
Generic Multiversion STM�

Li Lu and Michael L. Scott

Computer Science Department, University of Rochester
Rochester, NY 14627-0226 USA

{llu,scott}@cs.rochester.edu

Abstract. Multiversion software transactional memory (STM) allows a
transaction to read old values of a recently updated object, after which
the transaction may serialize before transactions that committed earlier
in physical time. This ability to “commit in the past” is particularly ap-
pealing for long-running read-only transactions, which may otherwise
starve in many STM systems, because short-running peers modify data
out from under them before they have a chance to finish.

Most previous approaches to multiversioning have been designed as an
integral part of some larger STM system, and have assumed an
object-oriented, garbage-collected language. We describe, instead, how
multiversioning may be implemented on top of an almost arbitrary “word-
based” STM system. To the best of our knowledge, ours is the first work
(for any kind of STM) to combine bounded space consumption with guar-
anteed wait freedom for read-only transactions (in the form presented
here, it may require writers to be blocking). We make no assumptions
about data or metadata layout, though we do require that the base system
provide a hash function with certain ordering properties. We neither re-
quire nor interfere with automatic garbage collection. Privatization safety
can be ensured—without compromising wait freedom for readers—either
by forcing privatizing writers to wait for all extant readers or by requiring
that programmers explicitly identify the data being privatized.

1 Introduction

Transactional memory (TM) raises the level of abstraction for synchronization, allow-
ing programmers to specify what should be made atomic without specifying how it
should be made atomic. The underlying system then attempts to execute nonconflicting
transactions in parallel, typically by means of speculation. Hardware support for TM
has begun to reach the market, but software implementations (STM) can be expected to
remain important for many years.

In both hardware and software TM, strategies for detecting and recovering from
conflicts differ greatly from one implementation to another. Most systems, however,
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have particular trouble accommodating long-running transactions. When writer trans-
actions (those that update shared data) conflict with one another (or appear to conflict
due to limitations in the detection mechanism) users will presumably not be surprised
by a lack of concurrency: in the general case, conflicting updates must execute one at
a time. When writers conflict with readers, however (i.e., with transactions that make
no changes to shared data), one might in principle hope to do better, since there is a
moment in time (the point at which it starts) when a reader could execute to completion
without interfering with the writer(s).

The problem, of course, is that changes made by writers after a reader has already
started may prevent the reader from completing. Specifically, if transaction R reads
location x early in its execution, it will typically be able to commit only if no other
thread commits a change to x while R is still active. Since readers are “invisible” in
most STM systems (they refrain from modifying metadata, to avoid exclusive-mode
cache misses), writers cannot defer to them, and a long-running reader may starve. To
avoid this problem, most systems arrange for a long-running reader to give up after a
certain number of retries and re-run under the protection of a global lock, excluding all
other transactions and making the reader’s completion inevitable.

A potentially attractive alternative, explored by several groups, is to keep old versions
of objects, and allow long-running readers to “commit in the past.” Suppose transaction
R reads x, transaction W subsequently commits changes to x and y, and then R at-
tempts to read y. Because the current value of y was never valid at the same time as R’s
previously read value of x, R cannot proceed, nor can it switch to the newer value of
x, since it may have performed arbitrary computations with the old value. If, however,
the older version of y is still available, R can safely use that instead. Assuming that the
STM system is otherwise correct, R’s behavior will be the same as it would have been
if it completed all its work before transaction W, and then took a long time to return.

Multiversioning is commonplace in database systems. In the STM context, it was pi-
oneered by Riegel et al. in their SI-STM [21] and LSA [20] systems, and, concurrently,
by Cachopo et al. in their JVSTM [3, 4]. SI-STM and LSA maintain a fixed number
of old versions of any given object. JVSTM, by contrast, maintains all old versions
that might potentially be needed by some still-running transaction. Specifically, if the
oldest-running transaction began at time t, JVSTM will keep the newest version that is
older than t, plus all versions newer than that.

In all three systems, the runtime deletes no-longer-wanted versions explicitly, by
breaking the last pointer to them, after which the standard garbage collector will even-
tually reclaim them. More recently, Perelman et al. demonstrated, in their SMV sys-
tem [17], how to eliminate explicit deletion: they distinguish between hard and weak
references to an object version v, and arrange for the last hard reference to become un-
reachable once no running transaction has a start time earlier than that of the transaction
that overwrote v.

