
all addresses in the set are known at the start of a basic
block, all metadata accesses that must be issued before the
locations are read (the prevalidate() calls in the top
half Listing 2) can be hoisted to the beginning of the block
and combined. All subsequent dereferences (e.g., lines 1, 2,
and 6 in the top half of Listing 2) can be moved to directly
above the first use of any of the results of those reads, and
all metadata accesses that must be issued after locations are
read (the postvalidate() calls) can be combined and
moved to as late as immediately before the first use of any
of the results of the reads.

For STM systems that do not require prevalidation, such
as RingSTM and JudoSTM, the transformation is slightly
simpler. The transformation differs from the bottom section
of Listing 2 in that lines 1–3 can be removed, and lines 13–
14 can be replaced with a single postvalidate() call.
A simple augmentation of def-use analysis is sufficient to
place the calls that validate transactional reads: the result of
a transactional read cannot be used unless there is a read-
before-read fence and then a call to postvalidate()
between the transactional read and its first use.

B. Tight Loop Optimizations

Listing 3 depicts a simple loop in which many locations
are read from a single array. Since there is only one
read per iteration, our previous optimization is unable to
eliminate memory fences. While loop unrolling can increase
the opportunity for fence reduction, a simpler alternative
exists: all prevalidation can be performed prior to the first
memory access, and all postvalidation can be delayed until
after the last memory access. In this manner, 2n memory
fences can be reduced to 2.

Listing 3 Eliminating fences for reads issued within a loop.
1 for (i = 0; i < n; i++) {
2 local_sum += TM_READ(a[i]);
3 }
4 TM_WRITE(global_sum, local_sum);

With orecs, the code becomes:

1 for (i = 0; i < n; i++)
2 prevalidate(&a[i]);
3 read-before-read;
4 for (i = 0; i < n; i++)
5 if (is_in_write_set(&a[i]))
6 local_sum +=

value_from_redo_log(&a[i]);
7 else
8 local_sum += a[i];
9 read-before-read;
10 for (i = 0; i < n; i++)
11 postvalidate(&a[i]);
12 TM_WRITE(global_sum, local_sum);

Without orecs, the code becomes:

1 for (i = 0; i < n; i++)
2 if (is_in_write_set(&a[i]))
3 local_sum +=

value_from_redo_log(&a[i]);
4 else
5 local_sum += a[i];
6 read-before-read;
7 postvalidate();
8 TM_WRITE(global_sum, local_sum);

The code with ownership records (orecs) is noticeably
more complex: since each location must be prevalidated and
postvalidated individually, the loop must be replicated for
each phase of the heap access (prevalidation, dereference,
postvalidation). For loop bodies that contain conditional
reads, writes, or function calls, the transformation is much
more difficult with orecs, and may also result in substantially
more function call overhead, depending on whether the
individual validations can be inlined.

C. Removing Final Postvalidation

When a writing transaction commits, it must follow a
protocol in which all locations are acquired and then all
reads are validated, to ensure isolation. While the read-
set validation may have an O(1) fast path, the general
requirement that every writer transaction ensures the validity
of its entire read set during its commit phase allows further
optimization of the code in Listing 3. Specifically, since the
reads in the loop are used only for safe arithmetic, and then
for an instrumented write, no postvalidation is required (lines
9–11 of the middle section of the listing, lines 6–7 of the
bottom section).

As a simple approximation of this optimization, the
compiler may eliminate postvalidation when the calling
transaction performs at least one write, and all code paths



Listing 4 Dynamically checked, un-fenced array indexing
when array bounds are known.
q = x->f1[x->f2];

Becomes:

1 if (is_in_write_set(&x->f2))
2 t = value_from_redo_log(&x->f2)
3 else
4 t = x->f2
5 read-before-read
6 postvalidate()
7 if (is_in_write_set(&x->f1[t])
8 q = value_from_redo_log(&x->f1[t])
9 else
10 q = x->f1[t]
11 read-before-read
12 postvalidate()

Or, optimized:

