
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 291

Enabling OS Research by Inferring Interactions
in the Black-Box GPU Stack∗

Konstantinos Menychtas Kai Shen Michael L. Scott
Department of Computer Science, University of Rochester

Abstract
General-purpose GPUs now account for substantial

computing power on many platforms, but the manage-
ment of GPU resources—cycles, memory, bandwidth—
is frequently hidden in black-box libraries, drivers, and
devices, outside the control of mainstream OS kernels.
We believe that this situation is untenable, and that ven-
dors will eventually expose sufficient information about
cross-black-box interactions to enable whole-system re-
source management. In the meantime, we want to enable
research into what that management should look like.

We systematize, in this paper, a methodology to un-
cover the interactions within black-box GPU stacks. The
product of this methodology is a state machine that
captures interactions as transitions among semantically
meaningful states. The uncovered semantics can be of
significant help in understanding and tuning application
performance. More importantly, they allow the OS ker-
nel to intercept—and act upon—the initiation and com-
pletion of arbitrary GPU requests, affording it full con-
trol over scheduling and other resource management.
While insufficiently robust for production use, our tools
open whole new fields of exploration to researchers out-
side the GPU vendor labs.

1 Introduction
With hardware advances and the spread of program-

ming systems like CUDA and OpenCL, GPUs have be-
come a precious system resource, with a major impact
on the power and performance of modern systems. In
today’s typical GPU architecture (Figure 1), the GPU
device, driver, and user-level library are all vendor-
provided black boxes. All that is open and documented is
the high-level programming model, the library interface
to programs, and some architectural characteristics use-
ful for high-level programming and performance tuning.

For the sake of minimal overhead on very low latency
GPU requests, the user-level library frequently com-
municates directly with the device (in both directions)
through memory-mapped buffers and registers, bypass-
ing the OS kernel entirely. A buggy or malicious appli-

∗This work was supported in part by the National Science Founda-
tion under grants CCF-0937571, CCR-0963759, CCF-1116055, CNS-
1116109, CNS-1217372, and CNS-1239423, as well as a Google Re-
search Award.

BUS

Application-Library interface

Hardware-Software interface

User-Kernel interface

driver driver

driver

Figure 1: The GPU software / hardware architecture,
with notes on interfaces and components. Gray areas in-
dicate open system / application components while black
areas indicate black-box components without published
specifications or behaviors.

cation can easily obtain an unfair share of GPU resources
(cycles, memory, and bandwidth). With no control over
such basic functions as GPU scheduling, the kernel has
no way to coordinate GPU activity with other aspects of
resource management in pursuit of system-wide objec-
tives. Application programmers, likewise, are seldom
able to reason about—much less correct—performance
anomalies due to contention or other interactions among
the GPU requests of concurrently running applications.1

When GPUs were of limited programmability, and ev-
ery request completed in a small, bounded amount of
time, kernel control and performance transparency were
much less important. As GPUs and other accelerators be-
come more and more central to general-purpose comput-
ing, affecting thus whole-system resource management
objectives, protected OS-level resource management will
inevitably become a pressing need. To satisfy this need,
the kernel must be able to identify and delay GPU re-
quest submissions, and tell when requests complete. A
clean interface to expose this information need not com-
promise either proprietary technology or backward com-
patibility, and will hopefully be provided by vendors in
the near future.

1We use the term request to refer to a set of operations that run with-
out interruption on the GPU— typically a GPU-accelerated compute or
shader function, or a DMA request.

292 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

In anticipation of a future in which production systems
manage GPUs and other accelerators as first-class com-
putational resources, we wish to enable research with ex-
isting black-box stacks. Toward that end, we present a
systematic methodology to uncover the same (limited)
information about black-box interactions that vendors
will eventually need to reveal. This includes the ioctl

and mmap calls used to allocate and map buffers, the lay-
out of command queues in memory shared between the
library and the device, and, within that memory, the lo-
cations of device registers used to trigger GPU activity
and of flags that announce request completion. While
our inference is unlikely to be robust enough for produc-
tion use, it provides a powerful tool for OS researchers
exploring the field of GPU management.