Several additional systems [1, 2, 11, 16, 18] allow not only readers but also writers
to commit in the past. Unfortunately, because such systems require visible readers and
complex dependence tracking, they can be expected to have significantly higher con-
stant overheads. We do not consider them further here.
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SI-STM, LSA, JVSTM, and SMV were all implemented in Java. While only SMV
really leverages automatic garbage collection, all four are “object-based”: their meta-
data, including lists of old versions, are kept in object headers. One might naturally
wonder whether this organization is a coincidence or a necessity: can we create an effi-
cient, multiversion STM system suitable for unmanaged languages like C and C++, in
which data need not be organized as objects, and in which unwanted data must always
be explicitly reclaimed?

Our GMV (Generic MultiVersioning) system answers this question in the affirma-
tive. It is designed to interoperate with any existing “word-based” (i.e., hash-table–
based) STM system that provides certain basic functionality. It is also, to the best of
our knowledge, the first mechanism to simultaneously (a) guarantee wait-free progress
for all read-only transactions, and (b) bound total space consumption—specifically, to
O(nm), where n is the number of threads and m is the space consumed by an equiv-
alent nontransactional, global-lock-based program (this assumes reasonable space con-
sumption in the underlying STM system). Finally, GMV can preserve both privatization
safety (for writers) and wait freedom for readers if we are willing either to force pri-
vatizing writers to wait for extant readers, or to require programmers to explicitly label
the data being privatized.

As a proof of concept, we have implemented GMV on top of the TL2-like [6]
“LLT” back end of the RSTM suite [19]. Experiments with microbenchmarks confirm
that GMV eliminates starvation for long-running readers, yielding dramatically higher
throughput than single-version systems for workloads that depend on such transactions.

We focus in this paper on the formal properties of GMV. We describe the algorithm,
including its interface to the underlying STM system and its impact on privatization, in
Section 2. In Section 3 we outline proofs of strict serializability, bounded space con-
sumption, and wait-free readers. We also consider the impact of GMV on the liveness
of writers. Section 4 summarizes the performance of our prototype implementation. We
conclude in Section 5.

2 GMV Design

We refer to a transaction as a “reader” if it is known in advance to perform no updates
to shared locations. Otherwise it is a “writer.” On behalf of readers, and with limited
cooperation from writers, GMV maintains four key data structures: a global timestamp
variable, gt, that tracks the serialization order of writer transactions; an array ts of lo-
cal timestamps, indexed by thread id; a history table that holds values that have been
overwritten by writers but may still be needed by active readers; and an array, hp, of
“helping structures,” also indexed by thread id. Variable gt can be shared with the un-
derlying STM system (the host), if that system is timestamp-based. The history table,
likewise, can be merged with the table of ownership records (Orecs) in the host, if it
has such a table. Array hp is used to let the garbage collection process (invoked by
writer threads) cooperate with reader transactions. Each reader records its history table
inquiries in hp. If a writer needs to perform a potentially conflicting collection on a his-
tory list, it first completes the reader’s request and stores the result in hp. GMV uses a
type-preserving memory allocator for history nodes; this convention, together with the



Generic Multiversion STM 137

monotonicity of timestamps, allows a reader to notice if its search has conflicted with a
writer, and to retrieve the answer it was looking for from the helping array.

ro_readget_ts

get_and_set_gt

save_val
curr_val

hash

(other routines)

GMV Host STM

readers writers

Fig. 1. GMV interface routines

We characterize both GMV and the
host as linearizable concurrent objects.
The host provides methods for use by
writers; GMV is oblivious to these. The
host must also provide two methods to
be called by GMV. GMV, for its part,
exports four methods: two to be called
by readers, the other two by the host.
Readers make no direct calls to the host
(Fig. 1). Our pseudocode assumes that memory is sequentially consistent, but it can
easily be adapted to more relaxed machines.

GMV tracks overwritten values at word granularity, in a hash table keyed by memory
address. Each bucket of the hash table is a dummy head node for a list of history nodes
whose locations share a hash value. Each (real) node n in turn has three fields: a location
loc, an old value formerly contained in loc, and the global time (gt value) overwrite time
when this value was overwritten. A special-purpose, built-in garbage collector reclaims
nodes that are no longer needed.

