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ABSTRACT
Correct transactional memory systems (TMs) must address
the possibility that a speculative transaction may read mu-
tually inconsistent values from memory and then perform an
operation that violates the underlying language semantics.
TMs for managed languages can leverage type safety, just-in-
time compilation, and fully monitored exceptions to sandbox
transactions, isolating the rest of the system from damag-
ing effects of inconsistent speculation. In contrast, TMs for
unmanaged languages that lack these properties typically
avoid erroneous behavior by validating a transaction’s view
of memory incrementally after each read operation.

Recent results suggest that performing validation out-of-
band can increase performance by factors of 1.7× to 5.2×
over incremental validation, but allowing a transaction’s main
computation to progress in parallel with validation intro-
duces periods in which inconsistent speculative execution
may violate language semantics. Without sandboxing—which
some authors have suggested is not possible in unmanaged
languages—programmers must manually annotate transac-
tions with validation barriers whenever inconsistency might
lead to semantic violations, an untenable task.

In this work we demonstrate that sandboxing for out-of-
band validation is, in fact, possible in unmanaged languages.
Our implementation integrates signal interposition, periodic
validation, and a mix of static and dynamic instrumentation
into a system comprising the LLVM-based Dresden TM com-
piler and the RSTM runtime. We show that these mecha-
nisms introduce negligible overhead, thus extending the re-
sults of out-of-band validation to POSIX programs with-
out requiring manual annotation. Furthermore, we establish
sandboxing as a technique that can complement, or replace,
incremental validation in any TM that keep speculatively
written values in a private buffer.
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1. INTRODUCTION
Transactional Memory (TM) [16, 18] raises the level of

abstraction for synchronization, allowing programmers to
delimit operations that need to execute atomically without
specifying how that atomicity is to be achieved. The un-
derlying system then attempts to execute atomic sections of
separate threads concurrently whenever possible, typically
by means of speculation.

Speculative transactions are said to commit at the end
of their execution; others abort, roll back, and try again.
All speculation-based TM systems require a mechanism to
detect and resolve conflicts between transactions, ensuring
that they commit only as part of a global serialization or-
der. Additionally, committed transactions must obey the
semantics of the source programming language.

A speculative transaction becomes inconsistent when it
reads a pair of values that were never simultaneously valid
in the execution history defined by the program’s committed
transactions. To ensure overall program correctness, at least
in the general case, a TM must force inconsistent transac-
tions to abort. To this end, transactions in software TM
runtimes (STM) typically validate by double-checking their
read sets, and abort in the event of inconsistency.

STM runtimes for managed languages like Java and C# [2,
17], as well as systems based on dynamic binary instrumen-
tation [24], validate transactions before they commit, lever-
aging type safe, just-in-time compilation, and managed ex-
ceptions to sandbox speculative transactions and protect the
system from the effects of inconsistent execution.

In unmanaged languages—where some authors have im-
plied sandboxing is impossible [22], several historical TM
systems depended on explicit programmer-inserted valida-
tion for correct execution [12, 15, 18, 28], a strategy that
has been discarded as difficult and error prone. Modern
TMs for unmanaged languages validate incrementally [19]—
after every transactional read operation—a technique that
has been formalized as the theory of opacity [13, 14]. Mi-
nor relaxations of opacity [31] and optimizations to dynam-
ically elide redundant checks [8, 27, 32] can significantly re-



duce the frequency and overhead of validation. In the worst
case, however, validation remains a problem quadratic in the
number of transactional read operations, a cost paid on the
transaction’s critical path.

Recent work by Casper et al. [3] and Kestor et al. [20]
suggests that moving validation off of the critical path and
performing it out-of-band—in parallel with the“real work”of
the transaction—can result in performance improvements of
1.7× and 1.8×–5.2× respectively. Naive out-of-band valida-
tion, however, allows inconsistent speculative transactions
(“zombies”) to execute erroneous operations that result in
visible violations of the semantics of the source program-
ming language. Casper et al. and Kestor et al. echo his-
torical techniques and require the programmer to manually
annotate any operation within a transaction that may vio-
late language semantics if performed by a zombie.