Our work has clear parallels in white and gray-box
projects, where vendors have supported certain free and
open-source software (FOSS) (e.g., Intel contributes to
the FOSS graphics stack used in GNU/Linux), or the
FOSS community has exhaustively uncovered and re-
built the entire stack. Projects such as Nouveau for
Nvidia devices have proven successful and stable enough
to become part of the mainline Linux kernel, and their
developed expertise has proven invaluable to our initial
efforts at reverse engineering. Our goal, however, is dif-
ferent: rather than develop a completely open stack for
production use—which could require running a genera-
tion or two behind—we aim to model the black-box stack
as a state machine that captures only as much as we need
to know to manage interactions with the rest of the sys-
tem. This machine can then be used with either FOSS or
proprietary libraries and drivers. Compatibility with the
latter allows us, in a research setting, to track the cutting
edge of advancing technologies.

Previous work on GPU scheduling, including
GERM [5], TimeGraph [11], and Gdev [12], has worked
primarily with FOSS libraries and drivers. Our goal
is to enable comparable OS-kernel management of
black-box GPU stacks. PTask [13] proposes a dataflow
programming model that re-envisions the entire stack,
eliminating direct communication between the library
and device, and building new functionality above the
binary driver. Pegasus [9] and Elliott and Anderson [6]
introduce new (non-standard) system interfaces that
depend on application adoption. By contrast, we
keep the standard system architecture, but uncover the
information necessary for OS control.

2 Learning Black-Box Interactions
Our inference has three steps: (a) collect detailed

traces of events as they occur across all interfaces; (b)
automatically infer a state machine that describes these
traces, and that focuses our attention on key structure
(loops in particular); (c) manually post-process the ma-

chine to merge states where appropriate, and to identify
transitions of semantic importance. We describe the first
two steps below; the third is discussed in Section 3.

Trace Collection We collect traces at all relevant
black-box interfaces (Figure 1). The application / library
interface is defined by library calls with standardized
APIs (e.g., OpenCL). The library / driver interface com-
prises a set of system calls, including open, read,
write, ioctl, and mmap. The driver / kernel interface is
also visible from the hosting operating system, with calls
to allocate, track, release, memory-map and lock in ker-
nel (pin) virtual memory areas. For the driver / hardware
interface, we must intercept reads and writes of memory-
mapped bus addresses, as well as GPU-raised interrupts.

We collect user- and kernel-level events, together with
their arguments, and merge them, synchronously and in
(near) order, into a unified kernel trace. Using DLL redi-
rection, we insert a system call to enable kernel log-
ging of each library API call. To capture memory ac-
cesses, we invalidate the pages of all virtual memory ar-
eas mapped during a tracked application’s lifetime so that
any access to an address in their range will trigger a page
fault. Custom page fault handlers then log and reissue ac-
cesses. We employ the Linux Trace Toolkit (LTTng) [4]
to record, buffer, and output the collected event traces.

For the purposes of OS-level resource management, it
is sufficient to capture black-box interactions that stem
from a GPU library call. Events inside the black boxes
(e.g., loads and stores of GPU memory by GPU cores,
or driver-initiated DMA during device initialization) can
safely be ignored.

Automatic State Machine Inference If we consider
the events that constitute each trace as letters from a fixed
vocabulary, then each trace can be considered as a word
of an unknown language. Thus, uncovering the GPU
state machine is equivalent to inferring the language that
produced these words—samples of event sequences from
realistic GPU executions. We assume that the language is
regular, and that the desired machine is a finite automa-
ton (DFA). This assumption works well in our context
for at least three reasons:

1. Automatic DFA inference requires no prior knowl-
edge of the semantics of the traced events. For instance,
it distinguishes ioctl calls with different identifiers as
unique symbols but it does not need to know the semantic
meaning of each identifier.

