
Fast Dual Ring Queues⇤

Joseph Izraelevitz Michael L. Scott

Technical Report #990

Department of Computer Science, University of Rochester
{jhi1,scott}@cs.rochester.edu

January 2014

Abstract

In this paper, we present two new FIFO dual queues. Like all dual queues, they arrange for dequeue
operations to block when the queue is empty, and to complete in the original order when data becomes
available. Compared to alternatives in which dequeues on an empty queue return an error code and
force the caller to retry, dual queues provide a valuable guarantee of fairness.

Our algorithms, based on Morrison and Afek’s LCRQ from PPoPP’13, outperform existing dual
queues—notably the one in java.util.concurrent—by a factor of four to six. For both of our
algorithms, we present extensions that guarantee lock freedom, albeit at some cost in performance.

1 Introduction

A container object (e.g., a queue) that supports insert (enqueue) and remove (dequeue) methods
must address the question: what happens if the element one wants to remove is not present? The two obvious
answers are to wait or to return an error code (or signal an exception). The latter option leads to spinning
in applications that really need to wait (repeat until (x = try dequeue()) != EMPTY). The
former option is problematic in nonblocking algorithms: how can a method be nonblocking if it sometimes
blocks?

Dual data structures, introduced by Scherer and Scott [10], extend the notion of nonblocking progress
to partial methods—those that must wait for a precondition to hold. Informally, a partial method on a non-
blocking dual structure is redefined to be a total method that either performs the original operation (if the
precondition holds) or else modifies the data structure in a way that makes the caller’s interest in the precon-
dition (its request) visible to subsequent operations. In a busy-wait implementation, the request might be a
pointer to a thread-local flag on which the stalled thread is spinning; in a scheduler-based implementation,
it might be a reference to a semaphore on which the thread is suspended.

Compared to a traditional method that returns an error code, forcing the caller to retry the operation in
a loop, dual data structures offer two important advantages: First, the code of the structure itself obtains
explicit control over the order in which stalled methods will complete when preconditions are satisfied (it
might, for example, give priority to the operation whose request was the first to linearize). Second, requests
can (and, in the original formulation, must) be designed in such a way that stalled threads impose no burden

⇤This work was supported in part by NSF grants CCF-0963759, CCF-1116055, CNS-1116109, CNS-1319417, and CCF-
1337224, and by support from the IBM Canada Centres for Advanced Study.

1

on active threads—in particular, that they induce no memory contention. Scherer et al. [9] report that dual
versions of the java.util.concurrent SynchronousQueue class improved the performance of
task dispatch by as much as an order of magnitude.

The Java dual structures were based on the well-known M&S queue [6] and (for the “unfair” non-FIFO
version) Treiber stack [11]. Since their original development, significantly faster concurrent queues have
been devised. Notable among these is the linked concurrent ring queue (LCRQ) of Morrison and Afek [7].
While the linked-list backbone of this queue is borrowed from the M&S queue, each list node is not an
individual element but rather a clever, fixed-length buffer dubbed a concurrent ring queue (CRQ). Most
operations on an LCRQ are satisfied by an individual ring queue, and are extremely fast. The secret to
this speed is the observation that when multiple threads contend with compare-and-swap (CAS), only one
thread will typically succeed, while the others must retry. By contrast, when multiple threads contend with
a fetch-and-increment (FAI) instruction, the hardware can (and indeed, does, on an x86 machine) arrange
for all threads to succeed, in linear time [2]. By arbitrating among threads mainly with FAI, the CRQ—and
by extension the LCRQ—achieves a huge reduction in memory contention.

Unfortunately, like most nonblocking queues, the LCRQ “totalizes” dequeue by returning an error
code when the queue is empty. Threads that call dequeue in a loop, waiting for it to succeed, reintroduce
contention, and their requests, once data is finally available, may be satisfied in an arbitrary (i.e., unfair)
order. In this paper, we describe two dual versions of the LCRQ. In one version, all elements in a given
CRQ are guaranteed to have the same “polarity”—they will all be data or all be requests (“antidata”). In
the other version, a given CRQ may contain elements of both polarities. In effect, these algorithms combine
the fairness of Scherer et al.’s M&S-based dualqueues with the performance of the LCRQ. Within a single
multicore processor, throughput scales with the number of cores (synchronization is not the bottleneck).
Once threads are spread across processors, throughput remains 4–6⇥ higher than that of the M&S-based
structure.

We review the operation of Morrison and Afek’s LCRQ in Section 2. We introduce performance-oriented
(but potentially blocking) versions of our new queues in Sections 3 and 4, and lock-free variants in Section 5.
Preliminary performance results appear in Section 6. Finally, in Section 7, we summarize our findings and
make suggestions for future work.

1.1 Related Work

In addition to the original dual queue and dual stack of Scherer and Scott [10], extant nonblocking dual
data structures include the java.util.concurrent Exchanger of Scherer et al. [8] and a variety
of synchronous queues, in which enqueuers and dequeuers both wait for a matching partner. Synchronous
queue examples include the flat combining version of Hendler et al. [4] and the elimination-diffraction trees
of Afek et al. [1]. The authors of the former report it to be faster than the latter under most circumstances.

Given the symmetry between enqueuers and dequeuers, the size of a synchronous queue is bounded
by the number of threads, and the flat combining synchronous queue in particular is optimized to exploit
this symmetry for throughput (rather than fairness). For purposes of comparison, our results in Section 6
consider an asymmetric dual queue based on the general paradigm of flat combining [3].

1.2 Notation and Terminology

Dualism “Dual” data structures take their name from the ability of the structure to hold either data or
antidata. In a queue, where any datum can be used to satisfy any request, any quiescent state will always

2

find the structure empty, populated with data, or populated with antidata—a mix can only occur when the
structure is in transition and some operation has yet to complete (i.e., to return or wait for data).

Dualism implies that a thread calling the public enqueue method may either enqueue data or dequeue
antidata “under the hood.” Likewise, a thread calling the public dequeue method may either dequeue data
or enqueue antidata. When discussing dual algorithms, we will thus refer to the polarity of both threads and
the structure, with a positive polarity referring to data, and a negative polarity referring to antidata. Thus, a
thread calling the public enqueue method attains a positive polarity; it will either enqueue its data into a
positive queue or dequeue antidata from a negative queue. Conversely, a thread calling the public dequeue
method attains a negative polarity; it will either dequeue data from a positive queue or enqueue antidata
into a negative queue. The only asymmetry—an important one—is that only negative threads will ever wait:
calls to the public enqueue are always total.

Atomic Operations and Memory Model We prototyped out algorithms in C++ using the g++ compiler
and C++11 atomic operations. Our code assumes the availability of (hardware-supported) compare-and-
swap (CAS), though load-linked / store-conditional would also suffice. To resolve the ABA problem, we
assume that we can store pointers in half the CAS width, either by forcing a smaller addressing mode or
by using a double-wide CAS. We also assume the availability of a hardware fetch-and-increment (FAI)
instruction that always succeeds.

Our pseudocode, as written, assumes sequential consistency for simplicity. For brevity, we exclude the
code for garbage collection. Our C++ prototype uses store-load fences where necessary for correctness, and
delays storage reclamation using hazard pointers [5]. Complete pseudocode can be found in an appendix;
full source code will be made available prior to publication of this paper.

2 LCRQ Overview

We here provide a brief overview of the CRQ and LCRQ algorithms from which our single and multi polarity
dual ring queues are derived. For a more complete treatment of the original algorithms, readers may wish to
consult the paper of Morrison and Afek [7].