1 if (is_in_write_set(&x->f2))
2 t = value_from_redo_log(&x->f2)
3 else
4 t = x->f2
5 if ((t < 0) || (t >= MAX))
6 read-before-read
7 postvalidate()
8 if (is_in_write_set(&x->f1[t])
9 q = value_from_redo_log(&x->f1[t])
10 else
11 q = x->f1[t]
12 read-before-read
13 postvalidate()

from the postvalidation to the transaction commit point
contain only instrumented writes. For maximum effect, we
also clone functions that can be called as the last action of
a writing transaction, and perform this optimization within
those function bodies. This simulates the effect of aggres-
sive inlining or whole-program analysis. This optimization
typically only prevents one memory fence. However, it may
lead to a noticeable reduction in instructions for orec-based
STM, since a batch of n postvalidation operations may be
avoided.

D. Dynamically Checked, Unsafe Use

Our safety criteria typically require that fault-generating
operations not use operands that are the result of un-
postvalidated transactional reads. However, as discussed in
the case of division, a fault-generating operation can be
made safe by inserting a dynamic check (in this case, test
for zero). When the test fails, a postvalidation is required
before performing the division to distinguish between failed
speculation (i.e., transaction conflicts) and program bugs.

Similarly, dereferences may be dynamically sterilized
without requiring postvalidation. Listing 4 shows one ex-
ample. A transactional read of field x->f2 determines an
array index. If the array size is statically known (represented

Listing 5 Hoisting a transactional read. This transformation
can cause incorrect behavior.
1 bool find(goal)
2 node x = TM_READ(tree_root)
3 while (x)
4 v = TM_READ(x->val)
5 if (v == goal)
6 return true
7 x = (v < goal) ? TM_READ(x->r)
8 : TM_READ(x->l)
9 return false

Becomes:

1 bool find(goal)
2 node x = TM_READ(tree_root)
3 while (x)
4 v = TM_READ(x->val)
5 t1 = TM_READ(x->r)
6 t2 = TM_READ(x->l)
7 if (v == goal)
8 return true
9 x = (v < goal) ? t1 : t2
10 return false

by MAX), then the index may be used without postvalidation,
so long as it is within the range (0 . . .MAX− 1). This opti-
mization permits the read of the index to be batched with the
read of the array at that index, with a possible postvalidation
only if the index is out of range. For STM systems that use
ownership records, this analysis requires that the compiler
know the granularity of the location to ownership record
mapping, so that calls to prevalidate() can be made
with the correct parameters.

The bottom section of Listing 4 depicts the transformation
for RingSTM. By inserting a dynamic test on lines 5–7,
we can guarantee that any fault generated by the read to
x->f1[t] is due to a program bug, not due to unsafe
optimization causing an out-of-thin-air read. Since there
is no longer a risk of a memory fault, the value read
transactionally from x->f2 can be used unsafely on lines
8, 9, and 11. The validation call on line 13 is ordered after
both transactional reads, and before any use of variable q,
and ensures that the transaction aborts if either of the reads
was inconsistent.

E. Speculative Read Hoisting

The last optimization we consider is the most risky: either
the programmer or the compiler can hoist reads taken on one
path of a branch to above the branch, in order to increase
the potential for fence reduction. This optimization increases
the read set size by reading extra locations; consequently it
can create false conflicts with concurrent writers. However,
by hoisting reads even when they are not taken on all paths,
the compiler can avoid fences in hot loops, such as those
for data structure traversal. Furthermore, as in the code of



Listing 5, the compiler may limit the use of this optimization
to reads of fields of a single object.

Listing 5 depicts a binary search tree lookup. The trans-
formed code hoists two conditional reads, so that they
can be batched with the read of the node’s key. Without
the optimization, the loop is not a candidate for fence
reduction; with the optimization, the fence count will be
halved on every loop iteration. For tree and list operations,
this optimization can dramatically reduce the dynamic fence
count.