2. The GPU black-box interaction patterns that we are
trying to uncover are part of an artificial “machine,” cre-
ated by GPU vendors using standard programming tools.
We expect the emerging interactions to be well described
by a finite-state machine.

3. The state machine provides a precise, succinct ab-
straction of the black-box interactions that can be used to

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 293

Event type Meaning
ioctl:0x?? ioctl request : unique hex id
map:[pin|reg|fb|sys] mmap : address space
R:[pin|reg|fb|sys] read : address space
W:[pin|reg|fb|sys] write : address space
pin locked (pinned) pages
reg GPU register area
fb GPU frame buffer
sys kernel (system) pages

Table 1: Event types and (for map, R, and W) associated
address spaces constitute the alphabet of the regular lan-
guage / GPU state machine we are trying to infer.

drive OS-level resource management. It provides a nat-
ural framework in which vendors might describe inter-
black-box interactions without necessarily disclosing in-
ternal black-box semantics.

In the GPU state machine we aim to uncover, each
transition (edge between two adjacent states) is labeled
with a single event (or event type) drawn from an event
set (or alphabet of the corresponding language). In prac-
tice, we have discovered that bigger alphabets for state
transition events lead to larger and harder to comprehend
state machines. We therefore pre-filter our traces to re-
move any detail that we expect, a priori, is unlikely to
be needed. Specifically, we (a) elide the user-level API
calls, many of which are handled entirely within the li-
brary; (b) replace memory addresses with the areas to
which they are known to belong (e.g., registers, GPU
frame buffer, system memory); and (c) elide ioctl pa-
rameters other than a unique hex id. This leaves us with
the four basic event types shown in Table 1.

Given a set of pre-filtered traces, each of which repre-
sents the execution of the target GPU system on a given
program and input, a trivial (“canonical”) machine would
have a single start state and a separate long chain of states
for each trace, with a transition for every event. This
machine, of course, is no easier to understand than the
traces themselves. We wish to merge semantically equiv-
alent states so that the resulting machine is amenable to
human understanding and abstraction of interaction pat-
terns. Note that our goal is not to identify the small-
est machine that accepts the input event samples—the
single-state machine that accepts everything fits this goal
but it does not illustrate anything useful. So we must also
be careful to avoid over-merging.

State machine reduction is a classic problem that dates
from the 1950s [8], and has been studied in various forms
over the years [2, 3, 7]. The problem is also related to
state reduction for Hidden Markov Models [14]. Several
past approaches provide heuristics that can be used to
merge the states of the canonical machine. State merging
in Hidden Markov Models, however, is more applicable
to the modeling of (imprecise, probabilistic) natural phe-

nomena than to capturing the DFA of a (precise) artificial
system. Some reduction techniques target restricted do-
mains (like the reversible languages of Angluin [2]); the
applicability of these is hard to assess.

After reviewing the alternatives, we found Biermann
and Feldman’s k-tail state merging method [3] to be in-
tuitive and easy to realize. Under this method, we merge
states from which the sets of acceptable length-k-or-
shorter event strings are the same. That is, when looking
“downstream” from two particular states, if the sets of
possible event strings (up to length k) in their upcoming
transitions are exactly the same, then these two states are
considered semantically equivalent and are merged. We
make the following adaptations in our work:

• In theory, Biermann and Feldman’s original ap-
proach can capture the precise machine if one exists.
However, this guarantee [3, Theorem 5] requires an in-
feasible amount of trace data—exponential in the min-
imum string length that can distinguish two arbitrary
states. We apply k-tail state merging on the canonical
machine produced from a limited number of event sam-
ples, which can be easily collected. Our goal is not to
fully automate precise inference, but rather to guide hu-
man understanding—to identify the transitions of impor-
tance for scheduling and other resource management.

• Our limited-sample k-tail state merging typically
leaves us with a non-deterministic machine (multiple
transitions on a given event from a given state). We
perform additional state merging to produce a determin-
istic machine. Specifically, we repeatedly merge states
that are reached from a common preceding state with the
same transition event.

