
Toward a Formal Semantic Framework
for Deterministic Parallel Programming?

Li Lu and Michael L. Scott

Computer Science Department, University of Rochester
Rochester, NY 14627-0226 USA
{llu, scott}@cs.rochester.edu

Abstract. Deterministic parallelism has become an increasingly attrac-
tive concept: a deterministic parallel program may be easier to construct,
debug, understand, and maintain. However, there exist many different
definitions of “determinism” for parallel programming. Many existing
definitions have not yet been fully formalized, and the relationships among
these definitions are still unclear. We argue that formalism is needed, and
that history-based semantics—as used, for example, to define the Java
and C++ memory models—provides a useful lens through which to view
the notion of determinism. As a first step, we suggest several history-
based definitions of determinism. We discuss some of their comparative
advantages, prove containment relationships among them, and identify
programming idioms that ensure them. We also propose directions for
future work.

1 Introduction
Determinism, loosely defined, is increasingly touted as a way to simplify the design,
verification, testing, and debugging of parallel programs—in effect, as a way to make
it easier to understand what a parallel program does. Parallel functional languages have
long enjoyed the benefits of determinism [18]. Recent workshops have brought together
members of the architecture, programming languages, and systems communities to dis-
cuss determinism in more general languages and systems [1,13]. Determinism has also
featured prominently in recent workshops on pedagogy for concurrency [23, 28, 30].

At the very least, determinism suggests that a given parallel program—like a se-
quential program under most semantic models—should always produce the same out-
put when run with the same input. We believe, however, that it needs to mean more than
this—that runs of a deterministic program on a given input should not only produce the
same output: they should produce it in the same way. By analogy to automata theory, a
deterministic Turing machine doesn’t just compute a single-valued function: it takes a
uniquely determined action at every step along the way.

For real-world parallel programs, computing “in the same way” may be defined in
many ways. Depending on context, we may expect that repeated runs of a deterministic
? This work was supported in part by the US National Science Foundation under grant CCR-

0963759.

mls
DISC 2011

program will consume (more or less) the same amount of time and space; that they
will display the same observable intermediate states to a debugger; that the behavior of
distributed replicas will not diverge; that the number of code paths requiring separate
testing will be linear in the number of threads (rather than exponential); or that the
programmer will be able to straightforwardly predict the impact of source code changes
on output or on time and space consumption.

History-based semantics has proven to be one of the most useful ways to model the
behavior of parallel programs. Among other things, it has been used to explain the seri-
alizability of transactions [27], the linearizability of concurrent data structures [19], and
the memory model that determines the values seen by reads in a language like Java [22]
or C++ [11]. Memory models typically distinguish between ordinary and synchroniz-
ing accesses, and use these to build a cross-thread partial order among operations of the
program as a whole. Recently we have proposed that the various sorts of synchronizing
accesses be unified under the single notion of an atomic action [15, 29].

Informally, the parallel semantics of a given program on a given input is a set of
abstract executions. Each execution comprises a set of thread histories, each of which
in turn comprises a totally ordered sequence of reads, writes, and other operations—
notably external actions like input and output. The history of a given thread is deter-
mined by the program text, the language’s (separately specified, typically operational)
sequential semantics, the program’s input, and the values returned by reads (which may
have been set by writes in other threads). An execution is said to be sequentially con-
sistent if there exists a total order on reads and writes, consistent with program order in
every thread, such that each read returns the value written by the most recent preced-
ing write to the same location. Under relaxed memory models, a program is said to be
data-race free if the model’s partial order covers all pairs of conflicting operations.

An implementation maps source programs to sets of low-level target executions on
some real or virtual machine. The implementation is correct only if, for every target ex-
ecution, there exists a corresponding abstract execution that performs the same external
actions, in the same order. (The extent to which shorter sequences of target-level opera-
tions must correspond to operations of the abstract execution is related to, but separate
from, the subject of this paper; we do not address it further here.)

In the strictest sense of the word, a deterministic parallel program would be one
whose semantics, on any given input, consists of only a single abstract execution, to
which any legal target execution would have to correspond. In practice, this definition
may prove too restrictive. Suppose, for example, that I have chosen, as a programmer,
to “roll my own” shared allocator for objects of some heavily used data type, and that I
am willing to ignore the possibility of running out of memory. Suppose further that my
allocator keeps free blocks on a simple lock-free stack. Because they access a common
top-of-stack pointer, allocation and deallocation operations must synchronize with one
another, and will thus be ordered in any given execution. Since I presumably don’t care
what the order is, I may wish to allow arbitrary executions that differ only in the order
realized, while still saying that my program is deterministic.

In general, we suggest, it makes sense to say that a program is deterministic if all
of its abstract executions on a given input are equivalent in some well-defined sense. A
language may be said to be deterministic if all its programs are deterministic. An im-

2

plementation may be said to be deterministic (for a given, not-necessarily-deterministic
language) if all the target executions of a given program on a given input correspond to
abstract executions that are mutually equivalent. For all these purposes, the definition
of determinism amounts to an equivalence relation on abstract executions.