The LCRQ is a major enhancement of the M&S linked-list queue [6]. Instead of an individual data
element, each of its list nodes comprises a fixed-size FIFO buffer called a Concurrent Ring Queue (CRQ).
To ensure forward progress and permit unbounded growth, the CRQ provides “tantrum” semantics: at any
point it can “throw a tantrum,” closing the buffer to any further enqueues. Tantrums can occur if, for instance,
the circular buffer is full or if an enqueuer repeatedly loses a race with another thread, and wishes to avoid
starvation. The linked list of the LCRQ handles the tantrum cases by appending additional CRQs as needed,
allowing the queue to grow without bound.

2.1 CRQ Algorithm

The CRQ (Figure 1) consists of a circular array of R elements. The array is indexed by two counters, head
and tail, whose remainders modulo R are used to index into the array. Each element of the array, called
a Slot, contains a data value (val) and the index (idx) of this data. When empty, the slot’s val member
is set to null. In all cases, we maintain the invariant 8 i ring[i].idx ⌘ i modR. The closed bit
on the tail counter is used to throw a tantrum and inhibit further enqueues.

3

1 tuple Slot{
2 bool safe; // 1 bit

3 int idx; // 31 bits

4 Object val; // 32 bits (a pointer or int)

5 // padded to cache line size

6 };
7 class CRQ { // fields are on distinct cache lines

8 int head; // 32 bits

9 <bool closed, int idx> tail; // 1 bit, 31 bits

10 CRQ* next;
11 Slot ring[R]; // initialize ring[i]=<1,i,NULL>

12 };

Figure 1: CRQ data types

2.1.1 Ideal Operation

Ideally, an enqueue operation simply:

1. performs a FAI on the tail counter to retrieve an index;

2. performs a mod operation on the index to identify a slot in the buffer (ring);

3. uses compare-and-swap (CAS) to insert the new data value into the chosen slot.

Conversely, the ideal dequeue operation:

1. performs a FAI on the head counter to retrieve an index;

2. performs a mod operation on the index to identify a slot;

3. retrieves the current value in the slot and uses CAS to switch it to null.

Enqueue and dequeue operations that use the same index are said to correspond; each dequeue must
retrieve the data stored by its corresponding enqueue.

2.1.2 Enqueue Exceptions to Ideal Operation

While CRQ operations tend to perform ideally most of the time, there are two cases in which an enqueue
cannot do so:

Case 1e There is already data in the slot. Since the buffer is circular, this may be data that was stored with
a smaller index and has yet to be dequeued, indicating we have wrapped all the way around the buffer.

Case 2e Evidence suggests (see below) that the corresponding dequeue operation may already have run,
implying that any data we enqueue would never be dequeued. In this case we cannot use the slot, even
if it is empty.

In either of these cases, the enqueuer skips the index, and counts on the dequeuer to recover.

4

2.1.3 Dequeue Exceptions to Ideal Operation

There are also two cases in which a dequeue cannot perform ideally:

Case 1d The corresponding enqueue has not yet run. In this case the dequeue operation must leave some
signal for its corresponding enqueue to prevent it from completing. When the enqueue operation
reaches this index, it will be in Case 2e.

Case 2d The corresponding enqueue already ran, but skipped this index due to either Case 1e or Case 2e
(the latter may occur because of Case 1d at some previous index that mapped to the same slot).

The exception cases for dequeue are identified by finding either the wrong index in a slot or a null value;
in both cases we need to leave a signal for the corresponding enqueue:

• If the slot is empty, we increase its index (idx) to the dequeuer’s index plus R.

• Alternatively, if the slot holds data, we clear the slot’s safe bit.

These signals constitute the evidence seen in Case 2e: an enqueuer must skip any slot that has an index
larger than its own or that is not marked as safe. Note that an erroneous signal (sent when an enqueuer has
already skipped a slot) does not compromise correctness: if the slot is empty, the dequeuer’s index plus R
will be the right index for the next possible enqueuer; if the slot is full, a cleared safe bit will be ignored
by any delayed but logically earlier dequeuer. In the worst case, an unsafe slot may become unusable for an
indefinite period of time (more on this below).

2.1.4 Final Notes on the CRQ

The CRQ algorithm also provides code for several additional cases:

Queue may be full: An enqueue must fail when the CRQ is full. This case can be detected by observing
that head � tail > R. In this case we throw a tantrum and close the queue.

Enqueues are otherwise unable to complete: If slots have become unsafe, or if an enqueue chases a series
of dequeues in lock-step, the enqueue may fail to make progress even when the queue is not full. In
this case the enqueuer can close the CRQ arbitrarily, forcing execution to continue to the next one in
the larger LCRQ list.

Queue is empty: This case can be detected by observing that head � tail. Prior to returning and letting
the caller retry, the we check to see whether head has moved a long way ahead of tail. If so,
the next enqueue operation would end up performing a very large number of FAI operations to bring
tail forward to match. A special fixState() routine uses CAS to perform the catch-up in a
single step.

Slot can be made safe: Once a slot has been made unsafe, it generally remains unsafe, forcing it to be
skipped by future enqueues. However, if head is less than the current enqueuer’s index, that enqueuer
knows that its corresponding dequeuer has not completed, and, if the slot is empty, it can enqueue into
the unsafe slot, transitioning it to safe in the process.

5

13 class SPDQ {
14 CRQ* head, tail;
15 };
16 class SP_CRQ : CRQ {
17 bool sealed;
18 bool polarity;
19 bool seal();
20 };

Figure 2: SPDQ data types

2.2 LCRQ Algorithm

The LCRQ is a nonblocking FIFO linked list of CRQs. Enqueuing into the LCRQ is equivalent to enqueuing
into the tail CRQ of the linked list, and dequeuing from the LCRQ is equivalent to dequeuing from the head
CRQ. Beyond these simple behaviors, additional checks detect when to add new CRQs to the tail of the
LCRQ and when to delete CRQs from the head. As both of our dual queues significantly rework this section
of the original algorithm, we omit the details here.

3 Single Polarity Dual Ring Queue

In the original dual queue of Scherer and Scott [10] (hereinafter the “S&S dual queue”), the linked list that
represents the queue always contains either all data or all antidata. In effect, queue elements represent the
operations (enqueues [data] or dequeues [antidata]) of which there is currently an excess in the history of
the structure.

By contrast, slots in a ring queue algorithm are pre-allocated, and acquire their polarity from the opera-
tion (enqueue or dequeue) that encounters them first. A ring-queue–based dual queue may thus contain
elements of both polarities. Suppose, for example, that an enqueue operation acquires an index correspond-
ing to the last remaining (most recently enqueued) antidata in the queue. It can complete and return despite
the fact that some of its predecessor enqueues, with smaller indices, are running slowly and have yet to
return. A newly arriving enqueue must then insert data despite the fact that not-yet-fully-retrieved antidata
still sits in other slots.

In our single polarity dual ring queue (SPDQ), each ring in the list has a single polarity—it can hold
only data or only antidata. When the history of the queue moves from an excess of enqueues to an excess of
dequeues, or vice versa, a new CRQ must be inserted in the list. This strategy has the advantage of requiring
only modest changes to the the underlying CRQ. Its disadvantage is that performance may be poor when
the queue is near empty and “flips” frequently from one polarity to the other.

3.1 Overview

To ensure correct operation, we maintain the invariant that all non-closed rings always have the same polar-
ity. Specifically, we ensure that the queue as a whole is always in one of three valid states:

Uniform: All rings have the same polarity.

Twisted: All rings except the head have the same polarity, and the head is both empty and closed (sealed).