• As shown in Figure 2, larger ks yield larger ma-
chines. Intuitively, this happens because of more cau-
tious state merging: the farther we look ahead, the harder
it is to find states with exactly the same sets of upcom-
ing event strings. If k is too large, the resulting machine
will have too many states to guide human discovery of
interaction patterns. If k is too small, we will merge too
many states, leading to a loss of useful semantic infor-
mation. To balance these factors, we choose a k that is
in both a size plateau (the number of nodes in the graph
does not change with small changes in k) and a node-
complexity plateau (the number of nodes with in-degree
or out-degree larger than 1 does not change). We avoid
extreme values of k, favoring machines that are neither
trivial nor unnecessarily complex. We also exploit the
assumption that repetitive API-level commands should
manifest as small cycles; we pick the smallest nontrivial
machine in which such cycles appear.

294 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0 20 40 60 80 1000

200

400

600

800

1000

1200

1400

k

N
um

be
r o

f s
ta

te
s

in
 m

ac
hi

ne
Nvidia NVS295
Nvidia GTX275
Nvidia GTX670

Figure 2: Sizes of state machines inferred by k-tail state
merging for different values of k on three GPU devices.

3 State Machine Case Study
We have applied the techniques described in Sec-

tion 2 on a system with an Intel Xeon E5520 “Ne-
halem” CPU and three Nvidia GPUs: (a) the NVS295,
with a G98 chip core (CUDA 1.1 capability), (b) the
GTX275, with a G200b chip core (CUDA 1.3 capability,
“Telsa” micro-architecture), and (c) the GTX670, with a
GK104 chip core (CUDA 3.0 capability, “Kepler” micro-
architecture). We used a stock 3.4.7 Linux kernel and the
Nvidia 310.14 driver and related libraries (CUDA 5.0,
OpenCL 1.1 and OpenGL 4.2).

As input to our k-tail state merging, we used a col-
lection of 5 traces of 4 to 9 thousand events, captured
from running parameterized microbenchmarks. The mi-
crobenchmarks allow us to vary the numbers of con-
texts (GPU-accessible address spaces, analogous to CPU
processes) and command queues (in-memory buffers
through which requests are passed to the GPU); the num-
bers and types of requests; and the complexity of those
requests (i.e., how long they occupy the GPU). The in-
ferred state machines varied not only with k (Figure 2),
but also with the model of GPU, even with the same soft-
ware stack. Guided by the process described in Section 2,
we ended up choosing k=35 for the NVS295, k=37 for
the GTX275 and k=20 for the GTX670. As the earli-
est technology, the NVS295 is easiest to describe; we
present it below.

Understanding Inferred DFAs Figure 3 presents the
automatically inferred DFA for the NVS295 GPU for
k=35; for k=34 short loops (e.g. nodes 159, 177, 178)
disappear in favor of longer straight paths, while for
smaller/larger ks, the graph becomes either too trivial or
too complex to carry useful information. The seman-
tics of each state are not yet clear; standard reverse-
engineering techniques can help us attach meaning to
both the states and the transitions by utilizing previously
elided trace details. By guiding our attention to a hand-

0

1

89

90

91

124

125

126

239

248

127

141

142

143

144
146

154

155

145

157

158

159

160

176

177

179
184

219

168

169

170

171

172

175

178

183

195

196

203

204

205

208

209

210

212

213

214

218
156

221

222

227

223

226

229

230

235

231

233

234

237

238

ioctl:0x2a

...

ioctl:0x2a ...

ioctl:0x2a

ioctl:0x2a

ioctl:0x4d

...

ioctl:0x2a

...

ioctl:0x4a

R:pin

ioctl:0x4e

map:sys

ioctl:0x57

...

ioctl:0x2b

R:pin

ioctl:0x2b

ioctl:0x4a

R:pin

ioctl:0x4a

ioctl:0x59
ioctl:0x2a ioctl:0x4a

ioctl:0x4d ioctl:0xce

umap:sys... R:pin

ioctl:0x57

...
...

