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Abstract
If transactional memory is to become a mature technology, TM re-
search groups must be able to run each other’s code and to perform
apples-to-apples comparisons of implementation alternatives. For
C++ on the x86, significant steps in this direction have been made
by compilers from Intel, the University of Dresden, and the GNU
Project, which aim to accept the same language API and target the
same runtime ABI. Unfortunately, these three compilers currently
connect to only two main STM libraries.

In the interest of greater interoperability, we have adapted the
word-based “back end” libraries of the RSTM suite to the common
ABI, and tested them with the Intel compiler. Notable changes to
RSTM included support for true subword reads and writes along
with in-library allocation, management, and rollback of check-
points. To the best of our knowledge, RSTM supports the widest
diversity of back ends currently available; our work makes these
available, for the first time, to programs written with language-level
transactions.

For testing purposes, we use applications from the RMS-TM
and STAMP benchmark suites (the latter adapted to the C++ stan-
dard API). We describe our experience at both the ABI and API
levels, and present preliminary performance comparisons relative
to the Intel standard back end. Public release of our tools will allow
developers to experiment with the full range of STM implementa-
tion options, and to pursue ongoing research in TM semantics and
hardware/software hybrid TM systems.

1. Introduction
Transactional Memory (TM) [8, 10, 11] allows programmers to
mark compound statements in parallel programs as atomic (in C++,
transaction), with the expectation that the underlying run-time

implementation will execute such transactions concurrently when-
ever possible, generally by means of speculation—optimistic but
checked execution, with rollback and retry when conflicts arise.
The principal goal of TM is to simplify synchronization by raising
the level of abstraction, breaking the connection between seman-
tic atomicity and the means by which that atomicity is achieved.
Secondarily, TM has the potential to improve performance, most
notably when the practical alternative is coarse-grain locking.

We believe that simple hardware TM will eventually be standard
on many-core machines. In the meantime, there are hundreds of
millions of multicore machines already in the field. For the sake of
backward compatibility, emerging TM-based programming mod-
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els will need to be implemented in software on these machines.
Moreover, a growing consensus holds that STM will be needed as
a “fall-back” mechanism when hardware transactions fail due to
buffer space limitations, interrupts, or other transient or determin-
istic causes [5, 7, 15, 24].

As researchers work to develop robust, mature STM, it becomes
increasingly important to be able to share applications, compilers,
and runtimes among groups, and to be able to modify one layer of
the system stack while keeping the others constant, for “apples-to-
apples” comparison.

Until recently, most STM systems were implemented as user-
level libraries: the programmer was expected to manually instru-
ment not only transaction boundaries, but also individual loads and
stores within transactions. This library-based approach was ade-
quate for early experiments with microbenchmarks, but it becomes
increasingly tedious and error prone for larger applications [2]. The
use of different library interfaces in different research groups has
also made it difficult to share applications across groups, or to make
reliable performance comparisons: experiments with different ver-
sions of the application source code inevitably raise questions of
fairness and confidence.

A recent draft standard for transactions in C++ [1], and the re-
lease of compilers conforming to that standard, promises to signif-
icantly ease the construction of large transactional programs, and
reduce the problem of source-level incompatibility among groups.
Compilers also improve the interoperability of hardware and soft-
ware TM, by automatically generating the instrumented loads and
stores that are required by the latter but not the former. In the soft-
ware case, the fact that calls to the back-end system are being gen-
erated by a compiler rather than a human programmer means that
the back end can provide a wide, performance-oriented ABI instead
of a narrow convenience-oriented API.

Unfortunately, much of the work on STM systems over the past
7 years remains incompatible with recent compilers because of in-
terface issues. Indeed, the four publicly available C++ TM compil-
ers support remarkably little back-end diversity. Oracle’s compiler,
which generates code only for the SPARC, employs the SkySTM
back end [17]; Intel’s compiler, for the x86, employs a modified
version of the STM presented in Ni et al. [20]; and the Dresden
and GNU compilers, also for the x86, employ TinySTM [9]. At the
same time, the three x86 compilers and their two back ends employ
(for the most part) a common ABI designed by Intel [13], which
raises the prospect of interoperability.

