
Toward a Formal Semantic Framework
for Deterministic Parallel Programming ∗

Michael L. Scott Li Lu
University of Rochester

{scott, llu}@cs.rochester.edu

Abstract
Deterministic parallelism has become an increasingly at-
tractive concept: a deterministic parallel program may be
easier to construct, debug, understand, and maintain. How-
ever, there exist many different definitions of “determinism”
for parallel programming. Many existing definitions have
not yet been fully formalized, and the relationships among
these definitions are still unclear. We argue that formalism
is needed, and that history-based operational semantics—
as used, for example, to define the Java and C++ memory
models—provides a useful lens through which to view the
notion of determinism. As a first step, we suggest several
history-based definitions of determinism. We discuss some
of their comparative advantages, note containment relation-
ships among them, and identify programming idioms that
support them. We also propose directions for future work.

1. Introduction
Determinism is touted as a way to simplify parallel pro-
gramming—to make it easier to understand what a parallel
program does. At the very least, determinism suggests that
a given parallel program—like a sequential program under
most semantic models—should always produce the same
output when run with the same input.

We believe, however, that it needs to mean more than
this—that runs of a deterministic program on a given input
should not only produce the same output: they should pro-
duce it in the same way. By analogy to automata theory, a
deterministic Turing machine doesn’t just compute a single-
valued function: it takes a uniquely determined action at ev-
ery step along the way.

For real-world parallel programs, computing “in the same
way” may be defined in many ways. Depending on con-
text, we may expect that repeated runs of a deterministic
program will consume (more or less) the same amount of
time and space; that they will display the same observable
intermediate states to a debugger; that the number of code
paths requiring separate testing will be linear in the number
of threads (rather than exponential); or that the programmer
will be able to straightforwardly predict the impact of source
code changes on output or on time and space consumption.

∗ This work was supported in part by NSF grant CCR-0963759.

History-based operational semantics has proven to be
one of the most useful ways to model the behavior of par-
allel programs. Among other things, it has been used to
explain the serializability of transactions [12], the lineariz-
ability of concurrent data structures [8], and the memory
model that determines the values seen by reads in a language
like Java [10] or C++ [5]. Memory models typically distin-
guish between ordinary and synchronizing accesses, to build
a cross-thread partial order among operations of the program
as a whole. Recently we have proposed that the various sorts
of synchronizing accesses be unified under the single notion
of an atomic action [6, 13].

Informally, the parallel semantics of a given program on
a given input is defined to be a set of program executions.
Each execution comprises a set of thread histories, each of
which in turn comprises a totally ordered sequence of reads,
writes, and other operations—notably external actions like
input and output. The history of a given thread is determined
by the program text, the language’s (separately specified)
sequential semantics, the input provided at run time, and the
values returned by reads (which may have been set by writes
in other threads). An execution is said to be sequentially
consistent if there exists a total order on reads and writes,
consistent with program order in every thread, such that each
read returns the value written by the most recent preceding
write to the same location. Under relaxed memory models,
a program is said to be data-race free if the model’s partial
order covers all pairs of conflicting operations.

An implementation maps source programs to sets of low-
level target executions on some real or virtual machine. The
implementation is correct only if, for every target execu-
tion, there exists a corresponding program execution that
performs the same external actions, in the same order.

In the strictest sense of the word, a deterministic parallel
program would be one whose semantics, on any given input,
consists of only a single program execution, to which any
legal target execution would have to correspond. In practice,
this definition may prove too restrictive. Suppose, for exam-
ple, that I have chosen, as a programmer, to “roll my own”
shared allocator for objects of some heavily used data type,
and that I am willing to ignore the possibility of running out
of memory. Because they access common metadata, alloca-
tion and deallocation operations must synchronize with one

1 2011/2/28

mls
2nd Wkshp. on Determinism & Correctness in Parallel Programming (WoDet), Newport Beach, CA, Mar. 2011

another; they must be ordered in any given execution. Since
I presumably don’t care what the order is, I may wish to al-
low arbitrary executions that differ only in the order realized,
while still saying that my program is deterministic.