...R:pin

map:pin

ioctl:0x57

R:pin

W:pin

...

ioctl:0x4a

W:reg

W:sys

ioctl:0x2a W:reg

...

ioctl:0x4a

R:pin

ioctl:0x4e

...

ioctl:0x27
R:pin

map:pin

...

ioctl:0x4a

R:pin
ioctl:0x4e

...

ioctl:0x57ioctl:0x2b

umap:sys

umap:reg

...

...

umap:pin
umap:sys

umap:reg

...

...

umap:sys

umap:reg

ioctl:0x57

ioctl:0x57

ioctl:0x34

ioctl:0x37

unmap:pin

unmap:sys

ioctl:0x27

ioctl:0x4a

ioctl:0x27

Figure 3: Inferred state machine of Nvidia NVS295 for
k=35. Node “temperature” indicates frequency of oc-
currence. For clarity, some straight-line paths have been
collapsed to a single edge (event id “. . . ”).

ful of states, and thus events in the trace, the inferred
state-machine simplifies significantly the manual effort
involved in this step. For example, we discovered that
interrupts appear, in the general case, to occur at unpre-
dictable times with respect to other events, and can be
discarded.2

Identifying the start (0) and end nodes (234, 238) of
the DFA in Figure 3 is trivial. The first ioctl event after
node 0, with id 0x2a, should be associated with the con-
text setup process (CREATE), but is not unique to this
phase. We employ previously suppressed ioctl argu-
ments to uncover unique identifiers that act as invariants
appearing only at or after setup. Unmapping events ap-
pearing in the graph’s exit path (DESTROY) can be asso-
ciated with previously established mapping calls through
their arguments (map(0xDEAD) �= unmap(0xBEEF)).
Realizing that important mappings have been setup or
destroyed, allows us to expect (or stop waiting for) new
GPU access requests.

The “epicenter” of the graph of Figure 3 is clearly
node 159, so we focus on cycles around it. Since
our traces can create and setup multiple contexts, com-
mand queues, etc, ioctl events with id 0x2a and un-

2Options such as the cudaDeviceBlockingSync flag of the
CUDA API can direct the GPU to raise an interrupt at request comple-
tion. This option may allow completion to be detected slightly earlier
than it is with polling, but with either mechanism the state machine re-
alizes completion as a (post-polling or post-interrupt) read, by the user
library, of a reference counter updated by the GPU.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 295

map events appear naturally around node 159 in cycles.
Longer paths, composed primarily of ioctl and map-
ping calls (e.g., including nodes 158, 169 and 176) ini-
tialize buffers, establishing appropriate memory map-
pings for structures like the command queue. We identify
and understand their form by storing and tracking care-
fully encoded bit patterns as they appear in buffers trough
the trace. We also compare elided ioctl arguments with
addresses appearing as map / unmap arguments so as to
correlate events; we can thus know and expect particu-
lar buffers to be mapped and ready for use (INIT). For
example, we understand that ioctl id 0x57 seems to
associate the bus address and the system address of a
memory-mapped area, which is a necessary command
buffer initialization step.

Next, we focus on read / write patterns in the graph
(e.g. cycle including nodes 177, 178). DMA and com-
pute requests have a clear cause-effect relationship with
the W:reg event on edge 178→159: a write to a mapped
register must initiate a GPU request (USE). Similarly, the
spin-like R:pin loop (e.g., at node 177) follows many
GPU requests, and its frequency appears affected by the
complexity of the requests; spinning on some pinned
memory address must be a mechanism to check for com-
pletion of previously submitted requests. Last, we ob-
serve repetitive W:sys events (node 178) on the (request)
path to W:reg, implying a causal relationship between
the two. By manually observing the patterns exhibited by
regularly changing values, we discover that GPU com-
mands are saved in system memory buffers and indexed
via W:reg.