We contend that history-based semantics provides a valuable lens through which
to view determinism. By specifying semantics in terms of executions, we capture the
notion of “computing in the same way”—not just computing the same result. We also
accommodate programs (e.g., servers) that are not intended to terminate—executions
need not be finite. By separating semantics (source-to-abstract-execution) from imple-
mentation (source-to-target-execution), we fix the level of abstraction at which deter-
minism is expected, and, with an appropriate definition of “equivalence,” we codify
what determinism means at that level.

For examples like the memory allocator mentioned above, history-based semantics
highlights the importance of language definition. If my favorite memory management
mechanism were a built-in facility, with no implied ordering among allocation and deal-
location operations of different objects, then a program containing uses of that facility
might still have a single abstract execution. Other potential sources of nondeterminism
that might be hidden inside the language definition include parallel iterators, bag-of-
task work queues, and container data types (sets, bags, mappings). Whether all such
sources can reasonably be shifted from semantics to implementation remains an open
question (but we doubt it).

In a similar vein, an implementation may be deterministic for only a subset of some
standard programming language—i.e., for a smaller language. MIT’s Kendo system, for
example, provides determinism for only those 〈program, input〉 pairs that are data-race
free—a property the authors call weak determinism [26].

From an implementation perspective, history-based semantics differentiates between
things that are required to be deterministic and things that an implementation might
choose to make deterministic. This perspective draws a sharp distinction between projects
like DPJ [10], Prometheus [3], and CnC [12], which can be seen as constraining the set
of abstract executions, and projects like Kendo, DMP [16], CoreDet [5], and Grace [8],
which can provide deterministic execution even for (some) pthread-ed programs in C.
(Additional projects, such as Rerun [20], DeLorean [24], and DoublePlay [31], are in-
tended to provide deterministic replay of a program whose initial run is more arbitrary.)

If we assume that an implementation is correct, history-based semantics identifies
the set of executions that an application-level test harness might aspire to cover. For
purposes of debugging, it also bounds the set of global states that might be visible at a
breakpoint—namely, those that correspond to a consistent cut through the partial order
of a legal abstract execution.

We believe the pursuit of deterministic parallel programming will benefit from care-
ful formalization in history-based semantics. Toward that end, we present a basic system
model in Section 2, followed by several possible definitions of equivalence for abstract
executions in Section 3. We discuss the comparative advantages of these definitions in
Section 4. We also prove containment relationships among the definitions, and identify
programming idioms that ensure them. Many other definitions of equivalence are pos-

3

sible, and many additional questions seem worth pursuing in future work; we list a few
of these in Section 5.

2 System Model
In a manner consistent with standard practice and with our recent work on atomicity-
based semantics [15], we define an execution of a program P , written in a language L,
to be a 3-tuple EP,L : (OP, <p, <s), where OP is a set of operations, and <p (program
order) and <s (synchronization order) are irreflexive partial orders on OP. When we
can do so without confusion, we omit P and L from our notation.

Each operation in OP takes one of six forms: (read, name, val, tid, uid), (write,
name, val, tid, uid), (input, val, tid, uid), (output, val, tid, uid), (begin atomic, tid, uid),
or (end atomic, tid, uid). In each of these, tid identifies the executing thread. Uid is an
arbitrary unique identifier; it serves to make every operation distinct and to allow the
set OP to contain multiple operations that are otherwise identical. In read and write
operations, name identifies a program variable; in read, write, input, and output opera-
tions, val identifies a value read from a variable or from the program’s input, or written
to a variable or to the program’s output. The domains from which thread ids, variable
names, and values are chosen are defined by the semantics of L. These domains are
assumed to be countable, but not necessarily finite.

Program order, <p, is a union of disjoint total orders, one per thread. Specifically,
if o1 = (. . . , t1, u1) and o2 = (. . . , t2, u2) are distinct operations of the same execution
(i.e., u1 6= u2), then (t1 = t2) → (o1 <p o2 ∨ o2 <p o1) and (t1 6= t2) → (o1 6<p

o2 ∧ o2 6<p o1). (Here ∨ is exclusive or.)
For any given thread ti, OP|ti

or E|ti
represents ti’s thread history—its (totally or-

dered) sequence of operations. We use OP|s orE|s to represent an execution’s synchro-
nization operations: begin atomic, end atomic, input, and output. We use OP|e orE|e to
represent the execution’s external operations: input and output. Clearly OP|e ⊂ OP|s.
(We assume that I/O races are always unacceptable.)

Synchronization order, <s, is a total order on OP|s. It does not relate reads and
writes, but it is consistent with program order. That is, for o1 = (. . . , t1, u1) and o2 =
(. . . , t2, u2), (o1 <s o2 ∧ t1 = t2)→ (o1 <p o2).

For convenience, we define vin and vout, for a given execution E, to be the execu-
tion’s input and output vectors—the (possibly infinite) sequences of values contained,
in order of <s, in E’s input and output operations, respectively. For any given execution
E, we use ext(E) to represent the pair 〈vin, vout〉.

