
Brief Announcement: Preserving Happens-before in
Persistent Memory ∗

Joseph Izraelevitz Hammurabi Mendes Michael L. Scott
University of Rochester, Rochester, NY, USA

{jhi1,hmendes,scott}@cs.rochester.edu

ABSTRACT
Nonvolatile, byte-addressable memory (NVM) will soon be
commercially available, but registers and caches are expected
to remain transient on most machines. Without careful
management, the data preserved in the wake of a crash are
likely to be inconsistent and thus unusable.

Previous work has explored the semantics of instructions
used to push the contents of cache to NVM. These seman-
tics comprise a “memory persistency model,” analogous to
a traditional “memory consistency model.” In this brief an-
nouncement we introduce explicit epoch persistency, a mem-
ory persistency model that captures the current and ex-
pected semantics of Intel x86 and ARM v8 persistent mem-
ory instructions. We also present a construction that aug-
ments any data-race-free program (for release consistency
or any stronger memory model) in such a way that pre-
served data are guaranteed to represent a consistent cut in
the happens-before graph of the program’s execution.

1. INTRODUCTION
Nonvolatile, byte-addressable memory (NVM) is expected

to be common in coming years. Caches and registers, how-
ever, are likely to remain in SRAM for some time to come.
While NVM offers the opportunity to keep persistent data
in main memory (not just in the file system), the fact that
recent updates to registers and cache may be lost during a
power failure means that the data in main memory, if not
carefully managed, may not be consistent at recovery time.

Maintaining a consistent state in NVM requires special
care to order main memory updates. Several libraries have
been designed to support transactional updates of persistent
state [3,7,12]. Similarly, some high performance data struc-
tures [11,13] carefully control concurrent updates to ensure
that the persistent portion of a data structure remains con-
sistent.

∗This work was supported in part by NSF grants CNS-
1319417, CCF-1337224, and CCF-1422649, and by support
from the IBM Canada Centres for Advanced Study.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA’16, July 11–13, 2016, Pacific Grove, CA, USA.
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935810

Concurrent and crash-resilient programs are closely con-
nected: both must ensure that state can safely be read
concurrently—either by a “real” thread during normal ex-
ecution or by a conceptual “recovery thread” [10] that sees
the post-crash state. By leveraging this connection, we can
ensure that the happens-before ordering of the concurrent
program is seen by the recovery thread.

Specifically, we present a construction that augments any
properly synchronized concurrent program in a way that
forces stores to be written back to NVM in an order con-
sistent with happens-before. Our construction assumes that
the input program is data-race free under release consistency
or some stronger memory model. It further assumes that the
hardware supports what we call explicit epoch persistency,
a relaxed memory persistency model [10] that captures cur-
rent and forthcoming processors in the Intel x86 and ARM
v8 product lines. As output, our construction produces a
program that guarantees that the contents of NVM in the
wake of a crash will always represent a state that might have
been seen by some concurrent reader thread during pre-crash
execution. For nonblocking linearizable concurrent objects,
this state will be one from which execution could reasonably
continue. For programs using locks or other blocking mech-
anisms, additional machinery (e.g., redo or undo logs) will
be required.

1.1 Consistency
On a machine with relaxed consistency, writes to a sin-

gle location are totally ordered across threads, and each
thread sees its own writes (to all locations) in program or-
der [5]. Absent explicit synchronization, however, threads
may see each others’ writes in arbitrary order. In this work
we consider a release consistent model with str (store), ld
(load), str rel (store release), ld acq (load acquire), and CAS
(compare-and-swap) instructions. The last three of these
are synchronization instructions. They appear, across all
threads and locations, to execute in some total order such
that, transitively, (1) each ld acq or CAS appears to other
threads to occur before any subsequent instructions in its
own thread; (2) each str rel or CAS appears to other threads
to occur after any previous instructions in its own thread;
and (3) each str rel or CAS appears, to all threads, to occur
before the next ld acq or CAS in synchronization order that
touches the same location.

This model corresponds closely to that of the ARM v8
instruction set. For purposes of our construction, it can also
be considered to subsume the model of Intel’s x86 instruction
set, where str rel is emulated by an ordinary str, and where
ld acq is emulated with 〈mfence; ld〉 to force ordering with



respect to any previous strs that serve as str rel. Absent
a cross-thread str rel/CAS–to–ld acq/CAS dependence, we
make no assumptions about when (or even if) the stores of
one thread will become visible to the loads of another.