2.1 GMV–Host Interface

GMV provides two methods to be called by the host STM:

get and set gt(): This method atomically increments gt and returns the new value. The
host must guarantee that the serialization order of writers is consistent with the val-
ues returned. These values provide a well-defined meaning for “writer W serializes
at time t,” and “value v was written to location l at time t.” Note that spurious
calls to get and set gt() are harmless: every committed writer must obtain a unique
timestamp, but not every timestamp must correspond to a unique committed writer.

save val(loc, old value, overwrite time): After calling get and set gt(), and before al-
lowing its thread to proceed with post-transaction execution, a writer must call this
method for every location it has modified, passing the value returned by get and
set gt() as its overwrite time. A call with a given location must not be made until
all calls with a smaller overwrite time and a location with the same hash value have
already returned.

Code for these routines is trivial: get and set gt performs a fetch and increment on
gt and returns the result plus one; save val writes its arguments into a newly allocated
history node, which it then pushes, in the manner of a Treiber stack [24], onto the
beginning of history list hash(l). We assume that the memory allocator employed by
save val tracks the total number of extant history nodes. Each writer checks this number
at commit time. If it exceeds some predetermined threshold (we used 100K in our ex-
periments), the writer invokes a garbage collection algorithm, described in Section 2.3.
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GMV in turn requires two methods from the host:

hash(loc): Values returned by this function are used as indices into the history table. As
noted above, the host must ensure that if two locations have the same hash value,
calls to save val will happen in timestamp order, even if they are made by different
transactions.

curr val(loc): GMV calls this method to obtain values not found in a history list. Its im-
plementation must be wait-free. The host must guarantee that (1) if save val(l, v, t)
has been called (something that GMV of course can see), then the value v′ returned
by a subsequent call to curr val(l) must have been written at some time t′ ≥ t, and
(2) if curr val(l) has returned v′ and save val(l, v′′, t′′) is subsequently called, then
v′ must have been written at some time t′ < t′′.

The implementation of curr val depends on the nature of the host STM, but will often
be straightforward. In a redo-log based STM, curr val(l) can simply return the value at
location l in main memory. In an undo-log based STM, it may need to access the log
of some active writer W : it cannot require the reader to abort, nor can it wait for W
to complete. It may also need to access the log of an active writer in a nonblocking
STM [9, 12], where locations may be “stolen” without every having been written back
to main memory. (The ordering requirements on calls to save val are a bigger concern
than save val in nonblocking systems; we return to this subject in Section 3.3.)

2.2 Read-only Transactions Algorithm 1. ro read

Require: location l, thread id i
1: h := history table[hash(l)]
2: v := reader history list search(h, l, i)
3: if v �= ⊥ then
4: return v
5: c := curr val(l)
6: if h = history table[hash(l)] then
7: return c
8: v := reader history list search(h, l, i)
9: if v �= ⊥ then

10: return v
11: else
12: return c

Aside from calls to curr val, GMV han-
dles reader transactions. At the beginning
of reader R, executed by thread i, GMV
stores the current global timestamp gt into
local timestamp ts[i]. To read location l,R
then calls ro read(l) (Algorithm 1). When
R commits, ts[i] is set to infinity.

At line 2 of ro read, reader history list
search(h, l, i) looks for the last (oldest)
node in history list h whose location field
is l and whose overwrite time is greater
(newer) than ts[i]. It returns ⊥ if such a
node does not exist. Code for this helper
method appears in Algorithm 2. (The similar code in Algorithm 3 will be needed in
Algorithm 4.) To enable helping by a garbage-collecting writer, ro read maintains its
current request—the location and time it’s looking for—in hp[i]. During list traversal,
if the reader sees a node with a larger than expected timestamp, it knows that a writer
has interfered with its search, and that the answer it is looking for can be found in hp[i].