To the best of our knowledge, the RSTM suite [23] comprises
the widest diversity of STM algorithms currently available (13 in
the version 5 release). In the interest of wider experimentation, we
have adapted the “word-based” algorithms to the Intel ABI, allow-
ing them to be used with any conforming compiler. To minimize
per-algorithm effort, we introduce a “shim” layer that embodies
most of the adaptation. As of this writing, we have successfully
connected the Intel C++ TM compiler to three RSTM back ends:
LLT (lazy detection, lazy versioning, with timestamps), which re-
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1 i n t a ;
2 i n t foo ( )
3 {
4 t r a n s a c t i o n {
5 a = a + 5 ;
6 }
7 }

(a) C++ TM standard application
programming interface (API)

1 i n t foo ( )
2 {
3 I T M t r a n s a c t i o n ∗ t d = I T M g e t T r a n s a c t i o n ( ) ;
4 i n t doWhat = b e g i n T r a n s a c t i o n ( td , prop , s t r l o c ) ;
5 /∗ a = a + 5; ∗ /
6 i n t a tmp = ( i n t ) ITM RfWU4 ( td , ( u i n t 3 2 ∗ )&a ) ;
7 a tmp = a tmp + 5 ;
8 ITM WaWU4( td , ( u i n t 3 2 ∗ )&a ) , ( u i n t 3 2 ) a tmp ) ;
9 ITM commi tT ransac t i on ( td , &o u t e r c o m m i t ) ;

10 }

(b) Intel TM application binary interface (ABI)

Figure 1: Automatic read/write instrumentation of a simple TM program

sembles TL2 [6]; ET (extendable timestamps), which resembles
TinySTM; and Precise (a.k.a. NOrec [4]), which provides unusu-
ally strong privatization semantics, and works particularly well as
the software half of a hybrid TM system [5]. Future RSTM releases
will include nearly universal support for the Intel ABI.

Our compiler-ready back ends allow us, for the first time, to
run large applications on top of RSTM without hand-instrumenting
loads and stores. As a first installment toward “apples-to-apples”
comparison, we present performance results in Section 4 for both
RSTM and the Intel back end on several applications from the
RMS-TM benchmark suite [14]. We also present results for a se-
lection of microbenchmarks and for applications from the STAMP
suite [19]. For STAMP we consider both the original code, which
uses hand instrumentation of (only) “important” loads and stores,
and new versions written to the C++ TM standard. One new version
lets the compiler instrument everything inside transactions; another
uses Intel’s transaction [[waiver]] extension to disable in-
strumentation of many “unimportant” loads and stores. Our results
suggest that the scalability of STAMP depends critically on mini-
mizing instrumentation.

2. Design and Implementation
2.1 Draft Specification for TM in C++
The draft standard for C++ TM [1], written jointly by representa-
tives of Intel, Oracle, and IBM, defines language extensions for TM
applications. In particular, the transaction{} construct brack-
ets sequences of statements to be executed “all at once.”

A transaction can be declared as either atomic (the default)
or relaxed. Atomic transactions are restricted to perform only
safe operations—loosely, those that a compiler and runtime are
sure to be able to execute speculatively, and roll back on abort.
In a data-race-free program, an atomic transaction never appears to
interleave with execution in other threads or with behavior in the
outside world.

Relaxed transactions are allowed to perform unsafe operations.
They may or may not be executed speculatively. Operations inside
a relaxed transaction are isolated from other transactions, but may,
if unsafe, appear to interleave with (nontransactional) execution
in other threads or with the outside world—even if the overall
program is data-race free.

Functions called in an atomic transaction must be declared
with the transaction safe attribute, and cannot themselves
contain unsafe operations, or calls to unsafe functions. Func-
tions called in a relaxed transaction may be declared with the
transaction callable attribute, to increase the likelihood that
the compiler will be able to execute the transaction speculatively.
A transaction callable function, like a relaxed transaction,
is permitted to perform unsafe operations. The compiler can be
expected to generate two clones of a transaction safe or

transaction callable function—one for use outside transac-
tions, one (with instrumented loads and stores) for use inside.
The C++ draft standard calls for transactional function point-
ers to be statically typed with the same transaction safe or
transaction callable attributes as the functions being assigned
into them.

Some unsafe operations are said to be irrevocable, meaning that
they cannot be rolled back. Examples include I/O and writes to
atomic variables. If a relaxed transaction performs an irrevocable
action, the STM implementation can be expected to preclude con-
current execution of certain other transactions [27]. Note that not all
unsafe operations are necessarily irrevocable. For example, a read
of a volatile variable is an unsafe operation but it will probably
not be irrevocable.