We use begin atomic and end atomic operations in our model to capture the syn-
chronization operations of L, whatever those may be—thread fork and join, lock ac-
quire and release, monitor entry and exit, volatile variable read and write, etc. For
this reason, we require that begin atomic and end atomic operations appear in disjoint,
unnested pairs, and never bracket input or output operations. That is, for every b = (be-
gin atomic, t, u1) there exists an e = (end atomic, t, u2) such that b <s e and ∀m ∈
OP|s r {b, e}, m <s b∨ e <s m; likewise for every e = (end atomic, t, u2) there exists
a b = (begin atomic, t, u1) such that b <s e and ∀m ∈ OP|s r{b, e}, m <s b∨e <s m.
We use OP|a or E|a to represent the execution’s atomic actions: the union of E|e and

4

the set of minimal sequences of operations in each thread beginning with begin atomic
and ending with end atomic.

Continuing with standard practice, we assume that the semantics of L defines, for
any given execution, a synchronizes-with order, <sw, that is a subset of <s—that is, a
partial order on OP|s. In a lock-based language, for example, the release method for
lock L might be modeled as (begin atomic, t1, u1), (write, L, 0, t1, u2), (end atomic, t1,
u3);1 an acquire might be (begin atomic, t2, u4), (read, L, 0, t2, u5), (write, L, 1, t2, u6),
(end atomic, t2, u7). If operation u3 precedes operation u4 in <s, we might require that
it do so in <sw as well (since they operate on the same lock), but operations used to
model methods of different locks might be unrelated by <sw.

Given <sw, we define happens-before order, <hb, to be the irreflexive transitive
closure of<p and<sw. Finally, we assume thatL defines, given<hb, a reads-see-writes
function W that specifies, for any given read operation r, the set of write operations
{wi} whose values r is permitted to return. In most languages, r will be allowed to see
w if w is the most recent previous write to the same variable on some happens-before
path. In some languages (e.g., Java), r may be allowed to see w if the two operations are
incomparable under <hb. Languages may also differ as to whether atomic actions are
strongly atomic—that is, whether nonatomic reads can see inside them, or nonatomic
writes be seen within them [9] [15, TR version appendix].

In any consistent cut across <hb, we define the program state to be (1) the prefixes
of vin and vout that have been input and output prior to the cut, and (2) the most recent
values written to the program’s variables according to <hb. If a variable has not yet
been written, its value is undefined (⊥); in a program with a data race, the most recent
write may not be unique, in which case the variable’s value is indeterminate.

Two operations (read or write) conflict if they access the same variable and at least
one of them writes it. An execution is data-race free if all conflicting operations are
ordered by <hb.

In this paper, we consider only well-formed executions. An execution E is well
formed if and only if it satisfies the following three requirements.

Adherence to per-thread semantics: Given the code for thread t and the values re-
turned by read and input operations, L’s (independently specified) sequential se-
mantics determine the set of legal histories for t; E|t must be among them. More-
over, begin atomic and end atomic operations inE|t must occur in disjoint matched
pairs, with only read or write operations between them (as ordered by <p).

Consistent ordering: For all t, operations ofE|t are totally ordered by<p. Operations
with different tids are unordered by <p. E|s is totally ordered by <s, which is
consistent with <p. Reads and writes do not participate in <s. Paired begin atomic
and end atomic operations are contiguous in <s.

Adherence to memory model: All values read are permitted by W, the reads-see-
writes function induced by <p, <s, <sw, and <hb, according to L’s semantics.

1 The release sequence must be bracketed with begin atomic. . . end atomic, even though
there is only one operation inside, in order to induce cross-thread ordering.

5

3 Example Definitions of Equivalence
In this section we suggest several possible definitions of equivalence for abstract ex-
ecutions. Two—Singleton and ExternalEvents—are intended to be extreme cases: the
strictest and loosest definitions that strike us as plausible. Another—FinalState—is sim-
ilar to ExternalEvents, restricted to programs that terminate. The other two—Dataflow
and SyncOrder—are two of many possible in-between options.

Singleton. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to be
equivalent if and only if they differ only in the uids of their operations; that is, there
exists a one-one mapping (bijection) between OP1 and OP2 that preserves <p, <s, and
the content other than uid in every operation.

Singleton uses the strictest possible definition of determinism: there must be only
one possible execution for a given program and input.

Dataflow. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to be
equivalent if and only if ext(E1) = ext(E2) and there is a one-one mapping between
OP1 and OP2 that preserves (1) the content other than tid and uid in every operation,
and (2) the reads-see-writes functionW induced, underL’s semantics, by<p,<s,<sw,
and <hb.

Informally, Dataflow requires that reads see the same writes in both executions,
and that the values in both reads and writes (including the input and output operations
that “read” and “write” elements of vin and vout) be the same in both executions. Note
that we do not require that the bijection preserve <p or <s, nor do we require that the
executions be data-race free.

SyncOrder. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to
be equivalent if and only if there is a one-one mapping between E1|a and E2|a that
preserves (1) <s, and (2) the content other than uid in every synchronization operation
and in every read or write within an atomic action.

SyncOrder requires that there be a fixed pattern of synchronization among threads
in E1 and E2, with atomic actions reading and writing the same values in the same
variables. Note that if executions are data-race free (something that SyncOrder does not
require), then they are also sequentially consistent [2], so E1 ≡SyncOrder E2 ∧ E1, E2 ∈
DRF→ E1 ≡Dataflow E2.