6

(a) Uniform, negative polarity (b) Empty, sealed head, negative polarity

(c) Twisted, negative polarity (d) Uniform, positive polarity

Figure 3: Flipping the polarity of the SPDQ

Empty: Only one ring exists, and it is both empty and closed.

Unless an operation discovers otherwise, it assumes the queue is in the uniform state. Upon beginning
an operation, a thread will check the polarity of the head ring, and from there extrapolate the polarity of the
queue. If it subsequently discovers that the queue is twisted, it attempts to remove the head and retries. If it
discovers that the queue is empty, it creates a new ring, enqueues itself in that ring, and appends it to the list.

Since a public enqueue operation may end up dequeuing antidata internally, and a public dequeue
method may end up enqueuing data, depending on the internal state of the queue, we combine these into a
single “denqueue” operation, which handles both.

3.2 Modifications to the CRQ

Our SP CRQ variant of the CRQ class incorporates three changes. The first is trivial: we add a boolean
variable polarity that indicates the type of the ring.

Our second change ensures, when data “mixes” with existing antidata, that the waiting dequeuer (neg-
ative thread) is alerted (“satisfied”), and can return. This requires that the positive thread pass its data to
its counterpart using the pointer found in the queue. This pointer dereference occurs within the code of the
SP CRQ.

Our third change adds a seal method and a boolean field sealed. The method attempts to atomically
close the SP CRQ if it is empty. Once seal succeeds, the SP CRQ is closed, preventing additional enqueues,
and the SP CRQ is empty, allowing it to be removed from the linked list. Once the sealed method returns true,
the ring may safely be removed from the queue. Our implementation of seal is based on the fixState
method in the original CRQ.

3.3 Internal Enqueue

Once a thread has determined the polarity of the overall queue, it attempts the appropriate operation on the
correct ring (either the head or tail).

7

21 Object SPDQ:dequeue() {
22 waiter* w = new waiter();
23 // waiter contains slot to place satisfying data

24 return denqueue(w, ANTIDATA);
25 }
26 void SPDQ:enqueue(Object val) {
27 return denqueue(val, DATA);
28 }
29 Object SPDQ:denqueue(Object val, bool polarity) {
30 SP_CRQ* h;
31 while (true) {
32 h = head; // read polarity of queue

33 if (h->polarity == polarity) {
34 v = internal_enqueue(h, val, polarity);
35 if (v == OK) return OK;
36 }
37 else {
38 v = internal_dequeue(val, polarity);
39 if (v != TOO_SLOW) return v;
40 }
41 // if internal operation failed,

42 // head has changed, so retry

43 }
44 }

Figure 4: SPDQ denqueue

In the internal enqueue operation (Fig. 5), we first read tail and verify both that it is indeed the tail
of the list [6] and that the queue is not twisted. If one of these conditions does not hold, we correct it by
moving tail or head accordingly. We then attempt to enqueue ourselves into the tail ring. If we succeed,
we are done, and either return or wait, depending on our polarity. If we fail, indicating that the tail ring is
closed, we create a new ring, enqueue into it, and append it to the list.

3.4 Internal Dequeue

In the internal dequeue operation (Fig. 6), we again verify we have the correct head. If so, we dequeue from
it. If we succeed, we are finished. If not, the head ring is empty and should be removed. If the next ring
exists, we simply swing the head pointer and continue there. If head->next is null, then the head ring
is also the tail, and the entire queue is empty. If we can seal the head, we may flip the queue’s polarity
(Fig. 3). We flip the queue by adding a new ring of our own polarity, enqueuing ourselves into it, attaching
to the head ring, and swinging the tail and head pointers. Prior to the final CAS, the queue is twisted. That
is, the head ring is both closed and empty, but the remainder of the queue is of a different polarity. Any
subsequent enqueue or dequeue will fix this state prior to continuing.

3.5 Forward Progress

Public enqueue (positive) operations inherit lock-free progress from the LCRQ algorithm [7]. In the worst
case, an enqueuer may chase an unbounded series of dequeuers around a ring buffer, arriving at each slot
too late to deposit its datum. Eventually, however, it “loses patience,” creates a new ring buffer containing

8

45 Object SPDQ:internal_enqueue(SP_CRQ* h, Object val, bool polarity) {
46 SP_CRQ* t, next, newring;
47 while (true) {
48 t = tail;
49 // verify tail is the actual tail

50 if (t->next != NULL) {
51 next = t->next;
52 (void) CAS(&this->tail, t, next);
53 continue;
54 }
55 // verify correct polarity (detect twisting)

56 if (t->polarity != polarity) {
57 (void) CAS(&this->head, h, h->next);
58 return TWISTED;
59 }
60 // attempt enqueue on tail

61 if (t->enqueue(val) == OK) {
62 if (polarity == ANTIDATA) return spin((waiter*)val);
63 else return OK;
64 }
65 // else, the tail is closed

66 newring = new SP_CRQ(polarity);
67 newring->enqueue(val);
68

69 // append ring

70 if (CAS(&t->next,NULL,newring)) {
71 (void) CAS (&this->tail, t, newring);
72 if (polarity == ANTIDATA) return spin((waiter*)val);
73 else return OK;
74 }
75 }
76 }

Figure 5: SPDQ internal enqueue

its datum, closes the current ring, and appends the new ring to the list. As in the M&S queue [6], the append
can fail only if some other thread has appended a ring of its own, and the system will have made progress.

Because they may wait for data, public dequeue (negative) operations are more subtle. Scherer and
Scott [10] model partial operations on dual data structures in terms of a potentially unbounded sequence of
nonblocking operations. The first linearizes the request for data of the calling thread, T . The last operation
(the “successful follow-up”) linearizes T ’s receipt of that data. In between, unsuccessful follow-up oper-
ations perform only local memory accesses, inducing no load on other threads. Finally, the total method
(in our case, an enqueue) that satisfies T ’s pending request must ensure that no successful follow-up op-
eration by another waiting thread can linearize in-between it (the satisfying operation) and T ’s successful
follow-up.

This final requirement is where the SPDQ as presented so far runs into trouble. A positive thread that
encounters a negative queue must perform two key operations: remove the antidata from the queue and alert
the waiting thread. In the S&S dual queue, it alerts the waiting thread first, by “mixing” its data into the
antidata node. After this, any thread can remove the mixed node from the queue.

In the SPDQ as presented so far, an antidata slot is effectively removed from consideration by other

9

77 Object SPDQ:internal_dequeue(Object val, bool polarity) {
78 SP_CRQ* h, next, newring;
79 while (true) {
80 h = this->head;
81 // verify queue polarity didn’t change

82 if (h->polarity == polarity) return TOO_SLOW;
83

84 // dequeue from head

85 v = h->dequeue(val);
86 if (v != EMPTY) return v;
87

88 // seal empty SP_CRQ so we can remove it

89 else if (!h->seal()) continue;
90

91 // at this point head SP_CRQ is sealed

92

93 // swing the head

94 if (h->next != NULL) {
95 (void) CAS(&this->head, h, h->next);
96 }
97 // or add a new tail and swing head to it

98 else {
99 newring = new SP_CRQ*(polarity);

100 newring->enqueue(val);
101 // append our new ring to list

102 // which will cause twisting

103 if (CAS(&h->next, NULL, newring)) {
104 (void) CAS(&this->tail, h, newring);
105 // swing head to fix twisting

106 (void) CAS(&this->head, h, h->next);
107 if (polarity==ANTIDATA) return ((waiter*)val)->spin();
108 else return v;
109 }
110 }
111 }
112 }

Figure 6: SPDQ internal dequeue

threads the moment the corresponding enqueuer performs its FAI. Mixing happens afterward, leaving a
window in which the enqueuer, if it stalls, can leave the dequeuer waiting indefinitely. In practice, such
occurrences can be expected to be extremely rare, and indeed the SPDQ performs quite well, achieving
roughly 85% of the throughput of the original LCRQ while guaranteeing FIFO service to pending requests
(Sec. 6). In Section 5 we will describe a modification to the SPDQ that closes the preemption window,
providing true lock-free behavior (in the dual data structure sense) at essentially no additional performance
cost.