The Intel compiler, which we use for our experiments, imple-
ments certain extensions to the C++ TM standard. For example,
a function can be declared with the transaction pure attribute,
meaning that the programmer guarantees it to be idempotent, and
thus safe to execute—even within an atomic transaction—without
instrumentation on its loads and stores. Finally, the transaction
[[waiver]] {} construct can be used to bracket a sequence of
statements inside a transaction that should not be rolled back on
abort. Waivered code is essentially unstructured open nesting; ex-
ample use cases include debugging, statistics gathering, and seman-
tically neutral operations like tree rebalancing.

The current version of Intel’s compiler does not implement
transactionally typed function pointers. It supports the transactional
use of function pointers by dynamically detecting if the indirect
call target has a transactional clone, calling it if it does, and switch-
ing to serial irrevocable mode to perform the indirect call non-
transactionally if it doesn’t. This has two side effects: indirect calls
through function pointers are only valid in relaxed transactions
as they might require serial irrevocable execution, and incorrectly
annotated source may lead to poor performance due to transactions
silently switching to serial irrevocable mode.

2.2 Intel ABI Overview
Figure 1(a) shows a simple program fragment using the C++ TM
API. The Intel compiler automatically generates an equivalent ver-
sion instrumented for the Intel ABI (Figure 1(b)). Implementations
of the functions in the ABI are provided by the underlying STM li-
brary. This subsection describes the instrumentation performed by
the Intel compiler; the following section details how we link the
instrumented code to the RSTM back ends.

The code in Figure 1(a) executes a transactional read of vari-
able a, increases its value by 5, and writes back the result (line 5).
In Figure 1(b), the thread performing the transaction allocates a
transaction descriptor by calling ITM getTransaction (line 3).
The beginTransaction function (line 4) takes several parame-
ters: the transaction descriptor, a set of bit values encoding infor-
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mation about the transaction’s properties, and the source location
where the atomic block begins. Given these, beginTransaction
saves the machine state (callee-saves registers, stack pointer) and
starts the transaction. If the transaction aborts internally, execution
will resume with a second return from beginTransaction—it
effectively has setjmp semantics in this way.

At line 6, the compiler knows that the read of a will be fol-
lowed by a write. It therefore instruments the access with a call to
ITM RfWU4—Read for Write, 4 bytes. In an eager-acquire STM

this routine could pre-acquire a write lock on a, avoiding the need
to promote a read lock later, and return the value of a, which the
compiler saves in temporary variable a tmp.

The next write operation is instrumented with ITM WaWU4—
Write after Write, 4 bytes, which can avoid the complexities of lock
promotion. The ITM WaWU4 (line 8) updates a with its new value
(a tmp). The last call in the generated code ( ITM commitTrans-
action) attempts to commit the transaction. If the function detects
that the transaction has conflicts, then the transaction will abort and
perform a longjmp back to beginTransaction. If no conflicts
are detected, the transaction commits and execution continues with
whatever lies after line 10.

2.3 RSTM Back Ends
RSTM includes a variety of STM algorithms, some of which have
several variants. The selection of an STM library can be handled
simply by re-compiling the code with a different back end. The
object-based back ends are not compatible with the Intel ABI.
Among the word-based back ends, we began with ET, LLT and
NOrec, which reflect popular but divergent points in the STM
design space.

LLT is a lazy versioning system patterned after TL2 [6]. A
transaction begins by reading the value t in a global “clock.” Own-
ership records (orecs), found by address hashing, indicate the last
time at which one of the corresponding locations was modified. If
a transaction encounters a location that was written after t, it as-
sumes it is inconsistent, aborts, and retries. At commit time, the
transaction locks the orecs for all locations that need to be modi-
fied, checks to make sure that all of the locations it read still have a
timestamp earlier than t, increments the global time, stores the new
time into all the locked orecs, writes out all the updates, and then
unlocks the orecs.

ET is an eager conflict detection, eager versioning system with
extendable timestamps, patterned after TinySTM [22]. Extendable
timestamps avoid false positives in which a transaction is aborted
despite having seen a consistent view of memory. If a transaction
encounters a location that was written after start time t, it checks to
see whether any previously read location has been modified since
t. If not, it re-reads the global clock and continues, pretending it
started at this new time t′ instead of t.