ExternalEvents. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said
to be equivalent if and only if ext(E1) = ext(E2).

ExternalEvents is the most widely accepted language-level definition of determin-
ism. It guarantees that abstract executions on the same input look “the same” from the
perspective of the outside world.

FinalState. Executions E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are said to
be equivalent if and only if they both terminate and their program states at termination
(values of variables and of vin and vout) are the same.

Like ExternalEvents, FinalState says nothing about how E1 and E2 compute. It
requires only that final values be the same. Unlike ExternalEvents, FinalState requires
agreement on variables other than output.

6

4 Discussion
Singleton is the strictest definition of equivalence, and thus of determinism. It is a
common notion in the literature—corresponding, for example, to what Emrath and
Padua called “internally determinate” [17] and Netzer and Miller “internally determin-
istic” [25]. It requires a single execution for any given source program and input. In-
terestingly, while we have not insisted that such executions be sequentially consistent,
they seem likely to be so in practice: a language that admits non-sequentially consis-
tent executions (e.g., via data races) seems likely (unless it is designed in some highly
artificial way) to admit multiple executions for some 〈program, input〉 pairs.

By requiring abstract executions to be identical in every detail, Singleton rules out
“benign” differences of any kind. It may therefore preclude a variety of language fea-
tures and programming idioms that users might still like to think of as “deterministic.”

Dataflow relaxes Singleton by loosening the requirements on control flow. Equiva-
lent executions must still have the same operation sets (ignoring tid and uid), but the syn-
chronization and program orders can be different, so long as values flow from the same
writes to the same reads. In the literature, Dataflow is essentially equivalent to Karp and
Miller’s 1966 definition of “determinacy” [21], which was based on a dataflow model
of computation. Intuitively, Dataflow can be thought of as an attempt to accommodate
programming languages and idioms in which the work of the program is fixed from run
to run, but may be partitioned and allocated differently among the program’s threads.

SyncOrder also relaxes Singleton, but by admitting benign changes in data flow,
rather than control flow. Specifically, SyncOrder requires equivalent executions to con-
tain the exact same synchronization operations, executed by the same threads in the
same order. It does not require that a read see the same write in both executions, but it
does require that any disagreement have no effect on synchronization order (including
output).

ExternalEvents is also a common notion in the literature. It corresponds to what Em-
rath and Padua called “externally determinate” [17] and, more recently, to the working
definition of determinism adopted by Bocchino et al. [10]. The appeal of the defini-
tion lies in its generality. If output is all one cares about, ExternalEvents affords the
language designer and implementor maximum flexibility. From a practical perspective,
knowing that a parallel program will always generate the same output from the same
input, regardless of scheduling idiosyncrasies, is a major step forward from the status
quo. For users with a strong interest in predictable performance and resource usage,
debugability, and maintainability, however, ExternalEvents may not be enough.

FinalState is essentially a variant of ExternalEvents restricted to programs that ter-
minate (and whose internal variables end up with the same values in every execution).
It corresponds to what Netzer and Miller called “externally deterministic” [25].

In the remainder of this section, we explore additional ramifications of our example
definitions. In Section 4.1 we formalize containment properties: which definitions of
equivalence, if they hold between a given pair of executions, imply which other defi-
nitions? Which definitions are incomparable? In Section 4.2 we identify programming
languages and idioms that illustrate these containments. Finally, in Sections 4.3 and 4.4,
we consider the practical issues of repetitive debugging and of deterministic implemen-
tation for nondeterministic languages.

7

ExternalEvents

FinalState

Dataflow

SyncOrder

Singleton

A

D

B

1

3

2

C

E

Fig. 1. Containment relationships among definitions of determinism, or, equivalently, abstract
execution equivalence. Names of equivalence definitions correspond to ovals. Outlined numbers
label the light, medium, and dark shaded regions. Bold letters show the locations of programming
idioms discussed in Section 4.2.

4.1 Containment Properties
Figure 1 posits containment relationships among the definitions of determinism given
in Section 3. The space as a whole is populated by sets {Xi} of executions of some
given program on a given input, with some given semantics. If region S is contained in
region L, then all executions that are equivalent under definition S are equivalent under
definitionL as well; that is, S is a stricter andL a looser definition. (The regions can also
be thought of as containing languages or executions: a language [execution] is in region
R if for every program and input, all abstract executions generated by the language
semantics [or corresponding to target executions generated by the implementation] are
equivalent under definition R.) We justify the illustrated relationships as follows.

Theorem 1. Singleton is contained in Dataflow, SyncOrder, and ExternalEvents.
Proof : SupposeE1 andE2 are arbitrary equivalent executions under Singleton. By def-
inition, E1 and E2 are identical in every respect other than the uids of their operations.
None of the definitions of Dataflow, SyncOrder, or ExternalEvents speaks to uids. Each
requires certain other portions of E1 and E2 (or entities derived from them) to be the
same; Singleton trivially ensures this. ut

Theorem 2. Singleton, Dataflow, SyncOrder, and FinalState are all contained in Exter-
nalEvents.
Proof : For Singleton, this is proved in Theorem 1. For Dataflow, it follows from the
definition: if E1 and E2 are Dataflow equivalent, then ext(E1) = ext(E2).