The DFA inferred for the GTX275 (Tesla) GPU ex-
hibits patterns very similar to the NVS295; the previ-
ous description applies almost verbatim. However, the
newer GTX670 (Kepler) has brought changes to the soft-
ware / hardware interface: it is W:fb events that cap-
ture the making of new DMA or compute / rendering re-
quests. This means that the memory areas that seem to be
causally related to GPU request submission are now ac-
cessible through the same region as the the frame buffer.
Subtle differences in the use of W:reg can be noticed
in the indexing pattern demonstrated by the W:fb argu-
ments. In all other aspects, the Kepler GPU state ma-
chine remains the same as in previous generations, at
least at the level of observable cross-black-box interac-
tions.

The GPU Driver State Machine Figure 4 presents a
distilled and simplified state machine (left) that captures
the behavior common to our three example GPUs, and
the OpenCL API calls that push the DFA into various
states (right). For clarity of presentation, we have omit-
ted certain global state and transition identifiers. Cor-
respondences for other libraries (OpenGL, CUDA) are

System Interface

CREATE

INITUSE

DESTROY

init

starting

ioctl:0x2a

ioctl

mmap
prepared

ioctl:0x4e

mlock
prepared

ioctl:0x27

mapped

mmap

bus-addr
set

ioctl:0x57

accessed

pinned

mlock

R/W

exiting

fini

ioctl unmap

User Interface

begin

create
clCreateContext,

clCreateCommandQueue,
clCreateBuffer,

...

DMA
clEnqueueWriteBuffer,

...

run
clEnqueueNDRangeKernel,

...

wait
clFinish,
...

release
clReleaseMemObject,

...

end

Figure 4: Semantically rich user-level API events can be
mapped to state transitions at the system level.

similar. We have confirmed the validity of this state ma-
chine using realistic OpenCL / GL and CUDA applica-
tions. There exist only quantitative differences in the
traces collected from 3D and compute libraries, such as
the number and size of buffers mapped or variability in
some elided ioctl parameters. Such differences do not
alter the higher-level GPU driver model produced.

A GPU accelerated application typically begins with a
sequence of ioctl, memory mapping and locking calls
to build a new context (CREATE) and associate with it a
set of memory areas (INIT). A small set of those, typi-
cally a command buffer and a circular queue of pointers
to commands (the ring buffer), comprise the GPU com-
mand queue—a standard producer consumer communi-
cation mechanism [11]. Once initialization is complete,
stores to memory-mapped GPU registers (USE) are used
to point the GPU to new DMA and compute / rendering
requests. Spins on associated system addresses (USE)
are used to notice request completion. Cross references
among these areas and elided tracing information make
it possible to identify them uniquely. Unmapping op-
erations (DESTROY) mark the ends of lifetimes of the
command queue’s buffers, and eventually context.

Given an abstract GPU state machine, one can build
kernel-level mechanisms to intercept and intercede on
edges / events (e.g. as appearing in Figure 4) that indicate
preparation and utilization of the GPU ring buffer. Inter-
cession in turn enables the construction of GPU resource
managers that control the software / hardware interface,
independently of the driver, yet in the protected setting
of the OS kernel.

296 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

4 Conclusions and Future Work
We have outlined, in this paper, a systematic method-

ology to generate, analyze, and understand traces of
cross-black-box interactions relevant to resource man-
agement for systems such as those of the GPU soft-
ware / hardware stack. We used classic state machine
inferencing to distill the numerous interactions to just
a handful, and with the help of common reverse engi-
neering techniques, revealed and assigned semantics to
events and states that characterize an abstract black-box
GPU state machine. In the process, we uncovered details
about how OpenCL API requests (e.g., compute kernels)
are transformed into commands executed on the GPU.

The suggested methodology is not fully automated,
but significantly simplifies the clean-room reverse engi-
neering task by focusing attention on important events.
While we do not claim completeness in the inferred state
machine description, we have defined and tested almost
all combinations of run-time–affecting parameters that
the library APIs allow to be set (e.g., multiple contexts,
command queues, etc), and we have used a variety of
graphics and compute applications as input to the infer-
ence process. No qualitative differences arise among dif-
ferent APIs: the inferred results remain the same. These
experiments give us substantial confidence that the ab-
stract, distilled machine captures all aspects of black-box
interaction needed to drive research in OS-level GPU re-
source management. Validation through comparison to
FOSS stacks is among our future research plans.