In general, we suggest, it makes sense to say that a pro-
gram is deterministic if all of its program executions on a
given input are equivalent in some well-defined sense. A lan-
guage may be said to be deterministic if all its programs are
deterministic. Even for a nondeterministic language, an im-
plementation may be deterministic if all the target executions
of a given program on a given input correspond to program
executions that are mutually equivalent. For all these pur-
poses, the definition of determinism amounts to an equiva-
lence relation on program executions.

We contend that history-based semantics provides a valu-
able lens through which to view the notion of determinism.
By specifying semantics in terms of thread histories, we cap-
ture the notion of “computing in the same way”—not just
computing the same result. We also accommodate programs
(e.g., servers) that are not intended to terminate. By sepa-
rating semantics (source-to-program-execution) from imple-
mentation (source-to-target-execution), we fix the level of
abstraction at which determinism is expected, and, with an
appropriate definition of “equivalence,” we codify what de-
terminism means at that level.

For examples like the memory allocator mentioned above,
history-based semantics highlights the importance of lan-
guage definition. If my favorite memory management mech-
anism were a built-in facility, with no implied ordering
among allocation and deallocation operations of different
objects, then a program containing uses of that facility might
still have a single execution. Other potential sources of non-
determinism that might be hidden inside the language def-
inition include parallel iterators, bag-of-task work queues,
and container data types (sets, bags, mappings). Whether all
such sources can reasonably be shifted from semantics to
implementation remains an open question (but we doubt it).

From an implementation perspective, history-based se-
mantics differentiates between things that are required to
be deterministic and things that an implementation might
choose to make deterministic. This perspective draws a sharp
distinction between projects like DPJ [4], which can be seen
as constraining the set of program executions, and projects
like DMP [7], CoreDet [2], Kendo [11] and Grace [3], which
can provide deterministic execution even for pthread-ed pro-
grams in C. (Additional projects, such as Rerun and De-
Lorean [9], are intended to provide deterministic replay of
a program whose initial run is more arbitrary.)

If we assume that an implementation is correct, history-
based semantics identifies the set of executions that an
application-level test harness might aspire to cover. For pur-
poses of debugging, it also bounds the set of global states
that might be visible at a breakpoint—namely, those that

correspond to a consistent cut through the partial order of a
legal program execution.

We believe the pursuit of deterministic parallel program-
ming will benefit from careful formalization in history-based
semantics. Toward that end, we present several possible def-
initions of equivalence for program executions in Section 2.
We discuss their comparative advantages in Section 3. We
also note containment relationships among them, and iden-
tify programming idioms that ensure them. Many other def-
initions of equivalence are possible, and many additional
questions seem worth pursuing in future work; we list a few
of these in Section 4.

2. Example Definitions of Equivalence
For the purposes of this position paper, we define an exe-
cution to be a 3-tuple E : (OP, <p, <s), where OP is the
set of operations, <p is the program order, and <s is the
synchronization order. An operation in OP can be written as
(op, val*, tid), where op is the operation name, val* is a se-
quence of involved values, and tid is the ID of the executing
thread. An operation may read or write a variable, perform
input or output, or invoke an atomic operation (e.g., enqueue
or dequeue) on some built-in data type. Certain objects are
identified as synchronization variables; operations on them
are synchronization operations. We use OP|s to represent the
synchronization operations of OP.

Program order is a union of per-thread total orders. or-
der is a partial order, consistent with program order, on syn-
chronization operations. Happens-before order, <hb, is the
irreflexive transitive closure of <p and <s. A read r is al-
lowed to “see” a write w iff w is the most recent previous
write to the same variable on some happens-before path, or,
in some languages, if r and w are incomparable under <hb.
Two operations conflict if they access the same variable and
at least one of them writes it. An execution is data-race free
if all conflicting operations are ordered by <hb.