NOrec [4], like LLT, is a lazy versioning system: it delays the
resolution of conflicts until some transaction is ready to commit. It
uses a single sequence lock [16], however, rather than ownership
records to serialize commit and write-back. A transaction checks,
after each read, to see if any writer has committed since start
time t; if so, it performs value-based validation [21] to see if
its prior reads, if performed right now, would return the values
previously seen; if so, as in ET, it reads a new start time from the
global clock and continues. Writers can speculate in parallel, but
only one can commit at a time. This serialization ultimately limits
scalability, but the simplicity of the system yields surprisingly
good performance for up to a few dozen cores. Moreover, NOrec
is inherently privatization safe; ET and LLT require additional
code (and nontrivial overhead, not included in our experiments) for
correct execution of programs in which data transition back and
forth between shared and private status [18].

2.4 Design Details
Several technical challenges made the adaptation of RSTM to Intel
ABI an interesting and nontrivial task. As noted in Section 1, the
principal design decision was to introduce a “shim” library that
maps the ABI function calls generated by the compiler (sometimes
with a bit of “glue” code) to the function signatures provided by
(one of) the RSTM back ends. This strategy allows most of the
adaptation work to be done once rather than once per back end.
The main disadvantage of the shim approach is potentially extra
overhead. Fortunately, most of the back end routines in RSTM were
intended to be inlined into manually instrumented source. We inline
them into the shim instead, allowing us to incur only one function
call, rather than two, at each instrumentation point.

Subword accesses. The existing RSTM back ends were designed
to support only 4-byte loads and stores, but the Intel ABI requires
1-, 2-, 4-, 8-, 12-, 16-, 24-, and 32-byte accesses as well. Multi-
word accesses are easily implemented (if slightly inefficiently) as
sequences of word accesses. Subword accesses, however, raise the
possibility of false sharing. If x and y occupy opposite halves of
the same word, for example, then a transaction that modifies x may
force the abort of a transaction that reads y, even though no conflict
has actually occurred. Worse, if nontransactional code modifies y
during the execution of a transaction that modifies x, commit-time
write-back of the word containing x may overwrite the modifica-
tion of y, leading to incorrect behavior—even though the program
is data-race free.

Perhaps the simplest solution would be to maintain read and
write logs at byte granularity, but this would quadruple the cost of
instrumentation for common-case word-sized accesses. A second
alternative might be to maintain separate logs for word, halfword,
and byte level access, but this leads to significant complexity when
a transaction accesses the same word at multiple granularities. We
ultimately chose to add a bit mask to each entry in the read and
write logs, to identify which part(s) of the word have been accessed.
Appropriate bits are or-ed into the mask on each access. During
write-back, only modified bytes are updated. During value-based
validation (as in NOrec), only accessed bytes are compared.

For orec-based conflict detection (as in LLT and ET), we see
no easy way to keep track of subword updates. Per-byte times-
tamps would again quadruple the cost of common operations, and
bit mask schemes suffer from the fact that different words mapping
to the same orec may have different update patterns, and different
bytes may be updated at different times. For the sake of simplicity
and modest overhead, we have chosen to maintain orec-based con-
flict detection at the word level only. This can lead to unnecessary
aborts, but not to incorrect behavior.

Two small optimizations streamline the code path for load and
store instrumentation. First, a “fast path” always checks for full-
word granularity, since that is the common case. Second, to sim-
plify masking, bitmaps are full-word width, with 8 identical bits in
every byte.

Inevitability (irrevocability). The Intel ABI defines a function
(changeTransactionMode) that can be used to make comple-
tion of a transaction inevitable prior to I/O, calls to uninstrumented
functions, or other irreversible operations. The RSTM back ends
currently support inevitability only when requested prior to per-
forming any loads or stores. To support the Intel ABI routine, we
arrange to abort a transaction that has already performed memory
accesses, and restart it in inevitable mode.

Missing functionality. Support for some of the Intel ABI routines
was missing entirely in RSTM and had to be added to the shim.
The addUserUndoAction and addUserCommitAction routines
allow user code to register functions to be called when a transaction
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rolls back or commits. In the absence of explicit guidance in the
ABI, we arrange to call these functions in the order in which they
were registered. The registerThrownObject routine allows user
code to register exception objects. Updates to such objects are not
rolled back on abort, and for redo-log implementations buffered
writes to such objects must be performed during aborts. The C++
draft standard as well as the Intel ABI expose an abort construct
that allows a user to explicitly abort the innermost transaction
scope. Support for this functionality requires that transactional logs
support limited closed nesting—it is not necessary to determine
the level of nesting at which a conflict occurs, but the logs must
support partial rollback and merging on commit. We have not yet
implemented the required functionality; however, it is not required
for the benchmarks tested here. Future RSTM releases will fully
support the abort construct.