Like other multiversion STM systems, GMV avoids reader transaction aborts by al-
lowing them to “commit in the past.” Where a writer transaction obtains its serialization
time by calling get and set gt when it is ready to commit, a reader obtains its serializa-
tion time by reading gt when it first begins execution. If readerR is long-running, it may
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Algorithm 2. reader history list search

Require: history list h, location l, thread id i

1: v := ⊥; n := h.next
2: hp[i] := 〈l, ts[i]〉
3: pt := ∞ {previous node timestamp}
4: while n �= null do
5: if n→overwrite time > pt then
6: {GC has interfered}
7: v := hp[i]
8: break
9: if n→overwrite time ≤ ts[i] then

10: {no further nodes will be useful}
11: break
12: if n→loc = l then
13: v := n→old value
14: pt := n→overwrite time
15: n := n→next
16: hp[i] := ⊥
17: return v

Algorithm 3. GC history list search

Require: hash value k, location l, time t
1: while true do
2: v := ⊥; n := history table[k].next
3: pt := ∞ {previous node timestamp}
4: while n �= null do
5: nl := n→loc; nv := n→old value
6: nn := n→next
7: nt := n→overwrite time
8: {read overwrite time last}
9: if nt > pt then

10: {another GC thread has interfered}

11: continue while loop at line 1
12: if nt ≤ t then
13: {no further nodes will be useful}
14: break
15: if nl = l then
16: v := nv
17: pt := nt; n := nn
18: return v

serialize before a host of writer transactions whose implementations commit before it
does. This “early serialization” resembles that of mainstream systems like TL2 [6], but
multiversioning avoids the need to abort and restart read-only transactions that attempt
to read a location that has changed since the transaction’s start time. Early serialization
stands in contrast to systems like RingSTM [23] and NOrec [5], which serialize readers
at commit time, and to systems like TinySTM [22] and SwissTM [7], which dynam-
ically update their “start time” in response to commits in other transactions, and may
therefore serialize at some internal transactional read.

2.3 Garbage Collection

To avoid unbounded memory growth, history lists must periodically be pruned. If read-
ers are never to abort, this pruning must identify and reclaim only those list nodes that
will never again be needed. In GMV, a node may still be needed by reader i if it is
the earliest node for its location that is later than ts[i]. Nodes that do not satisfy this
property for some thread i are reclaimed by the GC.

The core of the garbage collection algorithm appears in Algorithm 5. It is invoked
from save val, and can be executed concurrently by multiple writers. It has been de-
signed to be lock free, and to preserve the wait freedom of readers. Writers synchronize
with each other using a simplified version of the Harris [10] and Michael [14] lock-free
list algorithm (simplified in the sense that insertions occur only at the head of the list).
To support this algorithm, next pointers in history lists contain both a count and a mark.
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The count, which is incremented whenever the pointer is modified, avoids the ABA
problem. The mark indicates that a node is garbage and can be unlinked from the list;
when set, it inhibits updating the pointer to link out the successor node.

As noted in Section 2.2, thread i begins a reader transaction by copying the global
timestamp gt into ts[i]. It ends by resetting ts[i] to infinity (maxint). To identify garbage
nodes (Algorithm 6), we collect the entries in ts, sort them into descending order (with
an end-of-list sentinel value), and then compare them to the timestamps of nodes in each
history list via simultaneous traversal. The collect need not be atomic: nodes that tran-
sitioned from useful to garbage after the beginning of the scan may not necessarily be
reclaimed, but the monotonicity of timestamps implies that anything that was garbage
at the beginning of the scan is guaranteed to be recognized as such. If another writer
finds that memory is getting low, it will call GC, discover nodes that can be freed, and
keep the space bound by freeing them.

Algorithm 4. help readers

Require: hash value k
1: for each thread id i do
2: x := hp[i]
3: if x �= ⊥ then
4: 〈l, t〉 := x
5: if hash(l) = k then
6: (void) CAS(&hp[i], x,
7: GC history list search(k, l, t))