In the extreme, the programmer has the option of anno-
tating every read—essentially restoring the validations that
would be performed by an opaque system. Anything shy of
this, however, requires reasoning about the potential effect
of data races—a task we consider untenable. We believe the
more attractive option, even in the context of an unman-
aged language, is to rely on the compiler and runtime to
protect the programmer from zombie execution by automat-
ically suppressing the effects of dangerous operations—those
whose behavior cannot be guaranteed to be invisible to other
threads—until the transaction is known to be consistent. A
complete characterization of dangerous operations is tricky
(see Section 2.1); at the very least we must guard against
faults and against stores to incorrectly computed addresses.

To the best of our knowledge, no previous project has
carefully explored the feasibility of such sandboxing in un-
managed languages; however, its capacity to eliminate con-
trol dependencies between validation and most operations
in the rest of the transaction makes it a compelling study.

Sandboxing is appealing for a number of reasons in addi-
tion to out-of-band validation. It offers the opportunity to
relax the coupling in hardware TM systems between conflict
detection in the memory hierarchy and execution in the pro-
cessor core: precise, immediate notification of transaction
conflicts would not be needed if the compiler always gen-
erated a “TM fence” before each dangerous instruction [4].
Given that dangerous operations (i.e., those that may result
in errant behavior when executed inconsistently) tend to be
much less common than transactional loads, it has the po-
tential to reduce the validation overhead in TM implemen-
tations that perform in-line validation. Spear et al. [29] also
suggests that it can serve as a solution to the privatization
problem in some circumstances.

In this paper we show that transactional sandboxing is
possible in POSIX-compliant C programs, and is practical
both for TM systems that validate out-of-band and for lazy-
versioning TMs in general. This result strongly suggests
that the performance results reported by Casper et al. and
Kestor et al. are valid for all programs—not just those that
have been manually annotated for safety. More broadly, our
results unlock a wide and previously proscribed design space
for TM development.

In Section 2 we characterize potentially dangerous oper-
ations for zombie transactions in POSIX-compliant C. We
also explore the interaction of sandboxing and several com-
mon STM algorithms. In Section 3 we describe our sandbox-
ing implementation, including the algorithms used to instru-

ment dangerous instructions and the algorithm-independent
machinery used to address infinite loops and faults. We
evaluate the overhead of this infrastructure for out-of-band
validation TMs in Section 4. We extend the evaluation to
systems with in-line validation in Section 5, by presenting
and evaluating a“maximally lazy” sandboxed STM based on
the open-source RSTM framework [25]. Finally, we conclude
in Section 6.

2. SANDBOXING PRAGMATICS
We assume a semantics in which transactions are strictly

serializable (SS): they appear to execute atomically in some
global total order that is consistent with program order in
every thread; further, each transaction is globally ordered
with respect to preceding and following nontransactional ac-
cesses of its own thread. Given an SS implementation, one
can prove that every data-race-free program is transaction-
ally sequentially consistent (TSC) [5, 30]: its memory ac-
cesses will always appear to occur in some global total order
that is consistent with program order and that keeps the
accesses of any given transaction contiguous. These seman-
tics are an idealized form of those of the draft transactional
standard for C++ [1].

In contrast to opacity, which requires aborted transactions
to observe the same consistency constraints as successful
ones, aborted transactions play no role in SS. In princi-
ple, a transaction that is going to abort may do anything
at all, provided the resulting history of committed transac-
tions is still SS. In an implementation adhering to these
semantics, sandboxing must ensure the isolation of zombie
transactions, which have performed a speculative read that
cannot be explained by any serial execution [18], but it need
not restrict the internal behavior of such transactions be-
yond this isolation constraint.

2.1 Dangerous Operations
We say that an operation is dangerous if its execution

in a zombie transaction may allow the user to observe an
execution that is not SS. Here we enumerate what we believe
to be a complete list of dangerous operations (a formal proof
of completeness is deferred to future work). Section 3 details
the concrete sandboxing mechanisms that we implement.

In-place Stores.
Zombie transactions that perform a store in-place (to a

native address rather than a private buffer), are a primary
concern for a sandboxing runtime. Reading such an incon-
sistently written value, or a stale value if the write was to
an incorrect address, may constitute a data race, violate the
sequential language semantics, or even result in execution of
arbitrary code. In-place stores may target shared or private
locations (e.g., the stack), and may be either instrumented
(e.g., in an eager, in-place STM) or uninstrumented (e.g., if
the compiler or programmer has concluded that there is no
TSC execution in which a particular store can be part of a
race).

In-place stores that cannot be proven consistent must be
preceded by a run-time validation check.