While our case study considered GPUs from only a
single vendor (Nvidia), our methodology should apply
equally well to discrete GPUs from other vendors (e.g.,
AMD and Intel) and to chip architectures with integrated
CPU and GPU. As long as the GPU remains a co-
processor, fenced behind a driver, library, and run-time
stack, we expect that the command producer / consumer
model of CPU / GPU interactions will require a similar,
high-performance, memory-mapped ring-buffer mecha-
nism. Available information in the form of previously
released developer manuals from vendors like AMD [1]
and Intel [10] supports this expectation.

The developed state machine provides application pro-
grammers with insight into how their requests are han-
dled by the underlying system, giving hints about pos-
sible performance anomalies (e.g., request interleaving)
that were previously hard to detect. More important, the
machine identifies and defines an interface that can al-
low more direct involvement of the operating system in
the management of GPUs. To effect this involvement,
one would have to intercept and intercede on request-
making and request-completion events, allowing an ap-
propriate kernel module to make a scheduling decision
that reflects its own priorities and policy. We consider
the opportunity to build such OS-kernel level schedulers

today, for cutting edge GPU software / hardware stacks,
to be an exciting opportunity for the research community.

Acknowledgment
We are grateful to Daniel Gildea for helpful conversa-

tions on language inference. We also thank the anony-
mous reviewers and our shepherd Rama Ramasubrama-
nian for comments that helped improve this paper.

References
[1] AMD. Radeon R5xx Acceleration: version 1.2, 2008.
[2] D. Angluin. Inference of reversible languages. Journal of

the ACM, 29(3):741–765, July 1982.
[3] A. W. Biermann and J. A. Feldman. On the synthesis

of finite-state machines from samples of their behavior.
IEEE Trans. on Computers, 21(6):592–597, June 1972.

[4] M. Desnoyers and M. Dagenais. The LTTng tracer:
A low impact performance and behavior monitor for
GNU/Linux. In Ottawa Linux Symposium, pages 209–
224, Ottawa, Canada, July 2006.

[5] A. Dwarakinath. A fair-share scheduler for the graphics
processing unit. Master’s thesis, Stony Brook University,
Aug. 2008.

[6] G. A. Elliott and J. H. Anderson. Globally scheduled real-
time multiprocessor systems with GPUs. Real-Time Sys-
tems, 48(1):34–74, Jan. 2012.

[7] K.-S. Fu and T. L. Booth. Grammatical inference: Intro-
duction and survey. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 8(3):343–375, May 1986.

[8] S. Ginsburg. A technique for the reduction of a given
machine to a minimal-state machine. IRE Trans. on Elec-
tronic Computers, EC-8(3):346–355, Sept. 1959.

[9] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ran-
ganathan. Pegasus: Coordinated scheduling for virtual-
ized accelerator-based systems. In USENIX Annual Tech-
nical Conf., Portland, OR, June 2011.

[10] Intel. OpenSource HD Graphics Programmers Reference
Manual: volume 1, part 2, 2012.

[11] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU scheduling for real-time multi-tasking
environments. In USENIX Annual Technical Conf., Port-
land, OR, June 2011.

[12] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev:
First-class GPU resource management in the operating
system. In USENIX Annual Technical Conf., Boston, MA,
June 2012.

[13] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: Operating system abstractions to man-
age GPUs as compute devices. In 23th ACM Symp. on
Operating Systems Principles, pages 233–248, Cascais,
Portugal, Oct. 2011.

[14] A. Stolcke and S. M. Omohundro. Hidden Markov model
induction by Bayesian model merging. In Advances in
Neural Information Processing Systems 5, pages 11–18,
San Mateo, CA, 1993.