Input and output operations are known as external events.
For simplicity, we assume that every external event is a syn-
chronization operation, and that these are totally ordered by
<s. We use ext(E) to represent the sequence of external op-
erations in E, without their thread ids. We also model input
and output as vector variables: an input operation is a read of
the next element of the input vector (and a write of the vari-
able into which that element is input); an output operation is
a write of the next element of the output vector (and a read
of the variable from which that element is output).

To accommodate nonterminating programs, we allow in-
put, output, OP, <p, and <s to be unbounded. Rather than
model fork and join, we assume the availability, throughout
execution, of an arbitrary number of threads.

Singleton. Executions E1 : (OP1, <p1, <s1) and E2 :
(OP2, <p2, <s2) are said to be equivalent if and only if
OP1 = OP2, <p1=<p2, and <s1=<s2.

2 2011/2/28

Singleton uses the strictest possible definition of deter-
minism: there must be only one possible execution for a
given program and input.

Dataflow. Executions E1 : (OP1, <p1, <s1) and E2 :
(OP2, <p2, <s2) are said to be equivalent if and only if there
is a one-one mapping (bijection) between OP1 and OP2

that preserves (1) the content other than thread id in every
operation and (2) the reads-see-writes relationship induced
by <p and <s.

As its name suggests, Dataflow defines E1 and E2 to be
equivalent if and only if they see the same flow of values
among their operations. Because we model input and output
as vector reads and writes, this implies that the executions
have the same external behavior. Note that we do not require
either <p1=<p2 or <s1=<s2, nor do we require that the
executions be data-race free.

SyncOrder. Executions E1 : (OP1, <p1, <s1) and E2 :
(OP2, <p2, <s2) are said to be equivalent if and only if
OP1|s = OP2|s and <s1=<s2.

SyncOrder requires only that there be a fixed pattern
of synchronization among threads (with all synchroniza-
tion events occurring in the same threads, with the same
values, in both E1 and E2). Note, however, that if execu-
tions are data-race free (something that SyncOrder does not
require), then they are also sequentially consistent [1], so
E1 ≡SyncOrder E2 ∧ E1, E2 ∈ DRF −→ E1 ≡Dataflow E2.

ExternalEvents. Executions E1 : (OP1, <p1, <s1) and
E2 : (OP2, <p2, <s2) are said to be equivalent if and only if
ext(E1) = ext(E2)

ExternalEvents is the most widely accepted language-
level definition of determinism. It guarantees that program
executions look “the same” from the outside world on mul-
tiple executions with the same input.

FinalState. Executions E1 : (OP1, <p1, <s1) and E2 :
(OP2, <p2, <s2) are said to be equivalent if and only if (1)
they have the same sets of variables, (2) they both terminate,
and (3) for every variable (including the output vector), each
final write (each write for which there is no later write to the
same variable under <hb) assigns the same value.

Like ExternalEvents, FinalState says nothing about how
E1 and E2 compute. It requires only that final values be the
same. Unlike ExternalEvents, FinalState requires agreement
on variables other than output, and it focuses on the values
themselves, rather than the operations that produce them.

3. Discussion
In this section, we discuss the comparative advantages of
the definitions in Section 2. With all five definitions, equiv-
alent program executions will have the same set of exter-
nal events (this is Theorem 2 in Section 3.2). This ensures
that the output of a deterministic program will never depend

on the program execution to which a given target execution
corresponds—in particular, it will never depend on schedul-
ing choices outside the programmer’s control.

In the first subsection below, we consider several other
potential goals of determinism—specifically:

• Whether a definition of equivalence can guarantee deter-
ministic program state at any debugger breakpoint (to en-
able repetitive debugging). We assume a symbolic debug-
ger that does not differentiate among target executions
that correspond to the same program execution.