4 Multi Polarity Dual Ring Queue

In contrast to the SPDQ, the multi polarity dual ring queue (MPDQ) incorporates the flipping functionality
at the ring buffer level, and leaves the linked list structure of the LCRQ mostly unchanged. The MPDQ

10

113 tuple MP_Slot {
114 bool safe; // 1 bit

115 bool polarity; // 1 bit

116 int idx; // 30 bits

117 int val; // 32 bits (int or pointer)

118 // padded to cache line size

119 };
120 class MP_CRQ { // fields are on distinct cache lines

121 <bool closing, int idx> data_idx; // 1, 31 bits

122 <bool closing, int idx> antidata_idx; // 1, 31 bits

123 <bool closed, int idx> closed_info; // 1, 31 bits

124 MP_CRQ* next;
125 MP_Slot ring[R]; // initialize ring[i]=<1,i,NULL>

126 };
127 class MPDQ { // fields are on distinct cache lines

128 MP_CRQ* data_ptr;
129 MP_CRQ* antidata_ptr;
130 };

Figure 7: MPDQ data types

takes advantage of the pre-allocated nature of ring slots, discussed at the beginning of Section 3. For a dual
structure, it does not matter whether data or antidata is first placed in a slot; either can “mix” with the other.

4.1 Overview

In their original presentation of the CRQ [7], Morrison and Afek began by describing a hypothetical queue
based on an infinite array. Similar intuition applies to the MPDQ. Since we are matching positive with
negative operations, each thread, on arriving at a slot, must check if its partner has already arrived. If
so, it mixes its data (antidata) with the antidata (data) of the corresponding operation. If not, it leaves its
information in the slot (a negative thread also waits).

To maintain the illusion of an infinite array, we must keep track of both data and antidata indices. These
indices, as in the LCRQ, have two components:

1. which ring in the linked list to use

2. which ring slot to use

In contrast to the LCRQ case, we do not care which kind of operations are currently ahead of the other—
only that a newly arriving operation can identify the correct ring and index to use. To accommodate these
changes, we rename the indices and pointers (Fig. 7). We also add a bit to each slot to identify its polarity.

Figure 8 illustrates how data idx and antidata idx move past one another within the MP CRQ.
The biggest challenge in the new design is the need to stop both indices at a common slot when closing a
ring; we discuss this challenge in Section 4.3.

4.2 MP CRQ denqueue()

As the MPDQ is more symmetric than the SPDQ, we can combine all ring operations into a single denqueue
method. Each thread, after choosing the ring on which to operate, obtains a slot from its respective index. It
then attempts to dequeue its counterpart or, failing that, to enqueue itself.

11

(a) Initial state

(b) After several
negative denqueues

(c) After several
positive denqueues

Figure 8: Flipping the polarity of the MP CRQ

Note that at no point will the MP CRQ ever return EMPTY, as any thread that believes the queue is
empty would progress to the next slot and enqueue itself. For similar reasons, the fixState method of
the original CRQ goes away, since one index passing another is considered normal operation.

4.2.1 Ideal Operation

Ideally, a denqueue operation:

1. performs a FAI on the data idx or antidata idx of the chosen ring, to obtain an index;

2. executes a mod operation on the index to identify a slot in the buffer (ring);

3. if arriving first, uses CAS to insert the new datum or antidatum into the array. If a negative thread, it
waits for its corresponding operation;

4. if arriving second, retrieves the current value in the slot and uses CAS to switch it to null. If a
positive thread, it satisfies the waiting negative thread.

4.2.2 MPDQ Exceptions to Ideal Operation

Like the LCRQ, the MPDQ tends to perform ideally most of the time. When it cannot do so, one of the
following must have occurred:

Slot is occupied There is already data is the slot, but it is not from the corresponding thread. In this case,
wrap-around has occurred. We handle it as in the LCRQ, by clearing the safe bit. Note that since
both positive and negative threads attempt to enqueue, whichever sets the bit will successfully signal
its counterpart.

12

Slot is unsafe In this case, our counterpart has possibly already arrived but was unable to use the slot, and
cleared the safe bit. If we were to enqueue here, our counterpart might never receive it, so we simply
skip the slot. In principle, if we verified that our counterpart has yet to begin, we could make the slot
safe again, as in the LCRQ. Results of our testing suggest that this optimization is generally not worth
the additional cache line miss to check the opposite polarity index. We therefore give up on unsafe
slots permanently, falling back on the ability to add additional rings to the backbone list.

Ring is full This condition can be detected by observing that |data idx � antidata idx | � R. As
in the LCRQ, we close the ring.

Livelock In a situation analogous to pathological cases in the LCRQ and SPDQ (as discussed in Sec-
tion 3.5), it is possible in principle for the ring to be full or nearly full of non-null slots, each of
which is pending mixing by some preempted thread. In this case, an active thread attempting to
make progress may repeatedly mark slots unsafe. To preclude this possibility, each thread keeps a
starvation counter. If it fails to make progress after a set number of iterations, it closes the
queue and moves on.

Counter overflow On a 32-bit machine, we can allocate only 30 bits to each index. This is a small enough
number to make overflow a practical concern. Our implementation notices when the index nears its
maximum, and closes the queue. Similar checks, not shown in the pseudocode, are used in all the
tested algorithms.

4.3 Closing the MP CRQ

As both indices in the MP CRQ are used for enqueuing, they both must be closed simultaneously. Other-
wise a thread that switches from dequeuing data to enqueuing antidata (or vice versa) might find itself in the
wrong ring buffer. Our closing mechanism takes advantage of the observation that the actual index at which
the queue is closed does not matter, so long as it is the same for both. Thus, we change the meaning of the
spare bit for both the data idx and antidata idx from closed to closing. The new interpretation
implies that the queue is possibly closed or in the process of closing. If a thread observes that the queue is
closing, it cannot enqueue until it knows that the ring is closed for sure—and at what index. This determi-
nation is arbitrated by the closed info tuple within the MP CRQ (Fig. 7). The closed bit of that tuple
indicates whether the queue is actually closed; idx indicates the index at which it closed.

To close the queue (Fig. 9), a thread first sets the closing bit on either data idx or antidata idx.
It then calls discovered closing, as does any thread that discovers a closing bit that has already
been set. This method verifies that both indices are closing. Then, the method uses CAS to put the maximum
of the two indices into closed info and set its own closed bit. Some thread’s CAS must succeed, at
which point the queue is closed. Any thread with a larger index than that stored in closed infomust have
been warned that its index may not be valid, and will not enqueue. Finally, some threads that find the queue
to be closing may, in fact, still be able to enqueue as their indices are below that stored in closed info.
They return to their operations and continue.

4.4 MPDQ List

At the backbone level, the MPDQ must maintain pointers to the appropriate rings for both data and antidata.
If any operation receives a closed signal from a ring, it knows it must move along to the next one. If no
next ring exists, it creates one and append it to the list, in the style of the M&S queue. It first updates the

13

131 int MP_CRQ:discovered_closing(bool polarity) {
132 <bool closing, int idx> d_idx;
133 <bool closing, int idx> a_idx;
134

135 // check if already closed

136 if (closedInfo.closed==1)
137 return closedInfo.idx;
138

139 // set closing

140 antidata_idx.set_closing(1);
141 data_idx.set_closing(1);
142

143 // next read both indices and try to close queue

144 d_idx = data_idx;
145 a_idx = antidata_idx;
146 int closed_idx = max(d_idx.idx, a_idx.idx);
147 (void) CAS(&closedInfo, <0,0>, <1,closed_idx>);
148 return closedInfo.idx;
149 }

Figure 9: MPDQ closing

next pointer of the previous final ring, and then then swings the main data ptr and/or antidata ptr
as appropriate.