Unfortunately, this optimization may cause erroneous be-
havior due to either publication [13] or explicit violations
of type safety. Publication-related errors are not an issue
when the application does not use a flag-based publication
idiom, or when the underlying STM is publication-safe. Type
safety-related errors are more nuanced. Suppose that variable
x in Listing 5 is of type Foo, and the programmer explicitly
casts an address to type Foo. Let us further suppose that it
is never correct for a Foo to have the field val equal 7, but
that the programmer is using that value to indicate that field
l is not on the same page as r, and x->l is not even a valid
address. In this case, executing line 6 of the optimized code
will result in a segmentation fault and incorrect program
termination. While it is possible to provide a dynamic check
and only batch reads that reside on the same page, we
expect that there are many more opportunities for hoisting
to lead to errors in programs that violate type safety, even
if the underlying STM is publication-safe. Consequently,
we expect speculative hoisting to serve as a programmer
tool, rather than an optimization explicitly performed by the
compiler, even if the compiler can prove that type safety is
not violated.

V. EXPERIMENTAL EVALUATION

In this section we analyze the impact of memory fence
reduction through a series of experiments using the STAMP
benchmarks [2]. We conducted all tests on an IBM pSeries
690 (Regatta) multiprocessor with 16 dual-core 1.3 GHz
POWER4 processors running AIX 5.1. All benchmarks and
STM runtime libraries were written in C and compiled with
gcc v4.2.4. Each data point is the average of ten trials.

Experiments labeled “Orec” use a lazy acquire, buffered
update, timestamp-based STM patterned after the per-stripe
variant of TL2 [3]. Orec uses an array of 1M ownership
records, and resolves conflicts using a simple, blocking con-
tention management policy (self-abort on conflict). “Ring”
experiments use the single writer variant of RingSTM [24]
(results are similar for the other variants). Ring uses 8192-
bit filters, a single hash function, and 32-bit summary filters.
In both Orec and Ring, fast-path validation issues a memory
fence, tests a global, and continues.

Both Orec and Ring serialize writing transactions on
a single global variable (a global timestamp and a ring
head pointer, respectively). Our optimizations reduce the

latency of individual transactions, but do nothing to avoid
these inherent bottlenecks. In separate experiments using a
sandboxed runtime, we determined that for the benchmarks
presented in this paper, the point of serialization is not a
bottleneck since transactions are sufficiently large.

A. Optimization Levels

In our evaluation of the STAMP benchmarks, we compare
six levels of optimization. The “Baseline” code uses STAMP
version 0.9.9, modified only to support our basic STM API.
The “Hand” optimizations manually inline some red-black
tree helper functions, and eliminate redundant reads in the
red-black tree and linked list. These optimizations increased
the scope of later optimization levels. “Batched” code elimi-
nates memory fences within basic blocks, and “TLFP” adds
“Tight Loop” and “Final Postvalidation” optimizations to
the Batched optimizations. “SRH” adds “Speculative Read
Hoisting” to TLFP, most notably to the red-black tree and
linked list. “NoFences” uses an STM runtime with no mem-
ory fences on reads. This provides a lower bound for single-
thread speedup. The STAMP benchmarks do not provide an
opportunity to evaluate the “Dynamically Checked, Unsafe
Use” optimization.

We also generated a custom version of the benchmarks
(“Ideal”) that aggressively hand-optimizes postvalidation
fences through an analysis similar to def-use. Ideal provides
all of the benefits of SRH, but without introducing unnec-
essary reads or increasing the conflict window. Since this
analysis does not consider prevalidation, we applied it only
to the RingSTM algorithm.

B. Analysis

In a single execution of the Genome benchmark (Fig-
ure 2), there are approximately 93M instrumented reads.
The benchmark makes extensive use of a linked list, and
thus speculative read hoisting (SRH) is very profitable, as
half of the fences in an O(n) list traversal can be removed,
at the expense of at most one extra location read. The net
result is that 45M fences are avoided with the RingSTM
runtime, and 90M fences with the Orec runtime.

Due to the size of read and write sets, our RingSTM
configuration (with 8192-bit filters) does not scale well,
though the single-thread throughput is 25% faster than
Orec. Since batching eliminates less than 2% of the total
fences, we observe little performance difference until the
SRH optimization level. At this level, SRH performs within
10% of the NoFence curve, and our Ideal instrumentation is
within 5%.