• Whether a definition applies to nonterminating programs.
• How hard it is likely to be to implement and verify a pro-

gramming model that ensures the definition; how much
run-time cost it is likely to impose.

In Section 3.2 we consider containment relationships
among our equivalence relations. In Section 3.3 we consider
programming languages and idioms that guarantee various
forms of equivalence among their program executions.

3.1 Comparative Advantages
Singleton is the strictest definition of equivalence, and thus
of determinism. It requires a single execution for any given
source program and input. At any program breakpoint in a
Singleton system, a debugger that works at the level of pro-
gram executions will be guaranteed to see a state that corre-
sponds to some consistent cut across the happens-before or-
der of the single execution. This guarantee facilitates repet-
itive debugging, though it may not make it trivial: a break-
point in one thread may participate in an arbitrary number
of cross-thread consistent cuts; global state is not uniquely
determined by the state of a single thread. If we allow all
other threads to continue running, however, until they wait
for a stopped thread or hit a breakpoint of their own, then
global state will be deterministic. Moreover, since Single-
ton requires runs of a program to correspond to the same
program execution, monitored variables’ values will change
deterministically. This should simplify both debugging and
program understanding.

Singleton allows nonterminating program executions to
be equivalent, because equality is well defined even on un-
bounded operation sets and partial orders. It allows us to talk
about determinism even for programs like servers, which are
intended to run indefinitely. Interestingly, while we have not
insisted that Singleton executions be sequentially consistent,
they seem likely to be so in practice: a language that ad-
mits non-sequentially consistent executions (e.g., via data
races) seems likely to admit multiple executions for some
〈program, input〉 pairs.

On the down side, Singleton requires target executions of
a given program on a given input to be identical in every
program-execution-level detail. This may be straightforward
for certain restrictive programming idioms (e.g., indepen-
dent split-merge, which we discuss in Section 3.3), but for

3 2011/2/28

more general programs, a conforming, scalable implemen-
tation seems likely to require either special-purpose hard-
ware or very high run-time overhead. Singleton also has the
disadvantage of ruling out “benign” differences of any kind
among program executions. It is likely to preclude a vari-
ety of language features and programming idioms that users
might still like to think of as “deterministic” (examples ap-
pear below and in Section 3.3).

Dataflow relaxes Singleton by loosening the requirements
on control flow. Equivalent executions must still have the
same operation sets (except for thread ids), but the synchro-
nization and program orders can be different, so long as
values flow from the same writes to the same reads. Intu-
itively, Dataflow can be thought of as an attempt to accom-
modate programming models in which the work of the pro-
gram is fixed from run to run, but may be partitioned and al-
located differently among the program’s threads. Monitored
variables in a debugger will still change values determinis-
tically, but two executions may not reach the same global
state when a breakpoint is triggered, even if threads are al-
lowed to “coast to a stop.” A program state encountered in
one execution may never arise in an equivalent execution.

Consider the code fragment shown in Figure 1, written in
a hypothetical language. Assume that f() is known to be a
pure function, and that the code fragment is embedded in a
program that creates two worker threads for the purpose of
executing parallel iterators. In one plausible semantics, the
elements of a parallel iteration space are placed in a syn-
chronous queue, from which workers dequeue them atom-
ically. Even in this trivial example, there are four possible
executions, in which dequeue operations in threads 0 and 1,
respectively, return {0,⊥} and {1,⊥}, {1,⊥} and {0,⊥},
{0, 1,⊥} and {⊥}, or {⊥} and {0, 1,⊥}. These executions
will contain exactly the same operations, except for thread
ids. They will have different program and synchronization
orders. Dataflow will say they are equivalent; Singleton will
say they are not. If we insist that our programming model be
deterministic, Dataflow will clearly afford the programmer
significantly greater expressive power. On the other hand,
a breakpoint inserted at the call to f() in thread 0 may see
very different global states in different executions; this could
cause significant confusion.

