
Transactional Semantics with Zombies∗

Michael L. Scott
University of Rochester

scott@cs.rochester.edu

July 2014

Abstract

Different formal models of transactional memory are re-
quired at different levels of the system stack. This paper
focuses on the run-time level, where the semantics of in-
dividual operations (start, read, write, try-commit) govern
the interactions between the compiler and the TM sys-
tem. For sandboxing TM systems, which allow a doomed
transaction (a “zombie”) to continue for some time be-
yond an inconsistent read, run-time–level semantics can-
not be captured by opacity as currently defined: we need
a formal model of zombie execution.

1 Introduction

Transactional Memory spans multiple levels of abstrac-
tion [1]. At the language level, programmers write appli-
cations using syntactically identified atomic blocks. At
the run-time level, the compiler calls methods of a spec-
ulation API (start, read, write, try-commit) to implement
atomic blocks. At the system level, an STM algorithm
implements the speculation API and promises some sort
of (at least probabilistic) liveness to the run-time level.
At the hardware (instruction set and microarchitecture)
level, special instructions may (typically without any
guarantee of liveness) support efficient implementation
of at least some atomic blocks.

Each of these levels calls for different formalism. We
focus here on the language and (especially) run-time lev-
els. At the former, programmers typically care only
about atomicity: they want transactional sequential con-
sistency [6]. At the latter, the compiler needs some-
thing more complex—semantics for the various specu-
lative operations that guarantee strict serializability for
whichever transactions (attempted executions of atomic
blocks) are able to commit successfully. These seman-
tics may be explicitly concurrent (as in the opacity of
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Guerraoui and Kapa lka [12]), or they may specified se-
quentially and then extended to the concurrent case with
the standard machinery of linearizability [22]. In the
former case, at least, run-time–level semantics have tra-
ditionally required that reads be mutually consistent—
simultaneously valid.

Unfortunately, the requirement for consistent reads
appears to preclude important implementations—
specifically, those that use sandboxing to tolerate “zom-
bie” transactions. The point of consistency, after all,
is to prevent the creation of zombies—transactions that
have seen inconsistent state but have not yet aborted,
and may therefore behave unpredictably. Sandboxing,
by contrast, ensures that while a zombie may be unpre-
dictable, it is nonetheless harmless—unable to influence
externally visible behavior between its first inconsistent
read and its eventual abort.

Sandboxing appears in several STM systems for man-
aged languages [2, 15]. It can also be implemented via
binary rewriting [19] or through careful instrumentation
and signal interposition [7], even in C and C++. It can
also appear in hardware: the HTM of the IBM Blue
Gene/Q [25], for example, is implemented entirely out-
side the processor core. A transaction can execute sev-
eral instructions beyond an inconsistent read, but the
need for kernel intervention on both faults and commits
(the only dangerous events that can occur on that time
scale) ensures that the processor will “sync up” with the
memory system before any harm can be done. Among
other things, a sandboxing runtime raises the possibility
of detecting and resolving conflicts “out of band”—in a
separate thread or special hardware. Casper et al. [5]
and Kestor et al. [17] report significant speedups by ex-
ploiting this possibility.

One could perhaps argue for the correctness of a sand-
boxed implementation via some sort of equivalence to
opacity. One might, for example, argue that all opera-
tions of a transaction beginning with its first inconsistent
read and continuing through its subsequent abort should
somehow be seen as a single operation—the simple abort
envisioned by opacity. Aside from notational messiness,
however, this strategy has the disadvantage of moving
all aspects of a zombie’s behavior out of the domain of
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TM semantics and into the implementation. One of the
key advantages of opacity is that by embracing aborted
transactions it allows one to consider liveness proper-
ties that will obtain for any conforming implementation.
This advantage disappears if zombies aren’t part of the
formalism.

2 Transactional Sequential
Consistency

In previous papers [6, 24], my students and I have argued
that transactional sequential consistency (TSC) consti-
tutes the “right” semantics for language-level atomic
blocks. Informally, TSC requires that a program’s reads
and writes appear to occur in some global total order,
consistent with program order in each thread, and with
the accesses of each dynamic instance of an atomic block
contiguous in that order. In practice, we may require
TSC only for programs that are transactionally data-
race–free—that is, for programs for which no execution
that happens to be TSC has a data race.

Aborted and incomplete transactions play no role in
TSC-based semantics—they are confined entirely to the
implementation. Their invisibility simplifies the pro-
gramming model by avoiding the need to speak about
speculation and rollback. In any valid history, transac-
tions appear in their entirety or not at all. As discussed
by Dalessandro et al. [6], TSC-based semantics can even
capture condition synchronization (e.g., retry [14]): a
history is valid only if each of its transactions occurs
at a point in time when all of its preconditions hold.
(Extensions are required for language-level abort and
orElse [23].)