By increasing the number of locations read during tree
traversal, SRH creates artificial conflicts between transac-
tions, resulting in an 8% increase in aborts at 32 threads
for RingSTM. Since the Orec runtime uses 1M ownership
records, conflicts are detected at a much higher granularity,
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Figure 2. STAMP Genome benchmark

and extra tree accesses do not noticeably affect aborts. How-
ever, the benchmark still runs out of parallelism, at which
point the optimizations do not offer much improvement.

The Vacation benchmark (Figure 3) makes extensive use
of a red-black tree. There are 260M reads in a single
execution of the benchmark, of which only 86K can be
combined in the Batched level, for a savings of 32K fences in
RingSTM. Since tree traversal is a hot code path, speculative
read hoisting is very profitable. While the hoisting increases
reads from 260M to 376M, it does so while almost halving
the total memory fence count. In RingSTM, the count
drops from 256M to 144M (138M for the Ideal curve).
Orec experiences similar drops in both prevalidation and
postvalidation. At one thread, these fence reductions result
in a 31% improvement for the Ideal curve, but the execution
is still 11% slower than if no fences were required.

Since there is significantly more unnecessary reading
due to speculative read hoisting in the tree code, SRH
experiences an 8% increase in aborts for the Orec runtime,
and a 25% increase for RingSTM at 32 threads. Since Ideal
achieves the fence reduction effects of SRH without the extra
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Figure 3. STAMP Vacation (low contention). Results are similar for higher-
contention workloads.

reads, there is no increase in aborts. This difference accounts
for the slowdown for SRH at high thread counts. Again the
benchmark runs out of parallelism at 16 threads, at which
point the optimizations cease to decrease latency.

Intruder (Figure 4(a)) continues to demonstrate the above
trends, with SRH and Ideal eliminating more than half of the
performance lost due to memory fences. We note, however,
that Intruder has limited parallelism, leading to a slowdown
beyond 8 threads. While fence reduction decreases latency
for individual transactions, and thus continues to improve
throughput even beyond peak scalability, it cannot inject
scalability into an algorithm once that algorithm encounters
an inherent bottleneck.

The KMeans experiment in Figure 4(b) showcases the
value of the Tight Loop and Final Postvalidation opti-
mizations. Of the 20M instrumented reads performed by
a single thread, the overwhelming majority are performed
in a single loop. After tight loop optimizations, the sole
remaining postvalidation call is the final instruction of a
writing transaction, and is thus eligible for removal. The
other transactions in the code are also eligible for the Final
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(a) STAMP Intruder benchmark.
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Figure 4. Additional STAMP benchmarks, using the RingSTM runtime.
Trends are similar for the Orec runtime, and for higher contention work-
loads.

Postvalidation optimization, resulting in an elimination of
all fences in the RingSTM code, and all postvalidation calls
in the Orec code (note, however, that prevalidation is still
required for the Orec code, resulting in 1.07M fences total).
The net result is a 29% improvement over the unoptimized
code at 32 threads. Since our optimizations safely remove
some validation instructions for RingSTM, single-thread
performance is slightly better than NoFence. With Orec (not
shown), single-thread performance is 2% slower for TLFP
than NoFence, due to fences during prevalidation.

Labyrinth (Figure 5) exhibits surprising behavior: Tight
Loop optimizations enable reordering of all but 1% of the
reads in the benchmark, and eliminate 88% of the memory
fences. The main loop being optimized, however, is also
a contention hotspot. During a phase of execution, up to
400 loop iterations are performed by concurrent threads,
with each thread attempting to make the same update to an
array. When any thread commits its update transaction, all
concurrent threads should abort. However, when all post-
validation is removed from the loop, doomed transactions
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Figure 5. STAMP Labyrinth. Aggressive loop optimization can reduce
performance.

may run for hundreds of iterations before reaching their next
postvalidation point.

Our RingSTM runtime affords the ability to constrain the
number of outstanding postvalidations by simply counting
the number of unsafe reads. Since postvalidation is a global
event in RingSTM, once the count reaches some threshold, a
single call can reset the count and ensure that all prior reads
remain safe. In Figure 5(b), we vary this threshold from its
default (∞) down to 2. For modest values, we observe that
the pathological behavior is broken.