Indirect Branches.
An inconsistent indirect branch may lead to an unpro-

tected in-place store, or to executable data that looks like



one. Compilers use such branches to implement virtual func-
tion calls, large switch statements, computed gotos, and
returns. Fortunately, STM implementations already per-
form run-time mapping of native function pointers to their
transactional clones’ addresses. A successful lookup implies
that the target will have proper sandboxing instrumentation.
If a clone is not found, then the transaction will switch to
serial-irrevocable execution, which precludes roll-back. This
transition includes an embedded validation. These observa-
tions imply that, as long as we protect the integrity of the
stack, no new mechanism is required to sandbox indirect
calls.

Faults.
The sandboxing runtime must distinguish faults (hard-

ware exceptions) that occur due to inconsistent execution
from those that would have occurred in some TSC execu-
tion of the program, and prevent inconsistent signals from
becoming visible to the programmer. In a POSIX-compliant
C/C++ implementation, such faults are encoded as syn-
chronous signals. Olszewski et al. [24] suggest either con-
taining inconsistent signals inside the operating system by
making the kernel transaction-aware, or relying on user-
space signal handling to suppress inconsistent signals once
received. They implemented the first option; we will use the
second (Section 3.2).

Infinite Loops and Recursion.
A zombie transaction may enter into an infinite loop or

infinite recursion due to inconsistent execution. These may
not be a concern if validation is performed continually and
out-of-band, and reported to the transaction thread via asyn-
chronous interrupt. Some out-of-band systems, however (in-
cluding those of Casper et al. and Kestor et al.), require the
transaction thread to poll for notifications, and any systems
with in-line validation similarly requires an active mecha-
nism to detect and recover from an inconsistent infinite loop
or recursion. (Exhaustion of stack space is a synchronous
event that can, with care, be treated as any other fault.)

Previous systems have instrumented loop back edges with
a check to force periodic validation [24, 28]. This approach
adds overhead that can be expensive for tighter loops, and
pollutes hardware resources like branch predictors. We use
an alternative approach in which timers force the STM to
validate periodically. This avoids common-case overhead,
and the timer period can be sufficient long that applica-
tions that do not suffer from inconsistent infinite loops pay
very little overhead. If infinite loops are common, however,
timer-based validation may be slow to detect the problem.
We could imagine a hybrid approach in which hot-patch lo-
cations are left on loop back edges so that polling code can
be injected into loops that show a high probability of infinite
looping.

TM Commit.
Many opaque TM algorithms allow read-only transactions

to commit without validating, under the assumption that
they were correct as of the validation performed at their
last read operation. This assumption isn’t valid in a sand-
boxed TM, which must validate again at commit if any
shared locations have been read since the most recent pre-
vious validation. In a hardware TM system (not consid-
ered here) commit instructions would likewise need sand-

boxing [4]. This said, end-of-transaction validation imposes
no additional penalty on systems with out-of-band valida-
tion: these always synchronize with the validation entity at
commit.

Waivered Code Regions.
TM APIs may allow programmers to specify that certain

waivered code regions should run without instrumentation.
Because these regions may perform arbitrary actions, they
require pre-validation.

System and Library Calls.
Many system calls are incompatible with optimistic trans-

actional execution. We expect that TM systems will force
transactions to become irrevocable—as suggested by the draft
C++ TM proposal [1]—before performing a system call.
This already entails validation so we do not consider sys-
tem calls to be dangerous. Library calls may be compiled to
be transactional, and in such case they must be compiled in
a manner compatible with zombie execution.

We have found that a smart compiler like the DTMC [11]
will occasionally allow a library call, e.g., abort, to occur
without becoming irrevocable first. If we do not have direct
control of this behavior we must detect and instrument such
calls.

2.2 Impact on existing STM algorithms
The immediate impact of sandboxing is that TL2 and its

derivatives [6, 7, 8, 21] no longer require post-read valida-
tion. Omitting this validation eliminates an ordering con-
straint in the read barrier in exchange for the possibility
of wasted work—continued execution in a transaction that
is doomed to abort. Sandboxing also allows these systems
to tolerate privatization violations without additional bar-
riers [29]. Unfortunately, sandboxing reduces the value of
TinySTM-style timestamp extension [26], as a zombie trans-
action will probably have already used an inconsistent value
by the time it tries to validate. We address this issue more
thoroughly in Section 5.1 as we develop our prototype sand-
boxed STM.