3. Experimental Setup
In the Section 4 we use our Intel/RSTM shim to (1) explore the
overhead of automatic (as opposed to manual) read and write in-
strumentation, and (2) compare the performance of the default Intel
back end to three of the RSTM alternatives. In our experiments we
employ three RSTM microbenchmarks (HashTable, DoubleList,
and RBTree) and selected applications from the STAMP [19] and
RMS-TM benchmark [14] suites.

The STAMP suite comprises eight applications with 30 con-
figuration sets. The applications are drawn from bioinformatics,
engineering, computer graphics, and machine learning. They vary
significantly in transaction lengths, read- and write-set sizes, and
degree of contention. All were written with explicit calls to a trans-
actional library API. They needed to be modified by hand to employ
the C++ TM standard API instead. In the time available we were
able to complete three of the eight applications: Kmeans, SSCA2,
and Vacation. Kmeans and SSCA2 were straightforward: their
transactions are relatively simple, with no nested subroutine calls,
transactional libc library calls, or unsafe operations. Vacation was
more of a challenge (as would be the five remaining applications).
We annotated functions called from within transactions in Vaca-
tion as either transaction safe or transaction callable,
depending on whether they include unsafe operations. We then
defined transactions as atomic or relaxed accordingly.

STAMP implements generic data structures using function
pointers. A set of objects of opaque type, for example, is repre-
sented with a list of void* and a pointer to a function that can
be used to test for object equality. STAMP’s initial implementa-
tion uses pointers to uninstrumented functions in such contexts:
the original developers determined that the lack of instrumenta-
tion would not compromise program correctness. As described in
Section 2.1, the Intel compiler currently generates code that will
silently switch to serial irrevocable mode when it encounters such
pointers. To mimic the behavior of the original STAMP application,
we can use Intel’s transaction [[waiver]] extension, which
allows us to call through these pointers nontransactionally. Alterna-
tively, we can declare the target functions as transaction safe
and call them transactionally, without the waiver. This leads to
significant overhead, however, because the functions are called fre-
quently during core data structure traversals, and the compiler must
now use instrumented versions of the code. For completeness we
test both “with waiver” and “without waiver” versions of Vacation.

The RMS-TM suite comprises seven applications from the
Recognition, Mining and Synthesis (RMS) domain. As in STAMP,
transactions vary greatly in length, read- and write-set size, and
degree of contention. RMS-TM applications also exercise a vari-
ety of special TM features, including nested transactions, I/O, and
system calls and complex function calls inside transactions. Un-
like STAMP, the RMS-TM suite was developed using the C++ TM
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Figure 2: Execution time of compiler-instrumented code, relative
to manually instrumented code, for single-threaded STAMP appli-
cations. Vacation represents “without waiver” execution.

standard rather than a library-level API. Running these applications
directly on the RSTM back ends, without the shim library, would
have required large amounts of tedious and error-prone hand in-
strumentation. We report results for one application from each of
the RMS-TM application domains: HMMcalibrate (from Bioinfor-
mation), UtilityMine (from Datamining) and FluidAnimate (from
Physics).

We perform our experiments on a 2.27 GHz, 2-processor Intel
Xeon (E5520) system. Each processor contains four hyperthreaded
cores serviced by private 32KB L1 Icache and 32KB Dcache, a
private 256KB L2 cache, and a shared 8MB L3 cache. The sys-
tem is equipped with 8GB of RAM that each processor access
through a QPI memory controller. Benchmarks are written using
the subset of the C++ TM draft API [1] supported by the Intel R©

C++ STM Compiler Prototype Edition 4.0 [12], and compiled us-
ing –O3 settings. The reference input sets were used where appli-
cable. Experiments were performed on Linux version 2.6.30. We
rely on the default Linux thread scheduler which prefers to dis-
tribute threads across processors before cores before hyperthreads.
The tested benchmarks and implementations do not benefit from
hyperthreading, so we report results up to 8 threads only.

4. Experimental Results
4.1 Overhead Analysis of Automatic Instrumentation
While relying on a compiler to automatically instrument read
and write accesses simplifies the instrumentation of complex pro-
grams relative to manual instrumentation, it may lead to over-
instrumentation due to the need for conservative assumptions about
aliasing and lack of idempotence. On the other hand, the compiler
may identify optimization opportunities that were missed during
manual instrumentation, therefore improving performance. To as-
sess these potential effects, we compared the performance of the
original, manually-instrumented STAMP applications to that of the
automatically-instrumented versions that use our shim library. We
could not perform the same analysis for RMS-TM, as manually
instrumented versions are not available.