4.5 Forward Progress

Like the SPDQ, the MPDQ as presented suffers from a “preemption window” in which a positive thread
obtains an index, identifies its corresponding negative thread, but then stalls (e.g., due to preemption), leav-
ing the negative thread inappropriately blocked and in a situation where no other thread can help it. The
following section addresses this concern.

5 Lock freedom

The SPDQ and MPDQ, as presented so far, are eminently usable: they are significantly faster than the S&S
dual queue (rivaling the speed of the LCRQ), and provide fair, FIFO service to waiting threads. To make
them fully nonblocking, however, we must ensure that once a positive thread has identified a slot already in
use by its corresponding thread, the negative thread is able to continue after a bounded number of steps by
non-blocked threads.

For both algorithms we can close the “preemption window” by treating FAI as a mere suggestion to pos-
itive threads. Before they enqueue, they must verify that all smaller indices have already been satisfied. For
purposes of exposition, we refer to the minimally indexed unsatisfied slot as the algorithm’s wavefront. The
changes are smaller in the SPDQ case and (as we shall see in Sec. 6) have almost no impact on performance.
The changes are larger in the MPDQ case, with a larger performance impact.

14

5.1 SPDQ wavefront

As can be observed in the original CRQ algorithm, only dequeue operations can change the value of a
given slot’s index. If all dequeue operations must wait until the previous slot’s index is changed, two
simplifications occur:

1. No slot can become unsafe, since no dequeue operation can loop all the way around the ring before
another dequeuer has a chance to finish its operation.

2. There is always exactly one indexing discontinuity, where the difference between neighboring indices
is greater than one.

The discontinuity in indices (noticeable in Figure 8), indicates that a slot is ready and can be used to strictly
order dequeue operations for the SPDQ. Since the preemption window only occurs when a positive thread
dequeues from a negative ring, we can limit code changes to this single case.

5.2 MPDQ wavefront

In contrast to the SPDQ, the preemption window can manifest itself in the MPDQ during a denqueue oper-
ation. Since all positive operations must complete in order, and must wait (for nonblocking progress) until
waiting partners of previous positive operations have been notified, enqueues also need to be considered
when modifying the algorithm. With mixed ring polarities, a slot is ready either because it follows a dis-
continuity (the previous slot has been dequeued), or because the previous slot does not contain null (i.e.,
it has been enqueued).

Before a thread can complete an operation on an index (including returning the CLOSED signal), the
index must be at the wavefront. If it is not, the thread, after waiting for a timeout, scans backward along the
ring looking for the wavefront. Once the thread finds the wavefront, it attempts to operate on this slot, on
the assumption that the thread to which the slot “belongs” is neglecting to do so. Any thread that finds its
current slot already completed (by a successor that lost patience) must then continue forward. Since at any
point, the number of active threads is equal to the difference from the wavefront to the head, all threads will
eventually succeed.

6 Results

We evaluated our algorithms on a machine running Fedora Core 19 Linux on two six-core, two-way hyper-
threaded Intel Xeon E5-2430 processors at 2.20GHz (i.e., with up to 24 hardware threads). Each core has
private L1 and L2 caches; the last-level cache (15 MB) is shared by all cores of a given processor. Tests
were performed while we were the sole users of the machine. Threads were pinned to cores for all tests. As
we increased the number of threads, we used all cores on a given processor first, and then all hyperthreads
on that processor, before moving to the second processor. Code was written in C++ and compiled using g++
4.8.2 at the -O3 optimization level.

6.1 Microbenchmark

Our goal in exercising these dual queues was to have as random access as possible to the queue without
letting the system go into deadlock when all threads dequeue at once on an empty queue. To achieve this
goal we developed a hot potato test inspired by the children’s game. One thread, at the start of the test,

15

enqueues a special value, called the hot potato. For the duration of the test, all threads randomly decide
to enqueue or dequeue. However, if they ever dequeue the hot potato, they must wait a set amount of time
(generally a microsecond), then enqueue it back into the queue. Using this mechanism, we randomize access
by each thread and allow the queue to flip back and forth between data and antidata, but avoid the deadlock
case. We run the test for a fixed period of time (several seconds) and report performance as throughput.

For every queue, we ran five tests and took the maximum run. No large deviations among tests were
noted for any of the queues.

6.2 Tested Algorithms

Our tests cover eight different queue algorithms:

SPDQ, MPDQ: The algorithms of Sections 3 and 4, respectively.

SPDQ lock-free, MPDQ lock-free: The nonblocking variants described in Section 5.

S&S Dual Queue: The algorithm of Scherer & Scott [10].

M&S Queue, LCRQ: The non-dual algorithms of Michael & Scott [6] and of Morrison & Afek [7], with
an outer loop in which negative threads retry until they succeed in dequeuing data.

FC Dual: A best-effort implementation of a flat-combining dualqueue, using the methodology of Hendler
et al. [3].

The various ring queues all use a ring size of 2048 elements. In our flat combining queue, each thread,
instead of actually performing its desired operation on the structure, instead registers a request for the op-
eration in a preassigned slot of a queue-specific array. Threads waiting for their operations to complete
periodically compete for a global spin lock. Any thread that acquires the lock becomes a combiner. It
makes a full pass through the request array, pairing up positive and negative operations, and storing excess
data in a list for the next combiner. Other threads that see their operations have completed simply return.

To obtain a sense of fundamental hardware limits, we also ran a test in which all threads contend on a
FAI counter, performing updates as fast as they can.

6.3 Blocking Variants

As shown in Figure 10, our new algorithms have throughput significantly higher than any existing dual
queue. Qualitatively, their scalability closely follows that of the LCRQ, across the full range of thread
counts, while additionally providing fairness for dequeuing threads. The SPDQ is perhaps 20% slower than
the LCRQ on average, presumably because of the overhead of “flipping.” The MPDQ is about 5% faster
than the LCRQ on average, presumably because it avoids the empty check and the contention caused by
retries in dequeuing threads.

All three algorithms (LCRQ, SPDQ, MPDQ) peak at twelve threads, where there is maximum paral-
lelism without incurring chip-crossing overheads. The raw FAI test similarly scales well within a single
chip. After moving to the second chip, all algorithms become increasingly constrained by the bus speed.

Interestingly, under some conditions, the new dual queues may even outperform the single integer FAI
test. However, depending on the state of the queue, the active threads may spread their FAI operations over
as many as three different integers (head,tail, and the head or tail of the next ring), distributing the
bottleneck.

16

Figure 10: Performance on hot potato benchmark

Based on these tests, we recommend using the MPDQ in any application in which dequeuing threads
need to wait for actual data.

6.4 Lock-free Variants

While the blocking versions of the SPDQ and MPDQ both outperform their lock-free variants, the perfor-
mance hit is asymmetric. The lock-free SPDQ is almost imperceptibly slower than the blocking version.
We expect this happens because the window closing code is only run rarely, when the queue’s polarity is
negative and many threads are waiting. While the window closing penalty per preemption incident is linear
in the number of threads, the performance hit is isolated.

