
On the Orthogonality of Speculation and Atomicity

Michael L. Scott and Luke Dalessandro

Computer Science Department, University of Rochester
{scott, luked}@cs.rochester.edu

WTTM 2, September 2010

In a paper at DISC 2010 [1], we argue that atomic
blocks should constitute the synchronization operations
of a memory consistency model, and that traditional
synchronization mechanisms (locks, condition variables,
monitors, etc.) should be defined in terms of transactions,
rather than the other way around. While speculation is
likely to be used in any implementation of transactional
memory, our model deliberately avoids mentioning this at
the program level: atomic blocks are simply atomic; they
do not abort or roll back in any way that affects the mean-
ing of the program.

We provide a conventional retry mechanism [2] for
condition synchronization, but its semantics are declara-
tive, not operational: the dynamic behavior of a program
containing retry is that of an execution (if there is one)
in which retry statements are never encountered. In this
sense, “if (!C) retry” might better be written “require(C)”.

As a declarative mechanism, our retry does not specify
the circumstances under which a speculative implemen-
tation should re-attempt a failed transaction. A typical
implementation might, as suggested by Harris et al. [2],
wait until something read by the transaction has changed.
Alternatively, it might retry immediately, or after a small
delay. Immediate retry is probably sufficiently important
(for algorithms with explicit programmer-implemented
speculation [5]) to merit its own source-level syntax
(restart?), but again, the distinction is a matter of tuning,
below the level of program semantics.

As originally presented, our model does not accommo-
date abort (abandon this transaction and do not retry) or
orElse (try an alternative version of this transaction if pre-
conditions are not met [2]). Both of these constructs re-
quire an explicit notion of speculation, as they “leak” the
fact that a transaction has aborted. This note outlines how
we might add such constructs as extensions.

We take the position that language-level speculation
can and should be separated from atomicity. It is useful in
its own right in sequential programs, and cleanly explains
abort and orElse when used inside an atomic block.

Consider a spec construct, loosely modeled after the

try-all of Shinnar et al. [4]:

spec {
. . .
if (!C) fail
. . .

} else {. . . }

Operationally, the intent is that when fail is executed, all
work since the beginning of the block is “undone,” and
execution continues in the else block. Most programmers
have probably wished, at one time or another, for a try
block that works like this.

To accommodate speculation in a memory model for
sequential programs, we can extend the set of operations
with begin spec, end spec, and fail. In any legal ex-
ecution, these operations must occur in properly nested
begin spec. . . end spec or begin spec. . . fail pairs. We
then define a tree-structured visibility order, <v , that is
a subset of program order, <p. The intent of <v is to
“hide” writes within a failed speculative region from reads
that follow the region. For two operations a and c, we say
a <v c iff (1) a is c’s immediate predecessor in <p and
c is not a fail operation; (2) c is a fail operation and a is
the matching begin spec operation, or (3) ∃ b such that
a <v b <v c.

For data-race-free parallel programs, if spec blocks ap-
pear only inside atomic blocks, then no thread can ever
see another thread’s speculative writes, and the sequential
model carries over cleanly. In keeping with our previ-
ous work, execution of such a program is transactionally
sequentially consistent (TSC) if there exists a total order
<g on all operations such that (1) <g is consistent with
program order in all threads, (2) the operations of any
given transaction are contiguous in <g , and (3) <g in-
duces a (tree-structured) visibility order <gv that explains
the program’s writes. (Because spec blocks occur only
inside atomic blocks, a “side branch” of the tree will con-
sist entirely of operations of a single thread.) We say that
a <gv c iff (a) a is c’s immediate predecessor in <g and
c is not a fail operation; (b) c is a fail operation and a is
the matching begin spec operation; or (c) ∃ b such that

1

mls
2nd Wkshp. on the Theory of Transactional Memory (WTTM),Cambridge, MA, Sep. 2010. In conjunction with DISC '10.

a <gv b <gv c. Each read is required to return the value
written by the (unique) most recent previous write in <gv .