3. SANDBOXING INFRASTRUCTURE
Our sandboxing infrastructure consists of the three main

components: LLVM-based instrumentation for run-time taint
tracking and pre-validation of dangerous operations, POSIX
signal interposition and chaining, and timer-based periodic
validation.

3.1 LLVM-based Instrumentation
LLVM provides several benefits that make it suitable for

sandboxing: (1) it explicitly encodes the dangerous opera-
tions that we need to consider without exposing the analy-
sis to low-level details such as stack manipulation; (2) the
publicly available Dresden Transactional Memory Compiler
(DTMC) and its Tanger instrumentation pass [11] produce
instrumented LLVM IR that is ready for analysis and in-
strumentation; and (3) LLVM’s link-time-optimization func-
tionality allows us to perform whole-program analysis and
instrumentation, which can result in less conservative instru-
mentation.

In principle, the only operations of concern are those de-
tailed in Section 2.1. In our current work we assume an
out-of-place STM system, which keeps speculatively written



values in a redo log and moves them to regular memory on
commit. For an in-place STM (one that keeps an undo log
of old values to restore on abort), we would need to treat
speculative stores as dangerous operations; we leave this for
future work.

In practice, we have little direct control over how LLVM’s
code generator uses the stack. To guarantee the safety of
stack-relative addressing, we instrument anything that may
update the stack structure in a potentially inconsistent way.
Specifically, we instrument alloca s if they may be executed
on an inconsistent control path, or if their size parameter
may be inconsistent. A benefit of aggressively protecting
the consistency of the stack is that return instructions—
technically indirect branches, but not normally mapped by
the STM runtime (Section 2)—are not dangerous because
the return address on the stack cannot have been corrupted.

Our goal is to instrument all dangerous operations that
will execute in an inconsistent context. Identifying such con-
texts precisely is an information-flow-tracking problem rem-
iniscent of taint analysis [35, pp. 558ff], where the values
produced by transactional reads are taint sources and the
operands of dangerous instructions are taint sinks. Precise
taint tracking at compile time is challenging in the presence
of aliasing and context sensitivity. We currently employ con-
servative dynamic tracking and simple static barrier elimi-
nation; our evaluation finds that these are mostly adequate.

We start by dynamically maintaining a single-bit taint
flag. We extend the STM read barrier to set the flag, and
we instrument every dangerous operation with a validation
barrier that checks the flag and, if it is set, clears it and in-
vokes STM-system-specific validation. Dynamic taint track-
ing trivially satisfies our requirement that no dangerous op-
eration is performed inconsistently. While the overhead of
dynamically checking the flag is small in the common case
(a function call, thread-local access, and branch) we would
still like to statically eliminate as many redundant barriers
as possible.

We currently perform a single static optimization, which
we term straight-line redundant validation elimination (SRVE).
It exploits the observation that a consistent transaction re-
mains consistent until it performs a transactional read. SRVE
tracks the possibility of taint statically, at the basic block
level. It initializes each basic block as “possibly inconsis-
tent,” and then scans forward. When SRVE encounters
a dangerous operation in a possibly inconsistent state, it
inserts a validation barrier and changes the state to “con-
sistent.” When SRVE encounters a transactional read or
function call (SRVE is not context sensitive) it reverts to
“possibly inconsistent”:

SRVE instrument(BasicBlock bb)
bool consistent = false ;
foreach Instruction i in bb

if i is STM read
consistent = false

else if i is function call
consistent = false

else if i is dangerous
if not consistent

instrument( i )
consistent = true

SRVE is conservative in initializing each basic block as
possibly inconsistent. Global analysis could be used to iden-
tify basic blocks that are sure to be consistent on entry, but
our results have not yet shown the need: SRVE eliminates

many of the redundant validation barriers in our bench-
marks, and dynamic taint tracking (which remains in place)
eliminates most of the work for dynamically redundant bar-
riers that precede any transactional read in their respective
basic blocks.

3.2 POSIX Signal Chaining and Validation
We suppress delivery of inconsistent signals using only

user space mechanisms. We provide custom signal handlers
for all potential faults. These perform validation, and abort
if the signal was generated by zombie execution. Otherwise,
they forward the signal to a chained user handler if one ex-
ists, or perform the default action for that signal if it does
not. We arrange for any dynamically installed user handlers
to fall behind our custom handlers, using libdl -based inter-
posing on signal and sigaction , in a manner reminiscent of
the interposition and chaining in Java’s libjsig [33] library.
We interpose on pthread sigmask as well in order to restore
the correct state during an abort.