For SyncOrder, suppose E1 : (OP1, <p1, <s1) and E2 : (OP2, <p2, <s2) are arbi-
trary equivalent executions under SyncOrder. This means there is a bijection between
OP1 and OP2 that preserves (among other things) both <s and the content other than
uid in each input and output operation. Since input and output operations are totally or-
dered by <s, and since vin and vout are defined to be the values in an execution’s input
and output operations, in order of <s, we have ext(E1) = ext(E2).

8

For FinalState, suppose E1 and E2 are equivalent under FinalState. Then E1 and
E2 both terminate, and with the same state. Their input and output vectors, included in
their terminating states, must therefore be the same: ext(E1) = ext(E2). ut

Theorem 3. There are sets of executions that are equivalent under Dataflow but not
under SyncOrder.

Proof : This is the light gray region, labeled “1” in Figure 1. It corresponds to pro-
grams with benign synchronization races. Consider a program in which two threads
each increment a variable under protection of a lock: acquire(L); x++; release(L). Un-
der plausible semantics, one possible execution looks as follows (ignoring uids), where
<p orders the operations of each thread as shown, and <s orders the atomic actions of
thread 1 before those of thread 2:

(begin atomic, t1) (read, L, 0, t1) (write, L, 1, t1) (end atomic, t1)
(read, x, 0, t1) (write, x, 1, t1) (begin atomic, t1) (write, L, 0, t1) (end atomic t1)

(begin atomic, t2) (read, L, 0, t2) (write, L, 1, t2) (end atomic, t2)
(read, x, 1, t2) (write, x, 2, t2) (begin atomic, t2) (write, L, 0, t2) (end atomic t2)

Call this execution E1. Another execution (call it E2) looks the same, except that the
tids in various operations are reversed: thread 2 changes x from 0 to 1; thread 1 changes
it from 1 to 2. For Dataflow, the obvious bijection swaps the tids, and the executions
are equivalent. For SyncOrder, there is clearly no bijection that preserves both synchro-
nization order and the tids in each begin atomic and end atomic operation. ut

Theorem 4. There are sets of executions that are equivalent under SyncOrder but not
under Dataflow.

Proof : This is the medium gray region, labeled
“2” in Figure 1. It corresponds to programs with
benign data races. An example is shown at
right. This is a racy program: neither the write
nor the read of flag in t2 is ordered by <hb with
the write in t1. Two abstract executions, E1 and
E2 (not shown), may thus have different data
flow: in E1, the read of flag in t2

Initially flag == 0

t1: t2:
flag = 1 flag = 2

if (flag > 0)
print ”flag > 0”
print ”end”

returns the value 1, while in E2 it returns the value 2. However, these two execu-
tions have the same synchronization order: in both, only the two outputs are ordered
by <s, and they are ordered the same in both executions. Thus E1 ≡SyncOrder E2 but
E1 6≡Dataflow E2. ut

Theorem 5. Singleton, Dataflow, and SyncOrder all have nontrivial intersections with
FinalState.

Proof : Singleton, Dataflow, and SyncOrder clearly all contain sets of terminating ex-
ecutions that have the same final state. However, equivalent executions in Singleton,
Dataflow or SyncOrder do not necessarily terminate. Suppose E1 and E2 are arbitrary
equivalent executions under Singleton, Dataflow or SyncOrder, and also under Final-
State. We can make both executions nonterminating by adding an additional thread to

9

each that executes an infinite but harmless loop (it might, for example, read an otherwise
unused variable over and over). The modified executions will no longer be in FinalState
since they do not terminate, but they will still be in Singleton, Dataflow, or SyncOrder,
since the loop will neither race nor synchronize with any other part of the program.

Conversely, there are executions that have different data flows or synchronization
orders, but terminate with the same state. Examples in FinalState ∩ (Dataflow r Sync-
Order) and FinalState ∩ (SyncOrder r Dataflow) appear in the proofs of Theorems 3
and 4, respectively, and an example for FinalState r (SyncOrder ∪ Dataflow) is easy to
construct (imagine, for example, a program that has chaotic data flow and synchroniza-
tion, but eventually writes a zero to every program variable before terminating). ut

4.2 Programming Languages and Idioms
While equivalence relations and their relationships, seen from a theoretical perspective,
may be interesting in their own right, they probably need to correspond to some intu-
itively appealing programming language or idiom in order to be of practical interest. As
illustrations, we describe five programming idioms in this section, corresponding to the
dots labeled A, B, C, D, and E in Figure 1.

Independent Split-Merge (Point A ∈ Singleton in Figure 1.) Consider a language
providing parallel iterators or cobegin, with the requirement (enforced through the type
system or run-time checks) that concurrent tasks access disjoint sets of variables. If
every task is modeled as a separate thread, then there will be no synchronization or
data races, and the execution of a given program on a given input will be uniquely
determined.