Relaxed memory models are analogous. Again assum-
ing that spec blocks appear only inside atomic blocks, we
define strict serializability (SS) as follows: a <ss c iff
(a) ∃ transactions A, C: a ∈ A, a <v end(A), c ∈
C, and A <t C; (b) ∃ transaction A: a ∈ A, a <v

end(A), c 6∈ A, and A <v c; (c) ∃ transaction C: c ∈
C, a 6∈ C, and a <v C; or (d) ∃ b: a <ss b <ss c. The
reference to end(A) (A’s end txn operation) in clauses (a)
and (b) makes failed speculative writes invisible to subse-
quent transactions, and keeps them invisible to accesses
after the transaction in their thread.

Given this definition, a program execution is strictly se-
rializable iff there exists a transaction order that, together
with program and visibility order, induces a strict serial
order <ss that explains the execution’s reads. In this ex-
tended model, a read r is permitted to see a write w if they
access the same location, w <v r ∨ w <ss r, and there is
no intervening write of the same location between w and
r. (In some languages, r may also be permitted to see in-
comparable writes.) A transactional memory implemen-
tation (system) is strictly serializable if each of its realiz-
able target executions is equivalent to (produces the same
external effects as) some strictly serializable program exe-
cution. With appropriate definitions, a transactional data-
race-free (TDRF) program can be shown to display TSC
behavior on any SS system.

Having separated atomicity and speculation, we can
model abort as follows:

atomic {
spec {

. . .
if (!C) fail // abort
. . .

} else { }
}

More interestingly, orElse, which supports disjunctive
composition (atomically do this or, if its precondition isn’t
met, do that), can be modeled as

atomic {
spec {

. . .
if (!C1) fail
. . . // this

} else {
. . .
if (!C2) fail
. . . // that

. . .
} else {retry}

}

Note that while transactions can fail spuriously at the im-
plementation level in a typical TM system, spec blocks

fail at the semantic level only when they reach a fail state-
ment, and atomic blocks don’t fail at all.

If we wish to make spec and atomic fully orthogonal,
we must consider the behavior of atomic blocks or data
races inside outermost (unnested) spec blocks. The moti-
vation and desired semantics for such idioms are not im-
mediately clear. If thread T sees speculative writes from a
spec block in thread S that may subsequently fail, should
T inherit S’s speculative status? Alternatively, should S
be allowed to “undo” its writes (via some sort of com-
pensating action) while allowing T to continue? The first
option would appear to induce significant implementation
complexity; the second would appear to induce semantic
complexity at least as severe as that of open nesting [3].

The bottom line: By separating speculation and atom-
icity, we (1) allow the former to be used without the latter
in sequential contexts, e.g. for recovery from program-
detected error conditions; (2) maintain the simplicity of
“merely atomic” transactions; and (3) avoid conflating
aborts due to implementation issues (hash table conflicts,
hardware limitations, interrupts, etc.) with restarts due to
failed preconditions. In parallel contexts, appropriate se-
mantics for non-atomic speculation remain unclear.

Acknowledgments
The ideas in this note benefited from discussion with Mike
Spear, Victor Luchangco, and the anonymous reviews of
our DISC 2010 paper. Our work is supported in part by the
National Science Foundation under grants CNS-0615139,
CCF-0702505, and CSR-0720796.

References
[1] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions

as the Foundation of a Memory Consistency Model. In
Proc. of the 24th Intl. Symp. on Distributed Computing,
Cambridge, MA, Sept. 2010.

[2] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Com-
posable Memory Transactions. In Proc. of the 10th ACM
Symp. on Principles and Practice of Parallel Program-
ming, pages 48-60, Chicago, IL, June 2005.

[3] J. E. B. Moss and A. L. Hosking. Nested Transactional
Memory: Model and Architecture Sketches. Science of
Computer Programming, 63(2):186-201, Dec. 2006.

[4] A. Shinnar, D. Tarditi, M. Plesko, and B. Steensgaard. Inte-
grating Support for Undo with Exception Handling. MSR-
TR-2004-140, Microsoft Research, Dec. 2004.

[5] I. Watson, C. Kirkham, and M. Luján. A Study of a Trans-
actional Parallel Routing Algorithm. In Proc. of the 16th
Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, pages 388-400, Brasov, Romania, Sept. 2007.

2