Like Singleton, Dataflow accommodates nonterminating
executions. It can be guaranteed with minimal cost by a
somewhat larger class of restricted programming models
(e.g., bag of independent tasks; see Section 3.3). Scalable
performance for more general programs again seems prob-
lematic in the absence of special-purpose hardware.

SyncOrder also relaxes Singleton, but by admitting be-
nign changes in data flow, rather than control flow. Specif-
ically, SyncOrder requires equivalent executions to contain
the exact same synchronization operations, executed by the
same threads in the same order. It does not require that a read
see the same write in both executions, but it does require

parfor i in [0, 1]
A[i] = f(i)

seqfor i in [0, 1]
print A[i]

Figure 1. A program fragment amenable to self-scheduling.

that any disagreement have no effect on synchronization or-
der (including output). Like Dataflow, SyncOrder fails to
guarantee deterministic global state at breakpoints, but we
hypothesize that the variability will be significantly milder
in practice: benign data flow changes, which do not impact
synchronization or program output, seem much less poten-
tially disruptive than benign synchronization races, which
can change the allocation of work among threads.

Because <s can be unbounded, SyncOrder, like Singleton
and Dataflow, accommodates nonterminating programs. Be-
cause it has fewer ordering restrictions than Singleton, Sync-
Order is likely to be cheaper to implement with scalable per-
formance for a reasonably broad class of programs. It may
also be cheaper and more straightforward than Dataflow, be-
cause an implementation may be able to limit instrumen-
tation to synchronization events, rather than arbitrary reads
and writes.

ExternalEvents can be seen as a looser version of both
Dataflow and SyncOrder. It requires agreement only on ex-
ternal actions; the set of operations, their distribution among
threads, and their order can all vary among equivalent execu-
tions. Because input and output can be unbounded, External-
Events accommodates nonterminating executions. Because
its internal computation is entirely unconstrained, however,
it seems much less appropriate for repetitive debugging. Im-
plementation cost is hard to predict: it will depend on the
programming model used to guarantee deterministic output.
While it is easy to look at two executions and decide if their
output is the same, it may be much harder to ensure that the
executions permitted by a given programming model will al-
ways include the same external events for a given program
and input. In the fully general case, of course, the output-
equivalence of programs is undecidable.

The appeal of ExternalEvents lies in its generality. If out-
put is all one cares about, it affords the language designer
and implementor maximum flexibility. Knowing that a par-
allel program will always generate the same output from
the same input, regardless of scheduling idiosyncrasies, is
a major step forward from the status quo. For users with
a strong interest in predictable performance and resource
usage, debugability, and maintainability, however, External-
Events may not be enough.

FinalState is essentially a variant of ExternalEvents re-
stricted to programs that terminate. Like ExternalEvents, it
offers significant flexibility to the language designer and im-
plementor, but seems problematic for repetitive debugging,
and difficult to assess from an implementation perspective.

4 2011/2/28

3.2 Containment Properties
Figure 2 posits containment relationships among the defi-
nitions of determinism given in Section 2. The space as a
whole is populated by sets {Xi} of executions of some given
program on a given input, with some given semantics. If re-
gion S is contained in region L, then every set of executions
that are equivalent under definition S are equivalent under
definition L as well; that is, S is a stricter and L a looser
definition. (The regions can also be thought of as contain-
ing languages or, analogously, executions: a language [ex-
ecution] is in region R if for every program and input, all
program executions generated by the language semantics [or
corresponding to target executions generated by the imple-
mentation] are equivalent under definition R.) We informally
justify the illustrated relationships as follows.

Theorem 1. Singleton is contained in Dataflow, SyncOrder,
and ExternalEvents.

Rationale : Clearly every execution has the same dataflow,
synchronization order, and external events as itself. If it
terminates, it has the same final state as itself: Singleton and
FinalState have a nontrivial intersection.

Theorem 2. Singleton, Dataflow, SyncOrder, and Final-
State are all contained in ExternalEvents.