We only need to sandbox the synchronous signals distin-
guished by the libc reference manual [34] as program error
signals. The remaining signals are asynchronous notifica-
tions of events that the program has asked to, or needs to,
know about. We believe that user (or default) handlers for
these asynchronous signals can be run without regard for
the current transactional state of the interrupted execution.
These signal handlers are effectively independent threads of
execution and thus must be properly synchronized and will
be protected from potential zombies with standard transac-
tional mechanisms.

While the details of our signal system are quite complex,
they accomplish a straightforward goal: masking out signals
that reflect faults in inconsistent transactions, without any
kernel assistance, and in a manner that otherwise preserves
all standard signal semantics.

3.3 Timer-based Periodic Validation
We guard against inconsistent infinite loops and infinite

recursion by installing a timer that triggers periodic valida-
tion. This technique is a compelling choice in RSTM [25],
which allows dynamic adaptation among numerous STM al-
gorithms, most of which are opaque. Instrumenting loop
back edges statically would force those algorithms to pay
the back-edge overhead needlessly.

The user application may attempt to use the process-wide
POSIX timer functionality, so we must be prepared to inter-
pose on timer-based routines, multiplex library timers with
client timers, and use the signal chaining infrastructure de-
scribed above if required.

Our handler leverages an existing RSTM epoch mecha-
nism to detect transactions that have made progress since
the last timer event, and uses pthread kill to trigger val-
idation in those that have not. If all threads have made
progress, we reduce the frequency of future validation in-
terrupts. If an interrupted thread detects that it is in an
inconsistent infinite loop, we increase the frequency of fu-
ture interrupts. We set upper and lower bounds on timer
frequency at 100Hz and 1Hz, respectively. We also provide a
low overhead mechanism to enable and disable timer-based
validation on a per-thread basis; this can be used to protect
critical, non-reentrant, STM library code, as well as to sup-
press timer-based aborts during waivered code execution.



4. BASIC SANDBOXING OVERHEAD
Section 3 presents the three components of our sandbox-

ing infrastructure. Though we have yet to develop a formal
proof of safety, we believe that these components demon-
strate the feasibility of sandboxing in an unmanaged lan-
guage. Here we examine the cost of our mechanisms to show
that sandboxing is a practical alternative to (error prone)
programmer annotation for use in an out-of-band validation
TM.

4.1 Experimental Setup
We run our experiments on a dual-socket system equipped

with two 6-core Intel Xeon E5649 processors running Linux
2.6.34. STM runtimes are based on a development version
of RSTM, compiled into a highly optimized archive library
with gcc-4.7.2, and linked into the benchmarks as native 64-
bit libraries. Benchmarks that require sandboxing are com-
piled using a research version of the DTMC compiler that is
compatible with LLVM-2.9. Instrumentation for dangerous
operation pre-validation is generated using a custom LLVM
pass implementing the SRVE algorithm (Section 3.1).

RSTM provides a set of microbenchmarks that allow us
to focus on instrumentation overhead. Specifically, we use
the set microbenchmark, which performs repeated inserts,
lookups, and deletes in sets implemented as lists, hashtables,
and red-black trees. This microbenchmark has no dangerous
operations, aside from read-only STM commit operations,
but does suffer from inconsistent infinite loops and segmen-
tation faults.

We also use applications from the STAMP benchmark
suite [23]. STAMP is manually instrumented using a macro-
based API that relies heavily on implicitly waivered code,
without which the read sets of transactions in many of the
included applications get to be so large that the transactions
will not terminate. We have added the DTMC equivalent of
explicit code waivers where possible to permit us to run the
standard test configurations; the results, however, are not
directly comparable with other published STAMP results.
Our results include the cost of pre-validation and special
timer handling for waivered code (Section 3). Conversely,
STAMP performs manual checks for inconsistent results. We
elide those checks, as they are not necessary in our opaque
STMs, and are redundant given sandboxing.

We have been unable to successfully apply transactional
waivers to bayes or intruder, and yada results are unreliable,
so these three benchmarks are not included in our analysis.