Linking with RSTM through the TM ABI shim library intro-
duces some additional overhead, unrelated to the compiler, relative
to manually instrumentation. We expect this overhead to be small—
at most one additional function call per instrumented access.

As noted in Section 3, the manually instrumented versions of
the List and RBTree data structures in Vacation use uninstru-
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Application IntelSTM NOrec ET LLT
2 4 8 2 4 8 2 4 8 2 4 8

HashTable 0.05 0.17 0.28 0.02 0.07 0.24 0.85 11.91 5.02 1.68 5.53 11.11
RBTree 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.09 0.18 0.48 1.57
DoubleList 13.85 36.31 52.13 10.09 27.56 49.48 7.75 29.15 57.35 14.81 37.38 63.16
SSCA2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 3.00
Kmeans 0.05 0.02 0.00 2.23 5.59 13.48 47.39 56.82 74.95 37.15 55.61 76.24
Vacation 0.01 0.04 0.08 0.00 0.00 0.00 0.80 1.13 4.26 0.08 0.26 0.66
HMMcalibrate 15.24 39.36 66.76 4.52 14.99 43.55 98.16 99.54 99.94 91.01 97.29 99.05
UtilityMine 0.01 0.05 0.26 0.00 0.03 0.10 0.09 1.44 0.80 0.11 0.41 0.93
FluidAnimate 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.04 0.02 0.05

Table 1: Abort Rates (percentage of all dynamic transaction instances that abort) for 2, 4 and 8 threads.
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Figure 3: Throughput results for the microbenchmarks. Y axis shows total number of transactions per second: higher is better.

mented functions internally for frequently executed comparison
operations. The compiler cannot possibly generate equally effi-
cient code for these without a global understanding of the pro-
gram, as the comparisons access shared memory locations. In the
next section we provide Vacation results both with and without
transaction [[waiver]]. The former requires the same level

of programmer understanding as the original implementation; the
latter illustrates the overhead of leaving code generation entirely
up to the compiler.

Figure 2 shows the overhead of automatic instrumentation for
the single-threaded execution of the STAMP benchmarks (without
transaction [[waiver]]) on the three RSTM back ends. The

results depend on both the applications and the back end. SSCA2
shows performance improvement for ET and limited overhead for
LLT and NOrec. Since ET shows a net benefit, we believe that the
compiler does a good job of instrumenting the code and identify-
ing optimization opportunities, and that the different behavior of
LLT and NOrec is specific to the STMs. For Kmeans and Vaca-
tion, on the other hand, all of the back ends suffer significant per-
formance loss compared to the manually-instrumented version—
from 10–50%. Here the compiler clearly introduces read/write in-
strumentation that the manually instrumented version was able to
avoid, and extra optimization opportunities, if any, are insufficient
to compensate.

Conservative instrumentation can have an effect on scalability
as well. The resulting larger read and write sets lead to longer
transactions, due to increased validation times and to an increase
in the probability of false conflicts in orec-based implementations.
In Kmeans, for example, manually instrumented code sees 8-thread
abort rates for ET and LLT of 3% and 58%, respectively. For
compiler instrumented code (Table 1), the corresponding rates are
both around 75%. Clearly the extra instrumentation inserted by the
compiler in this case interacts badly with eager conflict detection.

NOrec, which is lazy like LLT, sees an abort rate of approx-
imately 14% with both manual and automatic instrumentation. It
would be vulnerable, however, to increases in the number of in-
strumented writes, since its write-back operations are globally se-
rialized. An even larger issue would arise in any application where
compiler the instrumented writes in what could otherwise be a read-
only transaction.

4.2 Back-end Comparisons
In this section we present performance results for the three sets of
benchmarks mentioned in Section 3.

Microbenchmarks: In our first experiment we consider mi-
crobenchmarks in which a set of threads use transactions to contin-
ually insert, delete, and look up keys in a set. The set is prepopu-
lated with half of the possible keys and we execute an instruction
mix that consists of 33% of each operation. Approximately half
of the insert and delete operations find the target key and mod-
ify the set, so transactions should be 66% read only. The Intel-
STM compiler does not introduce any unnecessary writes, so the
results presented here meet this goal. We consider three different
set implementations—a hash table, a red-black tree, and a doubly
linked list. Figure 3 reports the throughput (total number of trans-
actions per second) for these microbenchmarks when varying the
number of threads from one to eight.