Rationale : This is trivial for Singleton, and true by defi-
nition for the others: External events are considered to be
both reads and writes (so Dataflow preserves them) and syn-
chronization operations (so SyncOrder preserves them). And
since input is modeled as the initial values of a read-only in-
put vector, and output as the final values of a distinguished
output vector, executions with the same final state have the
same external events.

Theorem 3. There are sets of executions that are equivalent
under Dataflow but not under SyncOrder.

Rationale : This is the light gray region, labeled “1” in Fig-
ure 2. It corresponds to programs containing benign syn-
chronization races. Suppose, for example, that threads t1 and
t2 compete to update a flag, under the protection of a lock.
Whichever thread gets there first assumes responsibility for
executing function F . The two resulting executions have iso-
morphic data flow (all that changes is the thread ids in the
corresponding reads and writes), but a different synchroniza-
tion order. (Further discussion of this region appears under
“Bag of Independent Tasks” in Section 3.3.)

Theorem 4. There are sets of executions that are equivalent
under SyncOrder but not under Dataflow.

Rationale : This is the medium gray region, labeled “2” in
Figure 2. It corresponds to programs containing benign data
races. Suppose, for example, that variable x is initially 0 and
that threads t1 and t2 execute concurrent functions F1 and
F2 that access only one variable in common: specifically, F1

ExternalEvents

FinalState

Dataflow

SyncOrder

Singleton

A

C

B

1

3

2

Figure 2. Containment relationships among definitions of
determinism, or, equivalently, program execution equiva-
lence. Names of equivalence definitions correspond to ovals.
Outlined numbers label the light, medium, and dark shaded
regions. Bold letters show the locations of programming id-
ioms discussed in Section 3.3.

sets x to 1 and F2 sets x to 2. If some other thread subse-
quently executes if (x != 0) . . . , then we will have execu-
tions with different data flow but the same synchronization
order (and the same external events).

Theorem 5. Singleton, Dataflow, and SyncOrder all have
nontrivial intersections with FinalState.
Rationale : Singleton, Dataflow, and SyncOrder all contain
sets of nonterminating executions, which cannot be equiv-
alent according to FinalState. At the same time, Singleton,
Dataflow, and SyncOrder all contain sets of terminating ex-
ecutions that have the same final state.

3.3 Programming Languages and Idioms
While equivalence relations and their relationships, seen
from a theoretical perspective, may be interesting in their
own right, they probably need to correspond to some intu-
itively appealing programming language or idiom in order
to be of practical interest. As illustrations, we describe pro-
gramming idioms whose sets of executions would appear in
the regions labeled “A,” “B,” and “C” in Figure 2.

Independent Split-Merge (Region “A”— Singleton in Fig-
ure 2.) Consider a language providing parallel iterators or
cobegin, with the requirement (enforced through the type
system or run-time checks) that concurrent tasks access dis-
joint sets of variables. If every task is modeled as a separate
thread, then there will be no synchronization or data races,
and the execution of a given program on a given input will
be uniquely determined.

Bag of Independent Tasks (Region “B”— Dataflow r
SyncOrder in Figure 2.) Consider a programming idiom in
which a fixed set of threads dynamically self-schedule in-
dependent tasks from a shared bag. The resulting executions

5 2011/2/28

will have isomorphic data flow (all that will vary is the thread
ids in the corresponding reads and writes), but their synchro-
nization orders will vary with the order in which they access
the bag of tasks.

One might expect that a program with deterministic se-
quential semantics, no data races, and no synchronization
races would have only a single program execution—that is,
that Dataflow ∩ SyncOrder = Singleton. We speculate, how-
ever, that there may be cases—e.g., uses of rand()—that are
easiest to model with more than one execution (i.e., with
classically nondeterministic sequential semantics), but that
we might still wish to think of as “deterministic parallel pro-
gramming.” We have left a region in Figure 2 (the dark gray
area labeled “3”) to suggest this possibility.