Unfortunately, the lack of aborted and incomplete
transactions implies that TSC-based semantics are
declarative rather than operational. Given a history, we
can easily verify whether it is valid: are the transactions
contiguous, does each read return the value of the most
recent prior write to the same location, and does each in-
dividual step (inside or outside a transaction) adhere to
the (sequential) semantics of the underlying language?
Unfortunately, given an incomplete history, there are no
small-step rules that will allow us to enumerate all the
possible extensions.

The lack of an operational model for TSC makes it
difficult to address issues of liveness. It also precludes
discussion of the interface between the compiler and the
run-time system, where aborted transactions are part of
the API.

3 Sequential Semantics

At the run-time level, where speculation must be explicit,
we can think of the TM system as a big concurrent ob-

ject, with operations that include (among others) start,
read, write, and try-commit. Linearizability—the tradi-
tional safety criterion for concurrent objects—considers
program histories in which each of these operations is
represented by separate call (request) and return (re-
sponse) events. It then requires that each concurrent
history satisfy two properties. First, the operations must
appear to occur in some global total order that is con-
sistent (a) with program order in each thread and (b)
with any ordering that threads are able to observe by
other means. (Requirement (b) implies that each indi-
vidual operation must appear to occur, instantaneously,
at some point between its call [request] and its return [re-
sponse].) Second, linearizability requires that the total
order on operations satisfy the sequential semantics of
the object (i.e., the TM system) for which we are build-
ing a concurrent implementation.

But what are the sequential semantics of TM? At
the first TRANSACT, in 2006, I proposed a framework
(hereinafter referred to as SSTMS ) in which to address
this question [22]. The intent was to characterize the
behavior of TM at the level of the run-time API, without
regard to the underlying implementation.

SSTMS assumes that each thread subhistory is well-
formed : it respects the sequential semantics of the source
programming language and it comprises a series of trans-
actions, each of which takes the form (start (read | write)∗
(try-commit | abort)). (This pattern is easily extended to
allow additional reads and writes outside of any transac-
tion.) The try-commit operation returns an indication of
success or failure. The explicit abort operation admits
cases in which the program or compiler has determined,
from above, that the current transaction cannot—or
should not—succeed.

Key features of the SSTMS framework include the fol-
lowing (keep in mind that these are all defined on se-
quential histories):

1. a memory model in which (a) each read must re-
turn the value provided by the most recent pre-
vious write to the same location in some already-
completed successful transaction, and (b) each such
value must still be valid at the time of the subse-
quent try-commit, if that try-commit is successful—
that is, the value must still (or again) be the one
that would be seen if the read occurred at commit
time.1

2. the notion of conflict functions, which identify, in a
given history, pairs of transactions that cannot both
succeed.

1In the SSTMS paper, what I have here called the “mem-
ory model” was referred to somewhat inaccurately as “consis-
tency.” This particular memory model turns out to be sufficient
but not necessary to ensure the more conventional meaning of
consistency—namely, that all values seen by a transaction are si-
multaneously valid. Other memory models that would also suffice
for consistency are posited later in this section.
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3. optional arbitration functions, which specify which
of two conflicting transactions must fail. These serve
to capture the notion of contention management in
TM implementations [10, 16, 21].

Semantic differences among TM systems in the liter-
ature can be captured, to a large extent, by their re-
spective conflict functions. At one extreme, mutual ex-
clusion corresponds to specifying that transactions con-
flict whenever they overlap (whenever each begins before
the other ends). At the other extreme, lazy invalidation
specifies that transactions S and T conflict if S reads a
location that T subsequently writes, and T commits—
successfully—before the linearization of S’s try-commit.
The SSTMS paper proved that lazy invalidation is the
weakest conflict function (the one with the smallest num-
ber of conflicts) compatible with the (original) memory
model.

The SSTMS paper also proved that a sequential TM
history H that respects the memory model is always
equivalent to some serial history, consisting of all and
only the successful transactions of H, ordered in such a
way that the operations of each individual transaction
are contiguous, and each read sees the value provided by
the most recent previous write to the same location. This
property was dubbed the fundamental theorem of TM.

To avoid artificial constraints on the code within trans-
actions, the original SSTMS memory model must be ex-
tended to allow a transaction to see its own writes. To
accommodate the publication idiom [18], it must also
be extended to allow a transaction to see writes in non-
transactional code that precede any already-completed
successful transaction. Both of these extensions have
trivial impact on the proof of the fundamental theorem.