Bag of Independent Tasks (Point B ∈ Dataflow r SyncOrder in Figure 1.) Consider a
programming idiom in which “worker” threads dynamically self-schedule independent
tasks from a shared bag. The resulting executions will have isomorphic data flow (all
that will vary is the tids in the corresponding reads and writes), but their synchronization
orders will vary with the order in which they access the bag of tasks.

Significantly, this idiom remains in Dataflow r SyncOrder even if we require that
tasks be added to the bag in groups, and all of them completed before any new tasks
can be added. One might consider such a restricted model to be an alternative charac-
terization of the Independent Split-Merge idiom, but we prefer to consider it a separate
language—one in which the maximum degree of concurrency in the abstract execution
is limited to the number of worker threads.

One might also expect that a program with deterministic sequential semantics, no
data races, and no synchronization races would have only a single abstract execution for
a given input—that is, that Dataflow ∩ SyncOrder would equal Singleton. We speculate,
however, that there may be cases—e.g., uses of rand()—that are easiest to model with
more than one execution (i.e., with classically nondeterministic sequential semantics),
but that we might still wish to think of as “deterministic parallel programming.” We
have left a region in Figure 1 (the dark gray area labeled “3”) to suggest this possibility.

Parallel Iterator with Reduction (Point C ∈ ExternalEvents r (Dataflow ∪ Sync-
Order) in Figure 1.) Consider a language with explicit support for reduction by a com-
mutative, associative function. The order in which such a function is applied to a set of

10

operands need not be fixed, leading to executions with different synchronization orders
and data flows, but only a single result. It seems plausible that we might wish to call
programs in such a language “deterministic.”

Parallel Atomic Commutative Methods (Point D ∈ ExternalEvents r (Dataflow ∪
SyncOrder) in Figure 1.) In the split-merge and bag-of-tasks idioms above, we required
that parallel tasks be independent. We may relax this requirement by allowing tasks to
call methods of some shared objectO, so long as the calls are atomic and (semantically)
commutative. The memory allocator mentioned in Section 1 is an example of this idiom,
as long as we ignore the possibility of running out of memory. Another example would
be a memoization table that caches outputs of some expensive function.

If a program contains atomic, commutative method calls in otherwise independent
tasks, the synchronization order for these calls may be different in different runs of
the program on the same input. Data flow may also be different, because the internal
state of the shared object may change with the synchronization order. Even the final
state may be different, since commutativity is defined at a level of abstraction above
that of individual variables. A given finite sequence of calls is guaranteed to lead to
the same output, however, regardless of permutation, because the calls are atomic and
commutative.

Chaotic Relaxation (Point E ∈ SyncOrder r Dataflow in Figure 1.) Certain spatially
partitioned, iterative computations can be proven to converge even if iterations are un-
synchronized, allowing local computations to sometimes work with stale data [14]. Ex-
ecution typically halts once all threads have verified that the error in their local values
is less than some threshold ε.

Imagine a language that is specially designed for programs of this kind. Program-
mers can specify an ε for the convergence condition, then design an iterative algorithm
for an array of data. Different executions may have different data flows, because the
program is full of data races. For chaotic relaxation, however, these data races do not
change the limit toward which the computation converges. If final results are rounded to
a level of significance determined by ε before being output, the results will be determin-
istic despite the uncertainty of data flow. And as long as the output operations (which
constitute the only synchronization in the program) are strictly ordered, the program
will be deterministic according to SyncOrder.

4.3 Repetitive Debugging
One of the principal goals of deterministic parallel programming is to facilitate repet-
itive debugging. The definitions in Section 3 vary significantly in the extent to which
they achieve this goal.

In a Singleton system, a debugger that works at the level of abstract executions will
be guaranteed, at any breakpoint, to see a state that corresponds to some consistent
cut across the happens-before order of the single execution. This guarantee facilitates
repetitive debugging, though it may not make it trivial: a breakpoint in one thread may
participate in an arbitrary number of cross-thread consistent cuts; global state is not
uniquely determined by the state of a single thread. If we allow all other threads to con-
tinue running, however, until they wait for a stopped thread or hit a breakpoint of their
own, then global state will be deterministic. Moreover (assuming a relatively fine-grain

11

correspondence between target and abstract executions), monitored variables’ values
will change deterministically, since Singleton requires all runs of a program on a given
input to correspond to the same abstract execution. This should simplify both debugging
and program understanding.

Under Dataflow, monitored variables will still change values deterministically, but
two executions may not reach the same global state when a breakpoint is triggered, even
if threads are allowed to “coast to a stop.” A program state encountered in one execution
may never arise in an equivalent execution.

Consider the code fragment shown at right (written in a hypo-
thetical language). Assume that f() is known to be a pure function,
and that the code fragment is embedded in a program that cre-
ates two worker threads for the purpose of executing parallel itera-
tors. In one plausible semantics, the elements of a parallel iteration
space are placed in a synchronous queue, from which workers de-
queue them atomically.

parfor i in [0, 1]
A[i] = f(i)

print A[0]
print A[1]

Even in this trivial example, there are four possible executions, in which dequeue
operations in threads 0 and 1, respectively, return {0,⊥} and {1,⊥}, {1,⊥} and {0,⊥},
{0, 1,⊥} and {⊥}, or {⊥} and {0, 1,⊥}. These executions will contain exactly the
same operations, except for thread ids. They will have different program and synchro-
nization orders. Dataflow will say they are equivalent; Singleton will say they are not.
If we insist that our programming model be deterministic, Dataflow will clearly afford
the programmer significantly greater expressive power. On the other hand, a breakpoint
inserted at the call to f() in thread 0 may see very different global states in different
executions; this could cause significant confusion.