Parallel Iterator with Reduction (Region “C”— External-
Events r (Dataflow ∪ SyncOrder) in Figure 2.) Consider a
language with explicit support for reduction by commutative
functions. The order of updates is not fixed, leading to execu-
tions with different synchronization orders and data flow, but
only a single result. It seems plausible that we might wish to
call programs in such a language “deterministic.”

4. Conclusions and Future Work
Deterministic parallel programming needs a formal defini-
tion (or set of definitions). Without this, we really have no
way to tell whether the implementation of a determinis-
tic language is correct. History-based operational semantics
seems like an excellent framework in which to create defi-
nitions, for all the reasons mentioned in Section 1. We see a
wide range of topics for future research:

• Everything in this position paper needs to be formalized
much more rigorously. Theorems (e.g., the containment
properties of Section 3.2) need to be carefully stated and
then proven.

• Existing projects need to be placed within the framework.
What are their definitions of execution equivalence?

• Additional definitions need to be considered, evaluated,
and connected to the languages and programming idioms
that might ensure them.

• We need to accommodate condition synchronization, and
spinning in particular. Even in Singleton, executions that
differ only in the number of times a thread checks a con-
dition before finding it to be true should almost certainly
be considered to be equivalent.

• We need to decide how to handle operations (e.g., rand())
that compromise the determinism of sequential seman-
tics. Should these in fact be violations? Should they be
considered inputs? Should they perhaps be permitted
only if they do not alter output?

• Languages embodying the more attractive definitions of
determinism should be carefully implemented, and their
relative costs assessed.

• For the most part, we have concerned ourselves in this
position paper with deterministic semantics, which map
a source program and its input to a set of program ex-
ecutions that are mutually equivalent. We also need to
consider deterministic implementations, which map a
source program and its input to a set of target execu-
tions whose corresponding program executions are mutu-
ally equivalent—even when the semantics includes other,
non-equivalent program executions.

References
[1] S. V. Adve and M. D. Hill. Weak Ordering—A New

Definition. 17th Intl. Symp. on Comp. Arch., May 1990.

[2] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D.
Grossman. CoreDet: A Compiler and Runtime System for
Deterministic Multithreaded Execution. 15th Intl. Conf. on
Arch. Support for Prog. Lang. and Op. Systems, Mar. 2010.

[3] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++. OOPSLA Conf.
Proc., Oct. 2009.

[4] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M.
Vakilian. A Type and Effect System for Deterministic
Parallel Java. OOPSLA Conf. Proc., Oct. 2009.

[5] H.-J. Boehm and S. V. Adve. Foundations of the C++
Concurrency Memory Model. SIGPLAN Conf. on Prog.
Lang. Design and Impl., June 2008.

[6] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as
the Foundation of a Memory Consistency Model. 24th Intl.
Symp. on Dist. Comp., Sept. 2010.

[7] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
Deterministic Shared Memory Multiprocessing. 14th Intl.
Conf. on Arch. Support for Prog. Lang. and Op. Systems,
Mar. 2009.

[8] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. on Prog.
Lang. and Systems, 12(3):463-492, July 1990.

[9] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J.
Torrellas. Two Hardware-Based Approaches for
Deterministic Multiprocessor Replay. Comm. of the ACM,
52(6):93-100, June 2009.

[10] J. Manson, W. Pugh, and S. Adve. The Java Memory Model.
32nd ACM Symp. on Principles of Prog. Lang., Jan. 2005.

[11] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient Deterministic Multithreading in Software. 14th Intl.
Conf. on Arch. Support for Prog. Lang. and Op. Systems,
Mar. 2009.

[12] C. H. Papadimitriou. The Serializability of Concurrent
Database Updates. J. of the ACM, 26(4):631-653, Oct. 1979.

[13] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott.
Ordering-Based Semantics for Software Transactional
Memory. 12th Intl. Conf. on Principles of Dist. Sys., Dec.
2008.

6 2011/2/28