More interesting extensions—alternative models,
really—would accommodate global timestamp-based
STM systems, which allow certain read-only transactions
to succeed even when some of their reads are no longer
valid at commit time. In TL2 [8], for example, a read-
only transaction T can succeed so long as all writes by
other threads to locations read by T occur before T starts
or after it has performed all its reads. In TinySTM [9],
T can succeed so long as there exists a time t, between
T ’s start and its try-commit, such that all of T ’s reads are
still valid at t, and all writes by other threads to loca-
tions read by T occur before t or after T has performed
all its reads.

More ambitious memory models could accommodate
multi-version systems like JVSTM [4], LSA [20], and
their successors, which allow a read-only transaction to
serialize at any point between its start and its try-commit,
by reading—if necessary—historic (overwritten) values.
In principle, one could even imagine models under which
a writer transaction could read historic values and still
succeed, provided it introduced no circularity in serial-
ization order.

Significantly, both global timestamp and multi-
version-memory–based memory models would change the
sequential semantics of TM: they would induce a differ-
ent set of valid sequential histories. At the same time,
they would still suffice to prove the fundamental theorem
of TM. A natural question thus arises: what character-
istics in a memory model and conflict function (and thus
in the behavior of API calls) are necessary to prove the
fundamental theorem?

4 Opacity

In a 2007 technical report [11], subsequently published
at PPoPP’08, Guerraoui and Kapa lka proposed a frame-
work for run-time–level semantics that sidesteps the
question of necessary characteristics of API calls by mak-
ing serializability and consistency fundamental rather
than derived. Specifically, in any opaque TM system [12,
Sec. 5]:

1. all operations performed by every committed trans-
action appear as if they happened at some single,
indivisible point during the transaction lifetime,

2. no operation performed by any aborted transaction
is ever visible to other transactions (including live
ones), and

3. every transaction always observes a consistent state
of the system.

Note that these properties do not specify the behavior of
individual API calls—in particular, the values returned
by reads. Rather, they constrain the overall behavior of
the TM system.

Over the past few years, opacity—property (3) in
particular—has been widely accepted as the default
safety criterion for TM systems. It differs from SSTMS
in several significant ways. In particular, property (2)
in SSTMS is a matter of sequential semantics; property
(3) in SSTMS is true (and again part of the sequen-
tial semantics) only for successful (committed) transac-
tions;2 and property (1) is implied by properties (2) and
(3), as extended to concurrent histories via linearizabil-
ity. Putting it very informally, opacity property (1) says
that a TM system is correct if, when considered in the
SSTMS framework, the memory model and contention
function of the run-time–level API suffice to prove the
fundamental theorem of TM.

To avoid the creation of zombie transactions, opacity
requires that a transaction abort before returning an in-
consistent value in response to a read request. An abort

2As noted in footnote 1, the SSTMS paper actually stated the
stronger requirement that every transaction observe the state of
the system at the time of its try-commit. This requirement should
be relaxed to admit implementations (e.g., those based on mul-
tiversioning) in which certain transactions may “commit in the
past.”
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event may thus be generated either by a program (“from
above”) or by the run-time system (“from below”).

By contrast, SSTMS maintains safety in the presence
of zombie transactions by assuming that the compiler
will invoke an explicit validate operation “whenever the
use of inconsistent data might lead to unacceptable be-
havior” [22, Sec. 6]. The validate operation is defined
to return false in the event of inconsistency, whereupon
correctly compiled code will promptly call abort. Subse-
quent work [7] clarifies that the compiler must validate
(1) before propagating an exception out of a transaction,
(2) whenever using the result of a potentially inconsistent
read might lead to externally visible erroneous behavior
(e.g., an uninstrumented write to a dynamically deter-
mined location, or a branch to a dynamically determined
address), and (3) within a bounded amount of time on
every transactional code path (to avoid the possibility of
an erroneous infinite loop). Precise specification of these
conditions can be considered part of the contract for the
run-time–level API, and may vary from one language,
compiler, and TM system to another.

5 Tolerating Zombies

Both SSTMS and opacity can be used to prove a variety
of liveness properties. The SSTMS paper did this only in
the context of sequential histories, with each call to a TM
operation considered as a single “step.” In this context,
it proved (among other things) that a TM system based
on lazy invalidation is livelock free, but still admits star-
vation [22, Thms. 5 & 6]. In a similar vein, but in the
richer context of concurrent histories, Bushkov, Guer-
raoui, and Kapa lka showed that “no TM implementation
can ensure local progress ... [i.e., that] every process that
keeps executing a transaction (say keeps retrying it in
case it aborts) eventually commits it” [3, Sec. 1.1].