To delete node n from a history list
(having already read its predecessor’s
next pointer), we first mark n’s next
pointer. We then update the predeces-
sor’s next pointer to link n out of the
list. We add n to a thread-local set of to-
be-reclaimed nodes. Traversing the his-
tory list from head to tail, we effectively
convert it to a tree. Any reader that is
actively perusing the list will continue
to see all useful successor nodes beyond
(“above”) it in the tree. Before we can actually reclaim the garbage nodes, however, we
must ensure, via help readers and GC history list search (Algorithms 4 and 3) that no
reader is still using them. We peruse the global helping array, hp. If we discover that
reader R is searching for location l, and l hashes to the current history list, we com-
plete R’s search on its behalf, and attempt to CAS the result back into the helping array
(in our pseudocode, this changes the type of hp[i], which is effectively a union). If the
CAS fails, then either R has moved on or some other writer has already helped it. We
can then safely reclaim our to-be-deleted nodes (moving them to a lock-free global free
list), provided that we first update the timestamp in each so that a reader will recognize
(line 5 of Algorithm 2) that it no longer belongs in the previous list.

2.4 Privatization Safety

It is generally recognized that any STM system for an unmanaged language must be pri-
vatization safe [13]. That is, if a transaction renders datum x accessible only to thread
T , the STM system must ensure that (1) subsequent nontransactional writes of x by
T cannot compromise the integrity of “doomed” transactions that may access x before
aborting, and (2) delayed cleanup in logically committed transactions cannot compro-
mise the integrity of nontransactional post-privatization reads of x by T .

We may safely assume that problem (2) is addressed by the host STM; the addi-
tion of GMV introduces no new complexity. Problem (1), however, is a challenge: if a
privatizer writes to formerly shared data, and doesn’t update the history table, an active
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Algorithm 5. Garbage collection

1: array st := sort(ts ∪{−1}, descending)
2: for k in hash range do
3: node set G := find garbage nodes(k, st)
4: node set U := ∅ {unlinked nodes}
5: while true do
6: p := &history table[k]
7: n := p→next
8: pt := ∞ {previous node timestamp}
9: while n �= null do

10: nn := n→next
11: nt := n→overwrite time
12: if nt > pt then
13: {another GC thread has interfered}
14: continue while loop at line 5
15: if n ∈ G and ¬is marked(nn) then
16: if ¬CAS(&n→next, nn, mark(nn))

then
17: {another GC has interfered}
18: continue while loop at line 5
19: flag := false
20: if is marked(nn) then
21: if CAS(&p→next, n, nn) then
22: U += n
23: flag := true
24: if |U | ≥ UMAX then
25: help readers(k)
26: for n in U do
27: n→overwrite time := ∞
28: reclaim all nodes in U
29: U := ∅

30: else
31: {another GC has interfered}
32: continue while loop at line 5
33: if not flag then
34: p := n; pt := nt
35: n := nn
36: break
37: help readers(k)
38: for n in U do
39: n→overwrite time := ∞
40: reclaim all nodes in U

Algorithm 6. find garbage nodes

Require: hash val k, sorted time array st
1: start time := gt {global timestamp}
2: while true do
3: node set G := ∅ {garbage nodes}
4: mapping[location⇒node] M := ∅

5: i := 0; n := history table[k]
6: pt := ∞ {prev. node timestamp}
7: while n �= null and

n→overwrite time > start time do
8: {never reclaim nodes newer than

start time}
9: n := n→next

10: while st[i] �= −1 and n �= null do
11: nl := n→loc; nn := n→next

12: nt := n→overwrite time
13: {read overwrite time last}
14: if nt > pt then
15: {another GC has interfered}
16: continue while loop at line 2
17: if nt > st[i] then
18: m := M [nl]
19: if m �= null then
20: G+= m
21: M [nl] := n; n := nn
22: pt := nt
23: else
24: i++; M := ∅

25: while n �= null do
26: nn := n→next
27: nt := n→overwrite time
28: {read overwrite time last}
29: if nt > pt then
30: {another GC has interfered}
31: continue while loop at line 2
32: G+= n; n := nn
33: break
34: return G
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reader that needs to commit at some past time t may see the wrong value if calls curr val.
One possible solution is to require a privatizing writer to wait for all active readers to
commit before it continues execution. This, of course, sacrifices nonblocking progress
for writers (a subject to which we will return in Section 3.3). Even in a blocking sys-
tem, it may induce an uncomfortably long wait. Alternatively, if the source program
explicitly identifies the data being privatized, GMV could push the current values into
the history table, where they would be seen by active readers. This option sacrifices the
transparency of privatization. In a similar vein, if the compiler can identify data that
might be sharable, it can instrument nontransactional writes to update the history list.
This option compromises the performance benefit of privatization.