In HashTable (Figure 3a) we test 8-bit keys (maximum set
size of 256), and transactions are tiny, performing a maximum of
five reads and three writes. This results in few conflicts, as seen
in the low abort rates for all the back ends (between 0.24% and
11.11% with eight threads, as reported in Table 1). This configu-
ration should be extremely scalable, however we immediately see
the effect of Linux’s default scheduling policy. Placing the second
thread across the QPI interconnect results in long latencies and high
overheads for data and metadata access once we have two threads.
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ET, LLT, and the IntelSTM can overcome this initial drop given
enough threads, but NOrec’s reliance on a single global sequence
lock will not scale across the processors with such small transac-
tions. Further investigation shows a high number of commit time
re-validations for HashTable compared to the other microbench-
marks (23% of all commits with eight threads), which implies that
NOrec transactions spend much of their time waiting in their com-
mit barrier due to their need to validate after each writer commit.
ET and LLT show better scalability at eight threads than IntelSTM;
this may be attributed, at least in part, to the overhead of privati-
zation safety in IntelSTM (not needed in the microbenchmark, and
not provided by default in ET or LLT).

In DoubleList (Figure 3b) we again test 8-bit keys, but experi-
ence much more contention due to the linear structure of the list-
based set. As with HashTable, DoubleList transactions perform a
small number of writes, however they may perform up to 300 reads.
These longer transactions reduce the relative overhead of metadata
bottlenecks, resulting in better scalability for the RSTM back ends.
The large number of conflicts means that, in contrast to HashTable,
ET and LLT validate nearly as frequently as NOrec. NOrec’s higher
throughput is a result of its lower abort rate, which stems in turn
from value-based conflict detection and the resulting lack of false
conflicts. It is currently unclear why larger transactions do not ben-
efit IntelSTM as well. We suspect that contention management may
play a role.

Finally, RBTree (Figure 3c) expands the key set size to 20
bits and illustrates the behavior of memory-bound applications.
With set sizes approaching a million elements, RBTree transactions
may perform over 100 instrumented reads and up to 50 writes
during rebalancing. Data cache misses dominate execution time,
with ET and LLT’s weak privatization guarantees affording them
better scalability than IntelSTM and NOrec. As with HashTable,
NOrec’s scalability is impacted by its need to validate when any
writer commits.

STAMP: Figures 4a, , 4b, and 4c show performance results for
the selected STAMP applications on the tested back ends.

Figure 4a shows Vacation results using the recommended
“high” contention parameters, both with (dotted lines) and without
(solid lines) transaction [[waiver]]. With the waiver, Vaca-
tion exhibits large, read-dominated transactions—more than 1300
instrumented reads and 150 instrumented writes—with low con-
tention, evidenced by low abort rates in Table 1. As expected, all
back ends provide good scalability with performance improvement
up to eight threads. Without the waiver, the number of instrumented
reads roughly doubles, to more than 2500. IntelSTM continues to
scale well in these conditions. The RSTM back ends, however, have
a clear performance problem with read sets this large. As of this
writing, the source of the problem is unclear, and is a subject of
ongoing investigation. We would not have been aware of the issue
without the availability of the Intel ABI to RSTM shim.

SSCA2 transactions (Figure 4b) consist of up to three reads and
two writes, and are effectively independent of one another. Each
transaction performs at least one write, and transactions form the
bulk of application execution time. This represents the pathologi-
cal workload for NOrec, where writer commits are serialized. We
see this in NOrec’s lack of scalability. In contrast, ET, LLT, and
IntelSTM allow non-conflicting writers to commit in parallel and
scale well. IntelSTM shows high overheads similar to those seen in
the HashTable microbenchmark, where transactions are similarly
small and nonconflicting. We speculate that the cause of this over-
head may be related to mechanisms used to provide privatization
safety [20].

As discussed in Section 4.1, the Intel STM compiler appears to
dramatically over-instrument Kmeans transactions. This results in
larger read and write sets and, consequently, higher abort rates than

those reported by Minh et al. [19]. For ET and LLT, the abort rates
are particularly high: 75% or more at eight threads (Figure 1). The
fact that NOrec sees only a 13% abort rate at eight threads suggests
that most of the problem in ET and LLT is due to false conflicts. At
the same time, compiler instrumentation results in all transactions
being writers, which penalizes NOrec disproportionally, giving it
the longest 8-thread execution time. Notice that, while the abort
rate is very low with IntelSTM, its performance is similar to that
of the other STMs. This suggests that its performance is dominated
by other components.