Proofs of these properties are possible precisely
because SSTMS and opacity expose run-time–level
details—namely, the individual operations of the TM
API—which TSC deliberately obscures. A key claim
of this position paper is that opacity similarly—but
unnecessarily—obscures an important run-time–level de-
tail of many TM systems—namely, the indefinite contin-
ued execution of zombie transactions. If we want to un-
derstand the behavior—including liveness—of TM at the
run-time level, we need to capture this zombie execution.

Perhaps the most obvious approach would allow any
read to be inconsistent, and allow try-commit to succeed
only in the absence of inconsistency. Unfortunately, this
approach is insufficient to ensure even weak progressive-
ness—the requirement that “a transaction that encoun-
ters no conflict must be able to commit” [13]. To enable
proofs of liveness, it seems reasonable to require, in a
manner reminiscent of SSTMS conflict functions, that
a read return an inconsistent value only if its transac-

tion has an “excuse” for a subsequent try-commit to fail.
Results in the SSTMS paper imply that lazy invalida-
tion conflict (in a non–multi-version TM system) would
be the weakest excuse sufficient to guarantee the consis-
tency of successful transactions—thereby providing the
strongest guarantees of liveness. Stronger conflict func-
tions would lead to weaker guarantees of liveness. At
the extreme of overlap conflict, liveness would still be
ensured by (at least) an implementation that executes
transactions one at a time.

The obvious objection to this “excused inconsistency”
is that it allows a zombie to perform operations not en-
visioned by the program source. It is easy, in fact, to
construct a scenario in which the first zombie in an ex-
ecution performs (within its own transaction, at least),
any given undesirable operation, even when that opera-
tion could never occur in an execution that never experi-
ences inconsistency. To preserve the safety and liveness
of the overall execution, we need semantic rules that cap-
ture the essence of sandboxing. We could use these to
modify the definition of opacity, or we could embed them
in a framework reminiscent of SSTMS. I prefer the lat-
ter option, because it allows us to reason locally about
the behavior of individual operations of the TM run-time
API. Serializability and consistency—both of which are
global properties—then emerge from this local behavior.

Building on SSTMS, we might require that a correct
implementation of TM embody a memory model, a con-
flict function, and (optionally) an arbitration function
such that

1. we can prove the fundamental theorem of TM. Fol-
lowing the pattern of the SSTMS paper, it would
suffice (a) for each read in a successful transaction
to return the value provided by the most recent pre-
vious write to the same location in the current trans-
action, some already-completed successful transac-
tion, or nontransactional code that precedes some
already-completed successful transaction; (b) for a
try-commit to be successful only if all reads of lo-
cations not previously written by the transaction
would return the same values if repeated at commit
time (ignoring local writes); and (c) for the conflict
function to be at least as strong as lazy invalidation.

2. we can prove at least minimal liveness—specifically,
a try-commit fails only in the presence of some other
conflicting transaction.

3. a read r in an unsuccessful transaction T is incon-
sistent with previous reads of T only if there ex-
ists some other transaction S whose prefix prior to
r conflicts with T (thereby giving T an excuse to
abort).

4. zombie execution is bounded: given a partial execu-
tion history H with an uncompleted transaction T ,
if for any k there exists an extension of H in which
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T performs at least k program steps, then there ex-
ists a (possibly different) extension of H in which T
performs at least k program steps, none of which is
an inconsistent read.

5. if the language semantics envision exceptions, these
never escape an unsuccessful transaction.

6 Future Work

The proposal of the previous section requires formaliza-
tion. It also invites exploration of the memory models
and conflict functions sufficient to prove both safety (the
fundamental theorem) and liveness. As noted in foot-
notes 1 and 2, the SSTMS convention (observe the most
recently committed writes, enforce at least lazy invalida-
tion conflict, and require reads to remain valid at commit
time) is sufficient but not necessary.

For hardware transactions in particular, but also per-
haps for software TM, it may be desirable to permit
the occasional spurious (unexcused) failure. Conversely,
it may desirable in real-world systems to place a fixed
bound on the duration of zombie execution, though this
need not necessarily be reflected in the semantics. Real
implementations will all embody conflict functions, some
of which will be stronger than lazy invalidation; for these,
liveness proofs may require a crisp characterization in the
formal semantics. For all implementations of interest, we
will want proofs of both safety and liveness.

Perhaps the most interesting questions center around
the values that may be seen by a zombie transaction, and
the actions it may consequently take. At one extreme,
we might require that every read—even in a zombie—
return the most recent committed value (which may of
course be inconsistent with the values seen by previous
reads). At the other extreme, we might allow “out of
thin air” reads. It is not yet clear what impact—if any—
this choice will have on the compiler. It is at least con-
ceivable that tighter requirements on inconsistent reads
might reduce the number of validate calls required for
correct sandboxing.
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