The MPDQ takes a drastic hit in order to close the window. Since we cannot isolate data from antidata
within the MPDQ, every positive thread must “handshake,” via flags in slots, with the previous positive
thread, adding several cache misses to the critical path of the hot potato test.

6.4.1 Sensitivity of Results

We experimented with changes to a large number of timing parameters in the hot potato test. Several of these
change the overall throughput, but none affects the relative performance of the tested algorithms. In general,
larger ring sizes improve speed across the range of threads. Increasing the delay before re-enqueuing a hot
potato slows everything down by causing queues to spend more time in a negative polarity.

17

7 Conclusion

In this paper, we have presented two fast algorithms that extend the LCRQ of Morrison and Afek [7] to
provide fair, FIFO service to threads that are waiting to dequeue data. Our algorithms outperform existing
dual queues by a factor of 4–6⇥ and scale much more aggressively. We hope that these algorithms will be
considered for use in thread pools and other applications that depend on fast inter-thread communication.

In their basic form, our algorithms are “almost nonblocking.” We also presented fully lock-free variants.
We believe the basic versions should suffice in almost any “real world” application. The MPDQ algorithm
in particular is substantially simpler than the original LCRQ, and even outperforms it by a little bit. If
one is unwilling to accept the possibility that a dequeuing thread may wait longer than necessary if its
corresponding enqueuer is preempted at just the wrong point in time, the lock-free version of the SPDQ still
provides dramatically better performance than the S&S dual queue.

References

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer pools based on
elimination-diffraction trees. In Proc. of the 16th Intl. Euro-Par Conf. on Parallel Processing, pages
151–162, Ischia, Italy, Aug.–Sep. 2010.

[2] E. Freudenthal and A. Gottlieb. Process coordination with fetch-and-increment. In Proc. of the 4th
Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 260–268, Santa Clara, CA, Apr. 1991.

[3] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-parallelism
tradeoff. In Proc. of the 22nd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
pages 355–364, Santorini, Greece, June 2010.

[4] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Scalable flat-combining based synchronous queues. In
Proc. of the 24th Intl. Conf. on Distributed Computing (DISC), pages 79–93, Sept. 2010.

[5] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans. on
Parallel and Distributed Systems, 15(8):491–504, Aug. 2004.

[6] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proc. of the 15th ACM Symp. on Principles of Distributed Computing (PODC),
pages 267–275, Philadelphia, PA, May 1996.

[7] A. Morrison and Y. Afek. Fast concurrent queues for x86 processors. In Proc. of the 18th ACM Symp.
on Principles and Practice of Parallel Programming (PPoPP), pages 103–112, Shenzhen, China, Feb.
2013.

[8] W. N. Scherer III, D. Lea, and M. L. Scott. A scalable elimination-based exchange channel. In Wkshp.
on Synchronization and Concurrency in Object-Oriented Languages, San Diego, CA, Oct. 2005. In
conjunction with OOPSLA ’05.

[9] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable synchronous queues. Communications of the
ACM, 52(5):100–108, May 2009.

18

[10] W. N. Scherer III and M. L. Scott. Nonblocking concurrent data structures with condition synchroniza-
tion. In Proc. of the 18th Intl. Symp. on Distributed Computing (DISC), pages 174–187, Amsterdam,
The Netherlands, Oct. 2004.

[11] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM
Almaden Research Center, Apr. 1986.

19

A Pseudocode

This appendix contains pseudocode for all algorithms in the paper.

A.1 Original Linked Concurrent Ring Queue (LCRQ) [7]

150 tuple Slot {
151 bool safe; // 1 bit

152 int idx; // 31 bits

153 Object val; // 32 bits (int or pointer)

154 // padded to cache line size

155 };
156 class CRQ { // fields are on distinct cache lines

157 int head; // 32 bits

158 <bool closed, int idx> tail; // 1, 31 bits

159 CRQ* next;
160 Slot ring[R]; // initialize ring[i]=<1,i,NULL>

161 };
162 class LCRQ {
163 CRQ* head, tail;
164 };

165 CRQ:enqueue(int arg) {
166 int h, t;
167 Slot* slot;
168 bool closed;
169 bool safe;
170 Object val; // 32 bit int or pointer

171 int idx;
172 int starvation_counter = 0;
173

174 while (true) {
175 <closed, t> := FAI(&self.tail);
176 if (closed) return CLOSED;
177 slot = &ring[t mod R];
178 <safe,idx,val> = *slot;
179

180 // verify slot is empty

181 if (val == NULL) {
182 // verify allowed index

183 if ((idx <= t) &&
184 // verify safe or fixable unsafe

185 (safe==1 || head<=t)
186 &&
187 // then attempt enqueue

188 CAS(slot, <safe,idx,NULL>, <1,t,arg>)) {
189 return OK
190 }
191 }
192 // enqueue on this index failed,

193 // due to signal or occupied slot

194 // check for full or starving

195 h = head;
196 starvation_counter++;

20

197 if (t-h >= R || starvation_counter>STARVATION) {
198 TAS(&tail.closed); // atomically close CRQ

199 return CLOSED;
200 }
201 // else we failed to enqueue and queue is not full

202 // so we skip this index and try the next

203 }
204 }

205 CRQ:dequeue() {
206 int h, t;
207 Slot* slot;
208 bool closed;
209 bool safe;
210 Object val;
211 int idx;
212

213 while (true) {
214 h = FAI(&head);
215 slot = &ring[h%R];
216 while (true) {
217 <safe,idx,val> = *slot;
218 // slot not empty

219 if (val != NULL) {
220 // attempt ideal dequeue

221 if (idx == h) {
222 if (CAS(slot, <safe,h,val>, <safe,h+R,NULL>)) return val;
223 }
224 // failed to dequeue: signal unsafe

225 // to prevent corresponding enqueue

226 else if (CAS(slot, <safe, idx, val>, <0, idx, val>))
227 goto deq_fail;
228 }
229 // slot empty : failed to dequeue;

230 // signal slot via index to prevent corresponding enqueue

231 else if (CAS(slot, <safe,idx,NULL>, <safe,h+R,NULL>)) goto deq_fail;
232 } // end of inner while loop

233

234 deq_fail:
235 // we failed to dequeue at this index, so check for empty

236 <closed,t> = tail;
237 if (t <= h+1) {
238 fixState();
239 return EMPTY;
240 }
241 // else we failed to dequeue at this index

242 // and queue is not empty; try at next index

243

244 } // end of outer while loop

245 }

246 void CRQ:fixState() {
247 int h, t;
248

249 while (true) {

21

250 h = head; t = tail.idx;
251 if (h <= t)
252 // nothing to do as queue is consistent

253 return;
254 if (CAS(&tail, t, h)) // swing tail forward

255 return;
256 }
257 }

258 LCRQ:enqueue(Object x) {
259 CRQ* crq, newcrq;
260

261 while (true) {
262 crq = tail;
263 // make sure tail is updated fully

264 if (crq->next != NULL) {
265 (void) CAS(&tail, crq, crq->next)
266 continue;
267 }
268 // attempt enqueue

269 if (crq->enqueue(x) != CLOSED) return OK;
270

271 // if queue is closed, append new CRQ

272 newcrq = new CRQ();
273 newcrq->enqueue(x);
274 if (CAS(&crq.next, NULL, newcrq)) {
275 (void) CAS(&tail, crq, newcrq);
276 return OK;
277 }
278 }
279 }

280 LCRQ:dequeue() {
281 CRQ* crq;
282 Object v;
283

284 while (true) {
285 crq = head;
286 v = crq->dequeue()
287 if (v != EMPTY) return v;
288 if (crq->next == NULL) return EMPTY;
289

290 // swing head if the current head has remained empty

291 // (and is thus closed)

