
In Search of Big Instructions
Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott

Department of Computer Science, University of Rochester

Instruction-level parallelism (ILP) typically refers to the con-
current execution of instructions (as defined in the instruction set
architecture (ISA)) in an application’s sequential thread of execu-
tion. There are many design choices in both software (e.g., choice
of algorithm) and hardware (e.g., pipelining, superscalar execution)
that control the degree of independence and thus the available ILP
in today’s machines. Given a specific algorithm, however, the abil-
ity to expose the theoretical limits of ILP inherent in the algorithm
clearly depends on the types of instructions in the ISA. Our premise
is that future ISAs need to return to the traditional CISC philoso-
phy with a modern twist—specifically, using encodings that con-
vey more program-level intent to hardware, including data flow and
inherent concurrency—information that hardware would otherwise
require extra work to extract. Such “big instructions” can encode the
relationships among large numbers of low-level operations. They
can also capture higher-level operations (e.g., FFT, mpeg encoding)
amenable to execution on specialized hardware. Both styles of “big
instruction” reduce the energy per arithmetic operation and enable
more concurrent operations within the power budget.

Why now/End-of-the-road for RISC ILP ?
RISC advocates the use of a limited set of instructions and address-
ing modes, most of them operating on a limited set of registers, to
keep the microarchitecture simple and the instructions of roughly
equal hardware cost whenever possible. This has enabled hardware
developers to emphasize pipelining and to ride the technology scal-
ing wave. Over time, architects have augmented the RISC philos-
ophy with techniques such as superscalar instruction-issue, out-of-
order execution, and speculation to try to mine and execute many
RISC instructions in parallel.

Modern RISC-style architectures (whether at the ISA level or
using the x86 approach of breaking up instructions into µops) rep-
resent one design point that constrains ILP extraction to the concur-
rent execution of independent instructions, each the size of a single
arithmetic operation. The philosophy of simple instructions implies
a small amount of useful work per instruction, resulting in higher
relative overheads with deeper pipelines and increasing superscalar
widths. Processors spend a large fraction of their energy in the struc-
tures required to fetch and decode, detect independence among in-
structions, and then issue them, resulting in poor energy and area
scalability [2]. While technology advances have enabled designers
to assume a virtually unlimited number of transistors, power con-
sumption per transistor is no longer scaling with feature size, re-
sulting in energy and power being the primary design constraints.
Increasing transistor budgets will only lead to larger fractions of the
chip being relegated to dark (inactive) silicon.

CISC Revisited
Modern processors already employ complex multi-cycle instruc-
tions that encode data parallelism and are becoming increasingly
popular for their performance and energy efficiency. Examples in-
clude vector and matrix operations, and common mathematical
functions. To reduce energy consumption per operation and to con-
tinue to scale performance, we believe this approach needs to be
taken to the extreme. Where traditional CISC developed big instruc-
tions to reduce the end-to-end latency of complex operations, mod-
ern CISC would use them to save energy—to amortize the cost of
instruction fetch and decode; eliminate much dynamic dependence

tracking; and reduce the amount of architected intermediate state,
which complicates exception handling and other aspects of instruc-
tion semantics.

Several inroads have been made in this direction. For example,
the TRIPS project [1] demonstrated the scaling advantage of explic-
itly encoding the dependences among large numbers of low-level
operations. Tensilica [3] allows customization through an extensi-
ble ISA, but requires that the high-level extensions be defined at
design time. The challenge remains to create a more dynamic and
application-specific environment for instruction fusion. Several key
areas of investigation are required:

• Large and variable granularity instructions: Unlike previ-
ous CISC approaches, which fused a few instructions (e.g.,
multiply-and-accumulate), we will need instructions that fuse
many more operations in order to achieve commensurate en-
ergy efficiency and enable concurrent execution. In the general-
purpose market with many varied classes of applications, an
instruction (as in VLIW) that fuses a fixed number of low-level
operations is unlikely to be broadly efficient. Making the choice
of number and type of instructions dynamically is still an un-
solved problem.

• Language/compiler support: Hand-in-hand with the above,
identifying high-level operations suitable for new instructions
requires an extensive study of common application needs. Mod-
ern applications make extensive use of libraries and templates,
and spend a significant fraction of their time in these libraries.
Preliminary analysis suggests that library APIs may be a valu-
able source of complex instructions’ definitions.

• Instruction state: As the number of operations in flight in-
creases, architects will need to move away from the staging
of data in programmer-visible registers. Allowing high-level,
data-parallel instructions to operate directly on memory may
allow hardware to optimize the use of bandwidth more effec-
tively than compiler-generated loads and stores. At the same
time, if instructions try to access state that could potentially
raise an exception (e.g., page fault), the cost of a restart could
be large and/or require significant operating system support. For
pipelined execution of low-level operations, intermediate state
may be managed significantly more efficiently if it is not ar-
chitecturally visible. Again, this introduces challenges for the
precision and efficiency of exception handling.

• Semantics: Traditionally, techniques that exploit ILP have pre-
served the notion of program order and obeyed data and control
dependence. As the number of in-flight operations increases,
more distributed forms of completion detection may be re-
quired. Current hardware also seeks to maintain the appearance
of instruction atomicity, an increasingly difficult goal with com-
plex instructions. Future machines may need to expose internal
state to the operating system (but not the application).

References
[1] D. Burger et al. Scaling to the End of Silicon with EDGE

Architectures. IEEE Computer, 37, 2004.

[2] R. Hameed et al. Understanding sources of inefficiency in general-
purpose chips. In Proc. of the 37th ISCA, 2010.

[3] A. Wang et al. Hardware/Software Instruction Set Configurability for
System-on-Chip Processors. In Proc. of the 38th DAC, 2001.

mls
CCC Wkshp. on Advancing Computer Architecture Research (ACAR): What Now in ILP?, Seattle, WA, Sep. 2010