Like Dataflow, SyncOrder fails to guarantee deterministic global state at break-
points, but we hypothesize that the variability will be significantly milder in practice:
benign data flow changes, which do not impact synchronization or program output,
seem much less potentially disruptive than benign synchronization races, which can
change the allocation of work among threads.

ExternalEvents and FinalState, for their part, offer significant flexibility to the lan-
guage designer and implementor, but with potentially arbitrary differences in internal
behavior across program runs. This would seem to make them problematic for repetitive
debugging.

4.4 Deterministic Implementations
Generally speaking, given a deterministic parallel programming language, it should be
straightforward to construct an implementation that achieves most of the concurrency
that a programmer might expect on a given machine. This expectation is essentially
an issue of liveness, and may be difficult to formalize, but the intuition is clear: if the
language is capable of expressing only deterministic programs, then an implementation
that captures the concurrency explicit in such programs will remain deterministic. In In-
dependent Split-Merge programs, for example, an implementation is assured that syn-
chronization (<s) edges enter a task only at the beginning, and leave it only at the end,
so scheduling decisions within a split-merge group can never violate happens-before.

The more interesting question is: in a language that admits nonequivalent abstract
executions, how hard is it likely to be (how much run-time cost are we likely to in-

12

cur) to construct an implementation that achieves a high degree of concurrency (scal-
ability) while still guaranteeing that all target executions will correspond to equivalent
abstract executions? Here the answer may depend on just how much nondeterminism
the language itself allows. As noted in Section 1, Kendo [26] provides determinism (of
roughly the SyncOrder variety) only for programs written in the data-race-free subset
of C. Specifically, it resolves each synchronization race deterministically, given that de-
terministic resolution of prior synchronization races and the lack of data races uniquely
determines program order in each thread, up to the next synchronization operation.
While still too slow for production use (reported overheads are on the order of 1.6×),
this is fast enough for convenient repetitive debugging.

For programs with data races, there is no known way to achieve any of our defi-
nitions of deterministic implementation without special-purpose hardware or very high
worst-case overhead (one can, of course, serialize the execution—we count that as “very
high overhead”). CoreDet [5], dOS [6], and Determinator [4] all achieve roughly Single-
ton semantics on conventional hardware, by executing threads in coarse-grain lockstep
“epochs,” with memory updates applied in deterministic order at epoch boundaries. Un-
fortunately, all impose common-case overheads of roughly 10×, making them unsuit-
able for production use and undesirable for debugging. Recent work on the DoublePlay
system [31] suggests that it may be possible to execute arbitrary programs determin-
istically while limiting overhead to a relatively modest amount (comparable to that of
Kendo) for executions whose behavior does not depend on data races. (For a brief sur-
vey of implementation techniques for deterministic execution, see the recent paper by
Bergan et al. [7].)

5 Conclusions and Future Work
Deterministic parallel programming needs a formal definition (or set of definitions).
Without this, we will really have no way to tell whether the implementation of a de-
terministic language is correct. History-based semantics seems like an excellent frame-
work in which to create definitions, for all the reasons mentioned in Section 1. We see
a wide range of topics for future research:

– Existing projects need to be placed within the framework. What are their definitions
of execution equivalence?

– Additional definitions need to be considered, evaluated, and connected to the lan-
guages and programming idioms that might ensure them.

– We need to accommodate condition synchronization, and source-level spinning in
particular. Even in Singleton, executions that differ only in the number of times a
thread checks a condition before finding it to be true should almost certainly be
considered to be equivalent.

– We need to decide how to handle operations (e.g., rand()) that compromise the
determinism of sequential semantics. Should these in fact be violations? Should
they be considered inputs? Should they perhaps be permitted only if they do not
alter output?

– Languages embodying the more attractive definitions of determinism should be
carefully implemented, and any losses in expressiveness or scalability relative to
other definitions carefully assessed.

13

– We need to examine more thoroughly the issues involved in deterministic imple-
mentation of nondeterministic languages.

This final issue seems intriguing. While it may be easy to build an implementation
in which all realizable target executions (of a given program and input) correspond to
the same abstract execution, such an implementation may be unacceptably slow (e.g.,
sequential). It may be substantially more difficult to build an implementation that im-
proves performance by exploiting the freedom to realize target executions correspond-
ing to different but nonetheless equivalent abstract executions. This is in essence a ques-
tion of liveness rather than safety, and it raises a host of new questions: Which execu-
tions can be realized by a given implementation? Are certain executions fundamentally
more difficult to realize (without also realizing other executions that aren’t safe)? What
is the appropriate boundary between language- and implementation-level determinism?
Progress on these questions, we believe, could significantly enhance the convenience,
correctness, and performance of programming in the multicore era.