3 GMV Properties

In this section we sketch proofs of our claims of GMV safety, bounded space, and
wait-free progress for read-only transactions (“readers”). We also consider the impact
of GMV on the liveness of writers.

3.1 Safety

Theorem 1. When GMV is correctly integrated into a strictly serializable host STM,
the resulting STM remains strictly serializable.

Proof. As described in Section 2.1, GMV requires the host STM, H , to ensure that (1)
the serialization order of writer transactions is consistent with the values returned by
get and set gt, (2) a writer calls save val(l, v, t) for every location it modifies, and (3)
the calls for all locations with the same hash value occur in timestamp order. These rules
ensure that history list nodes are ordered by timestamp, and that if n2 = 〈l, v2, t2〉 and
n1 = 〈l, v1, t1〉 are consecutive nodes for location l (t2 > t1), then a reader transaction
that sees v2 at location l can correctly serialize at any time t such that t2 > t ≥ t1.

Since nodes are removed from history lists only when there is no longer any reader
transaction that can use them, the only remaining concern is for readers that call curr val.
In this case, as again described in Section 2.1, GMV requiresH to ensure that any call to
curr val linearizes within H (1) after any method of H that calls save val for the same
location and a same or earlier timestamp, and (2) before any method of H that calls
save val for the same location and a later timestamp. These rules ensure that curr val
is called only when there is no appropriate history node, and that any writer that would
cause curr val to return a “too new” value calls save val to create an appropriate history
node first.

Taken together, the requirements on H ensure that a GMV reader sees exactly the
same values it would have seen if executed as a writer in timestamp order within H .
This in turn implies that the combined system remains strictly serializable. ��

3.2 Space Consumption

Lemma 1. In the wake of a call to Algorithm 5, started at time t, the total space con-
sumed in history lists by nodes with timestamp less than t (denoted TSt) is in O(nm),
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where n is the total number of threads in the system, and m is the space consumed by a
nontransactional, global lock-based program.

Proof. Algorithm 5 retains nodes that may be used by a concurrent reader. Therefore,
for each location l, the GC retains a constant number of history list nodes for each
currently active reader. We assume that the size of history table (and hence of the extra
head nodes) is bounded by O(m). Since the total number of distinct locations is also in
O(m), and the total number of active readers is in O(n), the total space for all nodes on
all lists is clearly in O(nm). ��
Lemma 2. Algorithm 5 is lock free

Proof. We assume that the routines to allocate and reclaim list nodes are lock free.
Given that history lists are noncircular, the traversal loops at Algorithm 3 line 4, Algo-
rithm 5 line 9, and Algorithm 6 lines 7, 10, and 25 must all complete within a bounded
number of steps. The remaining potential loops are the various continue statements:
Algorithm 3 line 11; Algorithm 5 lines 14, 18, and 32; and Algorithm 6 lines 16 and 31.
In most of these cases, execution of the while true loop continues when a GC thread
encounters a node that has been reclaimed by some other thread (one whose timestamp
appears larger than that of its predecessor); in these cases the system as a whole has
made forward progress, and lock freedom is not endangered. The only tricky cases oc-
cur at Algorithm 5 lines 18 and 32, in the wake of a failed CAS. Here again the system
as a whole has made progress: failure to mark or unlink a node indicates that some other
thread has done so, and a marked node can be unlinked by any GC writer. ��
Theorem 2. The total space TS consumed by history lists is in O(nm).

Proof. Garbage collection will be started by any writer that discovers, at commit time,
that the number of extant history nodes exceeds some predetermined threshold. Progress
of the collection cannot be delayed or otherwise compromised by readers. Moreover
any writer that attempts to commit before a GC pass has updated its statistics will also
execute GC. By Lemma 2, so long as some thread continues to execute, some GC thread
will make progress. By Lemma 1, a GC pass that starts at time t guarantees that TSt is
bounded by O(nm). The only remaining question is then: what is the maximum value
of TS−TSt, the space that may be consumed, at the end of the GC pass, by history nodes
that are unlinked but not reclaimed, or that have timestamp ≥ t? This value is clearly
the number of history nodes that may be generated by writers that are already in their
commit protocol when the GC pass begins (TSadded), plus the number of nodes held
by non-progressing GC threads (TShold, privatized at Algorithm 5 line 22). Since the
number of writers is in O(n), and the number of history nodes generated by any given
writer is in O(m), we know that TSadded is in O(nm). For TShold, since each blocked
GC may hold at most UMAX nodes at a time (Algorithm 5 line 24), the total number
of nodes held by non-progressing GC threads is in O(n). It follows that TS − TSt is in
O(nm), and therefore so is TS. ��

3.3 Liveness

Theorem 3. GMV readers are wait free.
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Proof. Straightforward: by Theorem 2, the number of history nodes is bounded, and
therefore so is the time spent traversing any given list in ro read. We also require
curr val to be wait free. There are no other waits, loops, or aborts in the reader code. So
all readers in GMV are wait free. ��
By way of comparison, both SI-STM [21] and LSA [20] require readers to abort if
the historical version they need has been reclaimed, so readers may in principle starve.
JVSTM [3, 4] and SMV [17] never reclaim versions that may still be needed, but an
active writer may create an unbounded number of history nodes for a reader to traverse.
Systems that revert to inevitability for long-running readers are of course fundamentally
blocking: a reader cannot start until active writers get out of the way.

Nonblocking writers. Ideally, we should like to be able to guarantee that if GMV were
added to a lock-free (or obstruction-free) STM system, writers in the combined sys-
tem would remain lock free (obstruction free). The GMV API functions are all lock
free, which is certainly a good start: get and set gt() is trivially lock free: its internal
fetch and increment fails only if some other caller’s succeeds. In a similar vein, calls to
save val() loop only when the Treiber-stack push fails because another thread’s push
succeeded. By Lemma 2, the garbage collection process called by save val() is also lock
free. Therefore save val() is lock free.

Unfortunately, we must also consider the constraints we have placed on calls to these
API functions. In particular, we have insisted that if t1<t2 and hash(l1) = hash(l2),
then any call of the form save val(l1, v1, t1) must occur before any call of the form
save val(l2, v2, t2). This requirement is similar to asking transactions that modify lo-
cations with the same hash value to write their updates back to main memory in serial-
ization order. It is not at all clear how a nonblocking system might do so. In particular,
WSTM [8,9] and MM-STM [12] (to our knowledge the only extant nonblocking word-
based systems) both allow a transaction to “steal” an ownership record (Orec); values
of locations that hash to that Orec may then be written back to memory out of order, up
until the next time that the Orec is quiescent (if it ever is).

We believe we could obtain a (nonblocking) multiversion variant of WSTM or MM-
STM by requiring the thread that steals an Orec to maintain the prefix of the history
list corresponding to that Orec’s locations. Method ro read would begin by consulting
the Orec: if quiescent, it would consult the usual history list; otherwise, it would first
consult the stealer’s list prefix. This solution would require that GMV be integrated into
the underlying system in a way that no longer merits the term “generic.” We leave the
details to future work.

4 Performance of a Proof-of-Concept Implementation

We implemented a proof of concept system, GMV+, for GMV. This implementation is
based on the LLT back end, a TL2 [6]-like STM, in the RSTM suite [19].

GMV+ differs from GMV only in the addition of a “fast path” for garbage collection.
This path reclaims only the tails of history lists, in a region known to be ignored by all
still-running readers, thereby eliminating the need for helping. If memory consumption
is still beyond the preset threshold after execution of the fast path, GMV+ returns to



Generic Multiversion STM 145

execute the normal “slow path” GC algorithm, with helping. In our experiments, the
slow path was very rarely needed.

We tested GMV+ on a two-processor Intel Xeon E5649 machine. Each processor
has 6 cores running at 2.53 GHz, and 2 hardware threads per core. Each core has 32 KB
of L1 D-cache and 256 KB of L2 cache; the cores of a given processor share 12 MB
of on-chip L3 cache. Microbenchmark results indicate that the maintenance of history
lists increases the overhead of writers by approximately 50%. In return, multiversioning
reaps significant benefits when the workload has long-running readers. We modified a
hash table microbenchmark that performs lookup, insert, and remove operations, to also
include long-running “sum” operations, which traverse the entire table and add up all
its elements. Unlike lookup operations, which are small and fast, sum operations take
long enough that they almost always conflict with concurrent writers, and will starve
unless something special is done.