292 v = crq->dequeue();
293 if (v != EMPTY) return v;
294

295 (void) CAS(&head, crq, crq->next);
296 }
297 }

A.2 Single Polarity Dual Ring Queue (SPDQ)

22

298 class SPDQ{
299 CRQ* head,tail;
300 bool lock_free;
301 };
302 class SP_CRQ : CRQ {
303 bool sealed;
304 bool polarity;
305 };
306 class waiter() {
307 int val;
308 int spin() {
309 while (val == NULL) {}
310 return val;
311 }
312 bool satisfy(Object arg) {
313 if (val != NULL) {
314 val = arg;
315 return true;
316 }
317 return false;
318 }
319 };

320 SPDQ:dequeue() {
321 waiter* w = new waiter();
322 return denqueue(w, ANTIDATA);
323 }
324 SPDQ:enqueue(Object val) {
325 return denqueue(val, DATA);
326 }
327 SPDQ:denqueue(Object val, bool polarity) {
328 SP_CRQ* h;
329 while (true) {
330 h = head; // read polarity of queue

331 if (h->polarity == polarity) {
332 v = internal_enqueue(h, val, polarity);
333 if (v == OK) return OK;
334 } else {
335 v = internal_dequeue(val, polarity);
336 if (v != TOO_SLOW) return v;
337 }
338 // if internal operation failed, head has changed, so retry

339 }
340 }

341 bool SP_CRQ:seal() {
342 int h, t;
343

344 while (true) {
345 if (sealed) return true;
346

347 h = head;
348 t = tail;
349 if (h<t) { // check if not empty

350 return false; // if not, seal failed

23

351 }
352 // try to close while empty;

353 // if an enqueue occurs, tail moves, and CAS fails

354 if (CAS(&tail, t, <1,h>)) {
355 // CAS succeeded, so CRQ is

356 // closed and empty

357 sealed = true;
358 return true;
359 }
360 }
361 }

362 Object SPDQ:internal_enqueue(SP_CRQ* h, Object val, bool polarity) {
363 SP_CRQ* t, next, newring;
364 while (true) {
365 t = tail;
366 // verify tail is the actual tail

367 if (t->next != NULL) {
368 next = t->next;
369 (void) CAS(&this->tail, t, next);
370 continue;
371 }
372 // verify correct polarity (detect twisting)

373 if (t->polarity != polarity) {
374 (void) CAS(&this->head, h, h->next);
375 return TWISTED;
376 }
377 // attempt enqueue on tail

378 if (t->enqueue(val) == OK) {
379 if (polarity == ANTIDATA) return spin((waiter*)val);
380 else return OK;
381 }
382 // else, the tail is closed

383 newring = new SP_CRQ(polarity);
384 newring->enqueue(val);
385

386 // append ring

387 if (CAS(&t->next, NULL, newring)) {
388 (void) CAS(&this->tail, t, newring);
389 if (polarity == ANTIDATA) return spin((waiter*)val);
390 else return OK;
391 }
392 }
393 }

394 Object SPDQ:internal_dequeue(Object val, bool polarity) {
395 SP_CRQ* h, next, newring;
396 while (true) {
397 h = this->head;
398 // verify queue polarity didn’t change

399 if (h->polarity == polarity) return TOO_SLOW;
400

401 // dequeue from head

402 if (polarity == DATA && this->lock_free)
403 v = h->dequeue_lock_free(val);

24

404 else
405 v = h->dequeue(val);
406 if (v != EMPTY) return v;
407

408 // seal empty SP_CRQ so we can remove it

409 else if (!h->seal()) continue;
410

411 // at this point head SP_CRQ is sealed

412

413 // swing the head

414 if (h->next != NULL)
415 (void) CAS(&this->head, h, h->next);
416 // or add a new tail and swing head to it

417 else {
418 newring = new SP_CRQ*(polarity);
419 newring->enqueue(val);
420 // append our new ring to list, which will cause twisting

421 if (CAS(&h->next, NULL, newring)) {
422 (void) CAS(&this->tail, h, newring);
423 // swing head to fix twisting

424 (void) CAS(&this->head, h, h->next);
425 if (polarity == ANTIDATA)
426 return ((waiter*)val)->spin();
427 else return v;
428 }
429 }
430 }
431 }

A.3 Lock-free SPDQ

432 Object SP_CRQ:dequeue_lock_free(bool polarity, Object arg) {
433 <bool closed, int idx> h, t; // 1, 31 bits

434 Slot* slot;
435 bool closed;
436 bool safe;
437 int idx;
438 Object val;
439

440 h = FAI(&head);
441

442 bool paused = false;
443

444 while (true) {
445 slot = &this->ring[h.idx%R];
446 <safe,idx,val> = *slot;
447

448 // find the wave front

449

450 // move up because we’re behind the wavefront

451 if (idx > h.idx) {
452 h.idx++;
453 continue;
454 }

25

455

456 // we’re too far ahead and have lapped

457 if (idx < h.idx) {
458 h.idx = h.idx-R;
459 continue;
460 }
461

462 // now we know our index matches the slot

463

464 // verify we are on the wave front

465 if (h.idx!=0 && ring[(h.idx-1)%R].idx == h.idx-1) {
466 // we aren’t, so wait a second and check again

467 if (!paused) {
468 usleep(1);
469 paused = true;
470 continue;
471 }
472 // we already timed out, so search backwards for the front

473 else {
474 h.idx--;
475 continue;
476 }
477 }
478 // now we know we’re at the wavefront, so dequeue

479

480 // if slot is nonempty, dequeue

481 if (val != NULL) {
482 if (((waiter*)val)->satisfy(arg)) {
483 (void) CAS(&slot, <safe,h.idx,val>, <safe,h.idx+R,NULL>);
484 return OK;
485 } else { // someone beat us to the wait structure

486 (void) CAS(&slot, <safe,h.idx,val>, <safe,h.idx+R,NULL>);
487 h.idx++; // behind wavefront; move up

488 continue;
489 }
490 } else {
491 // if slot is empty, mark for counterpart

492 if (CAS(&slot, <safe,h.idx,val>, <safe,h.idx+R,NULL>)) {
493 <closed, t> = tail;
494 if (t <= h+1) {
495 fixState();
496 return EMPTY;
497 } else {
498 h = FAI(&head);
499 continue;
500 }
501 }
502 }
503 }
504 }

A.4 Mixed Polarity Dual Ring Queue (MPDQ)

505 tuple MP_Slot {

26

506 bool safe; // 1 bit

507 bool polarity; // 1 bit

508 int idx; // 30 bits

509 int val; // 32 bits (int or pointer)

510 // padded to cache line size

511 };
512 class MP_CRQ { // fields are on distinct cache lines

513 <bool closing, int idx> data_idx;// 1, 31 bits

514 <bool closing, int idx> antidata_idx;// 1, 31 bits

515 <bool closed, int idx> closed_info;// 1, 31 bits

516 MP_CRQ* next;
517 MP_Slot ring[R]; // initialize ring[i] = <1,i,NULL>

518 };
519 class MPDQ { // fields are on distinct cache lines

520 MP_CRQ* data_ptr;
521 MP_CRQ* antidata_ptr;
522 bool lock_free;
523 };

524 Object MP_CRQ:denqueue(Object arg, bool polarity) {
525 <bool closed, int idx> p; // 1, 31 bits

526 <bool closed, int idx>* my_cntr;
527 <bool closed, int idx>* their_cntr;
528 MP_Slot* slot;
529 bool closed;
530 bool safe;
531 int idx;
532 int val;
533 bool slot_polarity;
534