References
[1] V. Adve, L. Ceze, and B. Ford, organizers. 2nd Workshop on Determinism and Correctness

in Parallel Programming. Newport Beach, CA, Mar. 2011.
[2] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. 17th Intl. Symp. on

Computer Architecture, Seattle, WA, May 1990.
[3] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization Sets: A Dynamic

Dependence-Based Parallel Execution Model. 14th ACM Symp. on Principles and Practice
of Parallel Programming, Raleigh, NC, Feb. 2009.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient System-Enforced Deterministic
Parallelism. 9th Symp. on Operating Systems Design and Implementation, Vancouver, BC,
Canada, Oct. 2010.

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet: A Compiler and
Runtime System for Deterministic Multithreaded Execution. 15th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems, Pittsburgh, PA,
Mar. 2010.

[6] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic Process Groups in dOS. 9th
Symp. on Operating Systems Design and Implementation, Vancouver, BC, Canada, Oct.
2010.

[7] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The Deterministic Execution Hammer: How
Well Does It Actually Pound Nails? 2nd Workshop on Determinism and Correctness in
Parallel Programming, Newport Beach, CA, Mar. 2011.

[8] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe Multithreaded Programming for
C/C++. OOPSLA 2009 Conf. Proc., Orlando, FL, Oct. 2009.

[9] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing Transactional Semantics:
The Subtleties of Atomicity. 4th Workshop on Duplicating, Deconstructing, and
Debunking, Madison, WI, June 2005.

[10] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. Adve, S. Heumann, R. Komuravelli, J. Overbey,
P. Simmons, H. Sung, and M. Vakilian. A Type and Effect System for Deterministic
Parallel Java. OOPSLA 2009 Conf. Proc., Orlando, FL, Oct. 2009.

[11] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory Model.
SIGPLAN 2008 Conf. on Programming Language Design and Implementation, Tucson, AZ,
June 2008.

14

[12] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D.
Peixotto, V. Sarkar, F. Schlimbach, and S. Taşirlar. Concurrent Collections. Journal of
Scientific Programming, 18(3–4), Aug. 2010.

[13] L. Ceze and V. Adve, organizers. Workshop on Deterministic Multiprocessing and Parallel
Programming. Seattle, WA, Nov.-Dec. 2009.

[14] C. Chazan and W. Miranker. Chaotic Relaxation. Linear Algebra and Its Applications,
2:199-222, 1969.

[15] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as the Foundation of a Memory
Consistency Model. 24th Intl. Symp. on Distributed Computing, Cambridge, MA, Sept.
2010. Previously Computer Science TR 959, Univ. of Rochester, July 2010.

[16] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic Shared Memory
Multiprocessing. 14th Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems, Washington, DC, Mar. 2009.

[17] P. A. Emrath and D. A. Padua. Automatic Detection of Nondeterminacy in Parallel
Programs. ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,
Madison, WI, May 1988.

[18] R. H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Trans. on Programming Languages and Systems, 7(4):501-538, Oct. 1985.

[19] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. on Programming Languages and Systems, 12(3):463-492, July 1990.

[20] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for Lightweight Memory Race
Recording. 35th Intl. Symp. on Computer Architecture, Beijing, China, June 2008.

[21] R. M. Karp and R. E. Miller. Properties of a Model for Parallel Computations:
Determinacy, Termination, Queueing. SIAM Journal on Applied Mathematics,
14(6):1390-1411, Nov. 1966.

[22] J. Manson, W. Pugh, and S. Adve. The Java Memory Model. 32nd ACM Symp. on
Principles of Programming Languages, Long Beach, CA, Jan. 2005.

[23] S. Midkiff, V. Pai, and D. Bennett, organizers. Workshop on Integrating Parallelism
Throughout the Undergraduate Computing Curriculum. San Antonio, TX, Feb. 2011.

[24] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and Deterministically
Replaying Shared-Memory Multiprocessor Execution Efficiently. 35th Intl. Symp. on
Computer Architecture, Beijing, China, June 2008.

[25] R. H. B. Netzer and B. P. Miller. What Are Race Conditions? Some Issues and
Formalizations. ACM Letters on Programming Languages and Systems, 1(1):74-88, Mar.
1992.

[26] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient Deterministic
Multithreading in Software. 14th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Washington, DC, Mar. 2009.

[27] C. H. Papadimitriou. The Serializability of Concurrent Database Updates. Journal of the
ACM, 26(4):631-653, Oct. 1979.

[28] N. Shavit, organizer. Workshop on Directions in Multicore Programming Education.
Washington, DC, Mar. 2009.

[29] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. Ordering-Based Semantics for
Software Transactional Memory. 12th Intl. Conf. on Principles of Distributed Systems,
Luxor, Egypt, Dec. 2008.

[30] G. L. Steele, Jr. and V. A. Saraswat, organizers. Workshop on Curricula for Concurrency.
Orlando, FL, Oct. 2009.

[31] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. Chen, J. Flinn, and S. Narayanasamy.
DoublePlay: Parallelizing Sequential Logging and Replay. 16th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, Newport Beach, CA, Mar.
2011.

15