Figure 2 (top) present results for a read-heavy test with sum, lookup, and update
(insert and delete) operations in a ratio of 1:79:20. We compare the throughput (trans-
actions/second) of LLT, GMV+, and two variants of the simpler NOrec algorithm [5].
Because NOrec serializes transaction write-back using a global lock, it supports a trivial
implementation of inevitability (irrevocability). In the “NOrec inevitable” experiments
we use inevitable mode to run the sum transactions. We also test a (non-general) exten-
sion of LLT (labeled “LLT inevitable”) in which the checker thread acquires a global
lock. Other threads read this lock; if it is held they abort, and wait to retry.

When running our microbenchmark, GMV+ outperforms the other tested algorithms,
with speedup out to the full count of hardware threads. While inevitability avoids star-
vation of readers, it also limits scalability: neither algorithm with inevitability speeds
up with additional threads.

We also evaluate GMV+’s performance on a modified version of the “Vacation”
benchmark from the STAMP suite [15]. Vacation simulates a concurrent travel in-
quiry / reservation system. Most threads, as in the original version, repeatedly perform
read / write / update operations on price tables (for cars, flights and rooms), and read /
write operations on the reservation table. At the same time, we add a dedicated “checker”
thread that periodically runs a transaction to checksum the reservation table. Note that
in contrast to the hash table microbenchmark, here long-running read-only transactions
are confined to a single thread. Overall system throughput is displayed in the bottom
half of Figure 2.

We run this benchmark with 4 queries per normal transaction and 65536 initial rela-
tions in each price table. 98% of normal transactions are for reservations; the other 2%
update price tables. The benchmark’s “query range” parameter is set to 60% for normal
transactions, which the application’s authors consider “high contention.” We run the
checker every 100 ms in this test. Without inevitability, checker transactions routinely
starve in both LLT and NOrec. We omitted results for these configurations in the figure.
With inevitability, the checker can almost always complete within 100 ms. It usually
completes within this interval for GMV+ as well, at least at low thread counts.

Overall transaction throughput for GMV+ is roughly 20% higher than for LLT with
inevitability, presumably because the checker thread, when running, does not exclude
concurrent writers. Throughput peaks at 12 threads (the number of cores) on the
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Fig. 2. Throughput of GMV+ for hash table (top) and augmented Vacation (bottom)

testing machine. The default scheduling discipline places successive threads on alter-
nating processors, so inter-chip communication is occurring even at low thread counts.
In this situation NOrec’s scalability is limited by contention on the lock that serializes
writer commits.

Performance results for GMV+ confirm that multiversioning is an attractive alterna-
tive to inevitability for applications with long-running read-only transactions. Multiver-
sioning allows long-running readers to complete without aborting, and to co-exist with
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short transactions that continue to scale to the limits otherwise imposed by the STM
runtime and hardware coherence fabric.

5 Conclusions

We have proposed a generic multiversion STM system, GMV. Unlike previous inte-
grated systems, it can be layered on top of most existing word-based STM. To the
best of our knowledge, GMV is the first STM system to combine bounded space con-
sumption with guaranteed wait freedom for read-only transactions. It neither requires
nor interferes with automatic garbage collection. Privatization can be ensured—without
compromising wait freedom for readers—either by blocking writers or by requiring that
programmers explicitly identify the data being privatized.

We also described a proof-of-concept implementation of GMV. With roughly 50%
overhead to maintain history lists, our implementation eliminates reader starvation, and
generates up to 2× speedup on workloads with long-running readers. With further im-
plementation effort, the instrumentation overhead could probably be reduced, but for
small transactions it will always be higher than the baseline. Topics for future work in-
clude (1) integration with nonblocking word-based STM; (2) automatic mechanisms to
choose when a read-only transaction should use the history lists (as opposed to acting
as a writer); and (3) a mechanism to choose (on a global basis), when writers should
maintain the history lists.

Acknowledgment. We are grateful to the anonymous referees for identifying several
bugs in the pseudocode, and for prodding us to clarify our thinking on the issue of
nonblocking writers.
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