4.2 Results & Analysis
Our signal interposition and chaining implementation con-

sists of a small amount of additional code for each inter-
posed signal handler invocation, including an extra indirect
branch and a synchronization operation. Measurements on
our Xeon test platform show that this approximately dou-
bles the cost of native signal delivery. While this might in
principle impact the performance of an application that de-
pends on the efficiency of small, synchronous signal handlers,
we could not measure a negative effect on any of the appli-
cations that we tested. In the same vein, an application that
is designed to field a large number of signals during trans-
actional execution may experience additional overhead from
the validation we perform before delivering such signals. In
our applications, however, we observed that all synchronous

signals that occur in transactions were segfaults resulting
from zombie execution.

For programs that use timers, timer-based validation re-
quires SIGALRM and related system call interposition, as
well as related multiplexing and demultiplexing code. This
could add overhead in applications that depend on the per-
formance of high-frequency timers, but we could not mea-
sure an impact on our applications.

Finally, we must consider the cost of the instrumentation
for pre-validation of dangerous operations. Pre-validation
consists of a lookup and branch on the thread-local taint bit
(Section 3.1). This represents real overhead relative to the
dangerous operation, which is typically an alloca or a sim-
ple store, and can impact the overall performance of a TM
system if dangerous operations are common. Of the bench-
marks that we tested, only STAMP’s labyrinth and genome
benchmarks perform substantial numbers of dangerous op-
erations. In each case, these consist of expensive waivered
computations that dominate the cost of pre-validation.

These sandboxing mechanisms are entirely thread-local
overhead. As such, these results lead us directly to the con-
clusion that sandboxing is a viable replacement for manual
annotation in out-of-band validation TMs, and that the re-
sults of Casper et al. and Kestor et al. should hold for
general programs.

5. SANDBOXING IN GENERAL
Section 4 evaluated the practicality of sandboxing in the

context of out-of-band validation, finding that it effectively
replaces manual annotation as a means of ensuring strict se-
rializability. We would like to show that similar results hold
for generic buffered update TMs, with in-line validation. To
do so we must account more fully for the potential perfor-
mance degradation resulting from“wasted work”that a zom-
bie transaction performs between the time that it becomes
inconsistent and the time that it aborts. With out-of-band
validation, wasted work occurs only in systems that poll
for notification, and then only in infinite loops and recur-
sions that contain no shared memory accesses (and thus no
polling operations). With in-line validation, large amounts
of wasted work can, at least in principle, occur in any long-
running transaction that performs no dangerous operations
(and thus no validations prior to commit).

In order to establish that wasted work is not a problem
in practice for buffered update TMs, we develop and test a
novel, “maximally lazy” sandboxed STM algorithm that is
designed to detect inconsistency as slowly as possible with-
out violating strict serializability.

5.1 Maximally-Lazy Sandboxed STM
Our maximally lazy STM descends from the time-based

algorithms of Dice et al.’s TL2 [8], Felber et al.’s TinySTM
[10], and Dragojević et al.’s SwissTM [9] in their buffered-
update forms. It manages concurrency control by mapping
individual words of memory to entries in a large table of
versioned locks (called ownership records, or orecs). Ver-
sion numbers are taken from a global counter (clock) that
is incremented by writer transactions during their commit;
the value in an orec indicates the logical time of the most
recent update of any word mapping to that orec.

A representative time-based read barrier appears as STM
read opaque in Figure 1. It identifies and inspects the ap-
propriate orec (Lines 4–7), performs at least one memory



1 STM read opaque(addr)
2 if addr in write buffer
3 return value from write buffer
4 compute orec guarding addr
5 read orec as o1
6 if o1 is locked
7 restart STM read opaque
8 FENCE
9 read addr as val

10 FENCE
11 read orec as o2
12 if o2 is locked
13 restart STM read opaque
14 if o2 > my start time
15 validate
16 set my start time to o1
17 restart STM read opaque
18 log orec in read log
19 return val

21 STM read sandboxed(addr)
22 if addr in write buffer
23 return value from write buffer
24 log addr in read log
25 read addr as val
26 return val

28 STM validate sandboxed()
29 read global time as snapshot
30 for addr in read log
31 compute orec guarding addr
32 read orec as o
33 while o is locked
34 wait
35 if o > my start time
36 abort
37 set my start time to snapshot

Figure 1: An example read barrier for an opaque STM, and
the corresponding sandboxed read/validate decomposition
used in our maximally lazy STM.

fence, and validates before returning (Lines 11–17). The
use of time-based version numbers provides an opportunity
to avoid validation overhead in the absence of recent writes
to addr (Line 14) and, in some systems, in the absence of
concurrent writer commits (not shown).