Outside of tight loops, there are few opportunities to delay
postvalidation of more than 4 reads within STAMP. Since
there are diminishing returns as the batch size increases,
it appears that 4 outstanding postvalidations may be a
reasonable point for the runtime to intervene and perform
a postvalidation.

VI. RELATED WORK

Prior research into compiler optimizations for transac-
tional memory focused on systems with eager acquisition
of locations and direct update [1], [7], [26]. These efforts



Prevalidation Fences Postvalidation Fences
Base Hand Batched TLFP SRH Batched TLFP SRH Ideal

genome 93.86 M 93.74 M 93.71 M 93.71 M 48.73 M 93.71 M 92.65 M 47.67 M 47.62 M
intruder 164.21 M 163.76 M 155.57 M 155.57 M 99.44 M 155.57 M 153.63 M 97.45 M 96.94 M
kmeans high 20.33 M 20.33 M 20.33 M 1.07 M 1.07 M 20.33 M 0 0 0
labyrinth 5.65 K 5.65 K 5.39 K 5.39 K 5.39 K 5.39 K 5.33 K 5.33 K 682
ssca2 5.55 M 5.55 M 5.55 M 5.55 M 5.55 M 5.55 M 5.55 M 5.55 M 0
vacation low 256.45 M 256.41 M 256.38 M 256.38 M 144.66 M 256.38 M 256.38 M 144.38 M 138.41 M

Figure 6. Total memory fences for STAMP benchmarks. Prevalidation fences are incurred only by the Orec runtime, whereas Postvalidation fences are
incurred by both Orec and RingSTM. Prevalidation and Postvalidation fence counts are identical for the Base, Hand, and Batched optimization levels.

exposed redundant instrumentation through a decomposed
API, but only considered the x86 memory model. Thus
for locations L1 and L2, if the compiler could determine
statically that both locations hashed to the same orec, then
prevalidation of the second location would be eliminated.
Our work complements this technique by identifying and
eliminating memory fence redundancy when L1 and L2 hash
to different orecs, and would be useful for eager orec-based
STM on relaxed memory models.

The STM algorithm used by Wang et al. also required
postvalidation [26], but did not consider batching postvali-
dation operations, since there is no redundancy within post-
validation instrumentation (apart from memory fences) for
orec-based STM. In non-orec systems, where postvalidation
typically polls a global variable and immediately returns,
our technique eliminates both fences and excess polling
instructions, and thus is profitable even on less relaxed
memory models.

Most research into synchronization elimination focuses
on atomic operations. However, von Praun et al. identified
techniques to eliminate memory fences, albeit those that
accompany atomic operations [16]. Our optimizations extend
fence-elimination to STM algorithms, where the majority
of fences do not accompany atomic operations. In STM,
prevalidation behaves like sync acquire, and postvalidation
serves as a sync release. However, the criteria for identifying
redundant fences differ slightly: in STM, only the fence
accompanying the last acquire is required (as opposed to
the first), and the fences accompanying an acquire do not
provide the necessary ordering for subsequent releases: For
STM, only a prior release can provide the needed ordering.

VII. CONCLUSIONS

In this paper, we analyzed the impact that memory fences
have on the latency of transactions on processors with
relaxed memory consistency, and showed that unnecessary
memory fences are a real and significant obstacle to per-
formance. We proposed a set of safety criteria that must be
preserved by any optimization that reduces memory fences,
and then proposed a number of different optimizations
compatible with these constraints. In preliminary experi-
ments, safe optimizations, amenable to automatic compiler
implementation, yielded improvements of more than 20%
in some cases. For a runtime that uses ownership records

and requires prevalidation, the largest benefit was enabled
by explicit source-level hoisting of reads, which served to
co-locate reads within a basic block that could not safely
be moved together without programmer knowledge. For
runtimes that do not require prevalidation, such as RingSTM,
a hand-approximation of whole program analysis was able to
provide the same increase in throughput, without increasing
aborts or requiring source-level hoisting.

We plan to implement our optimizations in a transaction-
aware compiler that can aggressively inline STM instrumen-
tation and apply complementary optimizations to eliminate
redundant instrumentation. We also plan to experiment with
annotation mechanisms that help the programmer identify
situations in which optimizations that are unsafe in the
general case might safely and profitably be applied.
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