535 int starvation_counter = 0;
536 int closeIdx = 0;
537

538 // determine which index to use

539 if (polarity == DATA) {
540 my_cntr = &data_idx;
541 their_cntr = &antidata_idx;
542 } else {
543 my_cntr = &antidata_idx;
544 their_cntr = &data_idx;
545 }
546

547 // do denqueue

548 while (true) {
549 <p.closing, p.index> = FAI(my_cntr);
550 // check for closing

551 if (p.closing == true) {
552 closeIdx = discovered_closing(p.idx, polarity);
553 if (closeIdx <= p.idx) return CLOSED;
554 }
555

556 slot = &ring[p.idx%R];
557

558 while (true) {
559 <safe,slot_polarity,idx,val> = *slot;
560

27

561 // if slot nonempty

562 if (val != NULL) {
563 // try to dequeue opposite

564 if (idx==p.idx && slot_polarity!=polarity) {
565 if (CAS(&slot, <safe,p.idx,val,slot_polarity>,
566 <safe,p.idx+R,NULL,slot_polarity>)) {
567 if (polarity == ANTIDATA) return val;
568 else ((waiter*)val)->satisfy(arg);
569 } else continue;
570 }
571 // failed to dequeue:

572 // signal slot unsafe to prevent

573 // corresponding operation

574 else {
575 if (CAS(&slot, <safe,idx,val,slot_polarity>,
576 <0,idx,val,slot_polarity>)) {
577 break;
578 } else continue;
579 }
580 }
581 // if slot empty, try to enqueue self

582 else {
583 if (safe==1 || their_cntr->idx<=p.idx) {
584 if (CAS(&slot, <safe,idx,NULL,slot_polarity>,
585 <1,idx,arg,polarity>)) {
586 return OK;
587 } else continue;
588 }
589 else break; // unsafe, try the next index

590 }
591 } // end inner while loop

592

593 starvation_counter++;
594

595 // if fail to make progress, close the ring

596 if ((p.idx-their_cntr->idx >= R || starvation_counter > STARVATION)
597 && !p.closed) {
598 my_ptr->close();
599 closeIdx = discovered_closing(p.idx, polarity);
600 if (closeIdx <= p.idx) return CLOSED;
601 }
602 } // end outer while loop

603 }

604 Object MP_CRQ:denqueue(Object arg, bool polarity) {
605 CRQ* m, next, newring;
606 int v;
607 CRQ** my_ptr;
608

609 if (polarity == DATA) my_ptr = &data_ptr;
610 else my_ptr = &antidata_ptr;
611

612 while (true) {
613 m = *my_ptr;
614 // denqueue

615 if (polarity==DATA && lock_free)

28

616 v = m->denqueue_lock_free(arg, polarity);
617 else v = m->denqueue(arg, polarity);
618

619 // successful denqueue

620 if (v != CLOSED) {
621 if (polarity==ANTIDATA && v==OK) return spin((waiter*)val);
622 else if (polarity == DATA) return OK;
623 else return v;
624 }
625

626 // my_ptr is closed, move to next

627 if (m->next != NULL) (void) CAS(my_ptr, m, next);
628 else {
629 // if no next, add it

630 newring = new MP_CRQ();
631 v = newring->denqueue(arg);
632 if (CAS(&m->next, NULL, newring)) {
633 (void) CAS(my_ptr, m, newring);
634 if (polarity == ANTIDATA) return spin((waiter*)val);
635 else return OK;
636 }
637 }
638 }
639 }

640 int MP_CRQ:discovered_closing(bool polarity) {
641 <bool closing, int idx> d_idx;
642 <bool closing, int idx> a_idx;
643

644 // check if already closed

645 if (closedInfo.closed == 1) return closedInfo.idx;
646

647 // set closing

648 antidata_idx.set_closing(1);
649 data_idx.set_closing(1);
650

651 // next read both indices and try to close queue

652 d_idx = data_idx;
653 a_idx = antidata_idx;
654 int closed_idx = max(d_idx.idx, a_idx.idx);
655 (void) CAS(&closedInfo, <0,0>, <1,closed_idx>);
656 return closedInfo.idx;
657 }

A.5 Lock-free MPDQ

658 Object MP_CRQ:denqueue_lock_free(Object arg, bool polarity) {
659 <bool closed,int idx> p; // 1, 31 bits

660 <bool closed,int idx>* my_cntr;
661 <bool closed,int idx>* their_cntr;
662 MP_Slot* slot;
663 bool closed;
664 bool safe, safe_pr;
665 int idx, idx_pr;

29

666 int val, val_pr;
667 bool slot_polarity, slot_polarity_pr;
668

669 MP_Slot* slot_prev; //slot : pointer to Slot

670 int starvation_counter = 0;
671 int closeIdx = 0;
672 bool paused=false;
673

674 // get heads

675 my_cntr = &data_idx;
676 their_cntr = &antidata_idx;
677

678 p = FAI(my_cntr);
679 while (true) {
680 // check for closed

681 if (p.closed==1 || data_idx.closed==1) {
682 closeIdx = discovered_closing(p.idx, polarity);
683 if (closeIdx <= p.idx) return CLOSED;
684 }
685 // if fail to make progress

686 // close queue as nearing full to ensure the

687 // closed index is represented by an actual slot

688 if ((data_idx.idx-anti_data.idx >= (R-2*MAX_THREADS)
689 || starvation_counter > STARVATION)
690 && !p.closed) {
691 data_idx.close();
692 closeIdx = discovered_closing(data_idx.idx, polarity);
693 if (closeIdx <= p.idx) return CLOSED;
694 }
695

696 slot = &ring[p.idx%R];
697 <safe,slot_polarity,idx,val> = *slot;
698 starvation_counter++;
699

700 // find wavefront

701 if (p.idx < idx) { // behind wavefront

702 p.idx++;
703 continue;
704 }
705 if (idx < p.idx) { // lapped ahead of wavefront

706 p.idx = p.idx-R;
707 continue;
708 }
709

710 // verify at wavefront

711 slot_prev = ring[(p.idx-1)%R];
712 <safe_pr,slot_polarity_pr,idx_pr,val_pr> = *slot_prev;
713 if (p.idx != 0 && idx_pr == (idx-1) &&
714 ((slot_polarity_pr == ANTIDATA && val_pr != NULL)
715 || val_pr == NULL)) {
716 // not ahead; wait and check again

717 if (!paused) {
718 usleep(1);
719 paused = true;
720 continue;
721 } else {

30

722 // already timed out; search backwards

723 p.idx--;
724 continue;
725 }
726 }
727

728 // on the wavefront, can operate

729

730 // if slot nonempty

731 if (val != NULL) {
732 // try to dequeue

733 if (idx==p.idx && slot_polarity!=polarity) {
734 if (((waiter*)val)->satisfy(arg)) {
735 (void) CAS(&slot, <safe,p.idx,val>, <safe,p.idx+R,NULL>);
736 return OK;
737 } else { // someone beat us to the wait structure

738 (void) CAS(&slot, <safe,p.idx,val>, <safe,p.idx+R,NULL>);
739 p.idx++;
740 continue;
741 }
742 }
743 // if slot wrong polarity, we lost race to enqueue

744 else if (slot_polarity == polarity) {
745 p.idx++;
746 continue;
747 }
748 }
749

750 // if slot empty, try to enqueue self

751 else {
752 if (safe==1 || antidata_idx.idx<=p.idx) {
753 // enqueue

754 if (CAS(&slot, <safe,p.idx,val>, <1,p.idx,arg>)) return OK;
755 }
756 // else something got in my way -

757 // either my counterpart or competition

758 }
759 }// end outer while loop

760 }// end dequeue

31