Sandboxing allows us to safely return an inconsistent value,
and thus to delay both orec identification and validation—
in the extreme, until just prior to performing a dangerous
operation. Delaying in turn eliminates the need for strong
ordering between the reads of an address and its correspond-
ing orec, thereby exposing additional compiler and pipeline
parallelism. Psuedocode for this relaxation appears in Fig-
ure 1.

Note that we continue to use TinySTM-style timestamp
extension, updating my start time on a successful validation;
however, where TinySTM can recover from reading an in-
consistent value, we cannot. TinySTM can validate and re-
execute the inconsistent read based on a newly extended
my start time before returning from STM read opaque (Fig-
ure 1, Lines 16–17). By contrast, STM read sandboxed will
return the inconsistent value, which may then be used in the
client code, dooming the transaction. We can, however, ex-
tend our timestamp after a successful validation (Figure 1,
Line 37).

Not shown in Figure 1, but described in Section 2.1, is that
the STM commit sandboxed routine must validate at the end
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ers in our maximally lazy STM. This includes pre-validation
of read-only STM commit sandboxed routines. The suffixes
on microbenchmark names indicate the percentage of read-
only transactions in the particular execution.

of a read-only transaction—a validation that its opaque pre-
cursors may elide.

The cost of STM read plays a key role in overall trans-
action latency, since reads are the most common transac-
tional operation. The STM read sandboxed barrier performs
the minimum possible instrumentation for a buffered-update
STM, and thus we expect it to have low overhead. At the
same time, it makes long-running zombie transactions pos-
sible, and introduces the specter of a decrease in scalability
due to potential wasted work, as desired for testing.

5.2 Results and Analysis
Using the same experimental setup as described in Sec-

tion 4.1, we compare the maximally-lazy, sandboxed STM of
Section 5.1 (Sandbox) to the Opaque counterpart from which
it was derived, available as OrecELA in the freely available
RSTM suite [25]. Opaque ensures that a transaction that is
doomed to abort discovers this fact as soon as possible by
validating each instrumented STM read operation.

Pre-validation Overhead.
Sandbox trades Opaque’s post-validation of read opera-

tions for pre-validation of dangerous operations. We can
estimate the impact of the trade simply by looking at the
ratio of validations between the two implementations. Intu-
itively, we expect to eliminate more validations than we in-
troduce; Figure 2 confirms this expectation. In the absence
of wasted work, this reduction in the number of validation
checks should benefit performance. The RSTM microbench-
marks (“HashBench”) have the highest ratios; these reflect
the additional validations required at the end of read-only
transactions, which in these applications are both numerous
and short. Note that the ratios of Figure 2 are suggestive
of performance but do not fully determine it: they capture
the number of instrumentation points, but not their actual
cost (these depend on details of the STM back end).

RSTM set benchmarks.
Figure 3 compares the throughput of the three RSTM

microbenchmarks. For these we report results using only one
of the two processors: the frantic rate at which transactions
are executed in the microbenchmarks causes RSTM’s global
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Figure 3: Our maximally lazy STM compared to an equivalent opaque STM on the RSTM set microbenchmarks. Lines
are labeled with the percentage of read-only transactions that are performed. Throughput is shown as speedup relative to
coarse-grained-lock throughput at 1 thread for the respective read ratio.

commit counter to become an unacceptable bottleneck once
cross-chip communication is required.

Lines are labeled with the percent read-only transactions
that they perform. This number is important, as Sandbox
performs a commit-time validation for read-only transac-
tions that Opaque does not. The results of these tests are
encouraging and consistent with our expectations given Fig-
ure 2. The relative number of validation barriers is a good
predictor of a reduction in the overhead of Sandbox, and we
see few ill effects from wasted work.

The hashtable set consists of tiny, CPU-bound transac-
tions, where the cost of validation is quite low. Sandbox
suffers from negligible wasted work in this case, and thus
its performance relative to Opaque is entirely predictable.
Read-only performance is indistinguishable, and as writers
become more common, Opaque transactions must validate
more frequently than their Sandbox counterparts, resulting
in slightly less scalable performance.