RMS-TM: Figures 4d, 4e, and 4f show the execution time of
the selected RMS-TM applications. HMMcalibrate exhibits short
transactions with high contention. As shown in Table 1, it has the
highest abort rate (between 44% and 99.9%, with eight threads). At
the same time, it spends only a tiny fraction of its execution time
inside transactions, allowing it to exhibit good scalability for all the
back ends.

In UtilityMine (Figure 4e), IntelSTM shows high run-time over-
head even with two threads. ET and LLT keep improving up to eight
threads, but NOrec does not: a large number of threads increases
the number of re-validations, leading to very little improvement
beyond four threads. IntelSTM scales similarly to ET and LLT be-
yond two threads, but overall performance is dominated by the high
instrumentation overhead.

FluidAnimate also has short transactions, but in contrast to
HMMcalibrate, its contention is low. When increasing the num-
ber of concurrent threads, the number of transactions per thread
remains constant, so the total number of transactions increases. On
the other hand, the work done per thread decreases with the num-
ber of threads: as a result, FluidAnimate shows strong scalability
up to four threads. With eight threads, however, the ratio between
the computation and synchronization phases decreases, which lim-
its scalability (Figure 4f). The high frequency of writer transactions
(read/write ratio of 1.16:1) leads to a performance bottleneck in
NOrec at eight threads.

Summarizing, our results show that scalability and overall per-
formance depend heavily on both the application and the choice of
back-end system. Generally speaking, high instrumentation over-
head limits overall performance. IntelSTM shows significantly
higher overhead than the RSTM back ends for some applications
(e.g., HashTable and SSCA2). For these, even single-thread perfor-
mance is significantly lower than with the other STMs. If the abort
rate is high, value-based conflict detection (NOrec) helps reduce
false conflicts and, therefore, improves performance. DoubleList
and HMMcalibrate illustrate this effect. When the read/write ratio
is low (i.e., the application has multiple active writer transactions),
STMs that allow concurrent writers (ET, LLT and IntelSTM) show
higher performance compared to single-writer STMs. We can see
this effect strongly in SSCA2, and to a lesser extent in HashTable
and Kmeans.

5. Conclusion and Future Work
As Transactional Memory moves towards a more robust and mature
stage, it becomes essential to be able to share and run applications,
compilers, and run-time systems among groups. Standardization is
a key step in this direction. However, while releases of compilers
with support for TM are available, much of the work that has been
done on STM runtimes is not compatible with those compilers,
because of interface issues.

In this paper we described work that makes back ends from the
RSTM suite (specifically, LLT, ET and NOrec) compatible with the
Intel TM ABI, and with compilers that conform to that ABI. This
work entailed modest changes to RSTM itself, plus the creation of a
shim library that adapts the Intel ABI to the RSTM API. Using the
newly available back ends, we evaluated the performance of several
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Figure 4: Scalability results for STAMP and RMS-TM. The Y axis shows execution time in seconds: lower is better. In Figure 4a, dotted
lines represent the version with transaction [[waiver]]

applications from the STAMP and RMS-TM benchmark suites;
the former required manual re-writing to eliminate the manual
instrumentation of the STAMP API and to accommodate the need
for annotations on functions called within transactions in the C++
TM API.

Our work makes it possible, for the first time, to run large
applications from other groups on the RSTM back ends, and to
obtain an “apples to apples” comparison of back ends using such
applications. It also allows us, in the case of STAMP, to compare
automatically and manually instrumented applications.

We find that memory footprint, abort rate, and consequent per-
formance depend heavily on both the particular application and the
choice of back-end system. This result confirms earlier findings
with microbenchmarks; from it we conclude that diversity in back
ends is essential, and that dynamic adaptation among back ends
(as explored, for example, by Spear [25]) is a promising research
direction. Our experiments also show that, while unnecessary in-
strumentation introduced by the compiler may induce considerable
run time overhead, the Intel STM compiler is able to exploit opti-
mization opportunities that may actually improve performance over
hand-instrumented code in certain cases.

We plan to extend the set of RSTM back ends compatible
with the Intel ABI to include RingSTM [26] and TML [3], and to
complete the porting of the missing STAMP applications. We also
plan to compare the Intel STM compiler to the GNU (GCC-TM)
and Dresden (DTMC) compilers.
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