The tree-based benchmark contains longer, larger trans-
actions, as well as cases where rotation provides large asym-
metries. The linked structure is an interesting test of our
sandboxing infrastructure as it suffers from both inconsis-
tent SEGFAULTs and infinite loops. Sandbox ’s reduced val-
idation overhead results in an advantage for read-only ex-
ecution, but its inability to perform in-barrier timestamp
extension (Figure 1, Lines 14–17) results in more frequent
aborts as writers become more common.

The list microbenchmark evaluates performance for large
transactions. Large, non-conflicting transactions are an ideal
workload for Sandbox, which simply performs a single vali-
dation barrier at commit time, while Opaque must execute
a barrier for each node read during the search. This results
in substantially less overhead for Sandbox, as well as better
scalability when conflicts are infrequent. On the other hand,
writer transactions trigger high abort rates that Opaque tol-
erates better due to its early conflict detection. Sandbox suf-
fers from large amounts of wasted work in this case. It must
be noted that neither runtime performs well in this common-
conflict setting, but RSTM’s ability to dynamically adapt
between opaque and sandboxed execution (not exploited in
these experiments) may prove a valuable feature.

STAMP Benchmarks.
RSTM’s microbenchmarks are intended as a stress test for

STM systems: their performance depends almost entirely
on the STM infrastructure. On the other hand, STAMP’s

large scale and reliance on waivered execution means that
performance is much less sensitive to details of the STM
algorithm (though still heavily dependent on abort rates).
Figure 3 shows results on five of the eight STAMP bench-
marks as described in Section 4.1. RSTM’s bottlenecks are
not a factor with more reasonable rates of transactional ex-
ecution, so we test Opaque and Sandbox using native Linux
scheduling out to the full 12 cores of the machine.

STAMP’s large transactions raise the specter of reduced
scalability due to wasted work, but we see no evidence of
this in the results, where Opaque and Sandbox are generally
very well matched. Sandbox outperforms Opaque at one
thread due to its lower overheads and continues to perform
well out to 12 threads in most cases. Sandbox suffers a
somewhat higher abort rate than Opaque due to its reduced
ability to do timestamp extension. This manifests as lower
performance in labyrinth, whose enormous transactions lead
to a very high abort penalty.

Overall, the performance of Sandbox is at least on par
with that of Opaque when parallelism is available, and often
slightly better. This result demonstrates that, for the appli-
cations that we test, wasted work is unlikely to negatively
impact performance. As such, it is reasonable to conclude
that our sandboxing infrastructure is a viable option for val-
idation in buffered update TMs in general.

6. CONCLUSIONS
We have shown that sandboxed STM in an unmanaged

language is both possible and practical. Our results with
maximally lazy sandboxing further suggest that wasted work
is unlikely to be a real-world problem. Given the appeal
of out-of-band validation for both hardware and software
TM, we conclude that sandboxing is a promising avenue
toward increased performance in future TM systems. Our
work should enable researchers to explore this design space
without concern.

Future Work.
Our general notion of dangerous operations and sandbox-

ing semantics must be formalized to prove that we have not
overlooked any cases where instrumentation is necessary.
At the same time, formalization is likely to ignore certain
practical interactions between the program and the system
—operating system accounting, performance counters, de-
bugging, etc.—in which zombie execution may be visible.
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Figure 4: Our lazy STM compared to an equivalent opaque STM for five STAMP benchmarks. Throughput is shown as
execution time relative to that of coarse-grained-lock at 1 thread.

Working in the context of these interactions remains a topic
of research.

The results presented here should be considered indica-
tive of likely performance only for buffered-update STMs,
in which transactional writes are not considered dangerous.
For in-place systems, the number of sandboxing validation
barriers will be substantially larger. The performance of
sandboxing in such a setting will be more strongly contin-
gent on the quality of the pre-validation instrumentation
algorithm.

Along this line, there is a clear opportunity to imple-
ment more expensive static analysis to attempt to elimi-
nate always-redundant instrumentation on dangerous oper-
ations. This could include full information-flow tracking as
well as potential code cloning and specialization to partition
occasionally-redundant instrumentation points into always-
redundant and necessary pairs.

And of course, we encourage researchers to aggressively
explore the space of concurrent-validation TM, both in soft-
ware and in hardware.
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