1.2 Persistency
Given transient registers and caches but persistent main

memory, an instruction set must give the programmer con-
trol over the order and timing by which information becomes
persistent. The instructions used to control this ordering
and timing embody a memory persistency model [10]. Per-
sistency may be independent of consistency, and controlled
by different instructions. In particular, acquires and releases
on current and forthcoming machines are expected to have
no bearing on the order in which data are persisted; they
may, however, interact with the persistency instructions.

We introduce an explicit epoch persistency model. Un-
like previous, implicit versions of epoch persistency, which
assume that the hardware will force dirty data back when
necessary to preserve ordering [4, 8, 10], our model captures
the behavior of both ARM and x86, and requires that pro-
grams employ explicit writes-back when ordering is required.
As noted above, we also consider a release-consistent model
of transient memory, rather the more restrictive TSO [4, 8]
or sequential consistency [10] of prior work.

Under explicit epoch persistency, threads control the or-
dering and timing of persistency using three special instruc-
tions. A persist write-back (pwb) initiates write-back of a
specified location to persistent memory, but does not block.
A subsequent persist fence (pfence) enforces an ordering be-
tween previous and subsequent writes-back in the current
thread. Finally, a persist sync (psync) blocks until all pre-
ceding pfences in the current thread have become persistent.

In the absence of fences, pwb instructions are allowed to
reorder with respect to both ordinary and synchronization
instructions. At the same time,

• each pwb is ordered with respect to (i) each preceding
or subsequent pfence in its thread;
• for any given thread and location, each pwb is ordered

with respect to (ii) each preceding str/str rel, (iii) each
preceding ld/ld acq, and (iv) each preceding pwb of the
same location in the same thread; and
• for any given thread, each pfence is ordered with re-

spect to (v) each preceding ld acq and (vi) each sub-
sequent str rel in that thread.

We also assume three other properties: First, writes-back
persist atomically at some specified granularity [4]: their
values cannot be torn across a fixed size. For generality, we
assume here that a full-word write-back appears in its en-
tirety or not at all in the wake of a crash. On real machines,
atomicity is likely to be guaranteed at larger granularity—
e.g., the width of a cache line. Second, persists to a given lo-
cation respect coherence: the programmer need never worry
that a newly persisted value will subsequently be overwrit-
ten by the write-back of some earlier value. Third, stored
locations can “leak” back to persistence at any point after a
store; in effect, extraneous pwbs can be inserted at will by
the hardware or runtime system. Like explicit pwbs, these
extraneous pwbs respect coherence and ordering.

Table 1 summarizes the mapping of our persistence in-
structions to the x86 and ARM ISAs. Neither instruction
set currently distinguishes between pfence and psync, though

Explicit
Epoch Persistency

Intel x86 [6] ARM v8 [1]

pwb addr CLWB addr DC CVAC addr

pfence
SFENCE

PCOMMIT∗

SFENCE∗
DSB†

psync ‘ ’ ‘ ’

Table 1: Equivalent instruction sequences for ex-
plicit epoch persistency.
∗Required if memory controller buffer is transient.
†Requires persistent memory controller buffer; transient memory

buffers are unsupported on ARM v8 at this time.

both may do so at some point in the future. For now, order-
ing requires that the current thread wait for values to reach
persistence.

2. TRANSFORMATION
Our transformation takes a transient concurrent program

annotated for release consistency and turns it into an equiv-
alent program for explicit epoch persistency. This transfor-
mation preserves the happens-before ordering of the original
concurrent program—that is, in the event of a crash, the
values present in persistent memory are guaranteed to rep-
resent a consistent cut in the happens-before partial order
of the original program.

Our transformation is as follows:

1. Immediately after every str, write back the written
value by issuing a pwb.

2. Immediately before a str rel, issue a pfence; immedi-
ately after a str rel, write back the written value by
issuing a pwb.

3. Immediately after an ld acq, write back the loaded
value by issuing a pwb, then issue a pfence.

4. Handle acquire–release CAS instructions as both str rel
and ld acq: immediately before the CAS, issue a pfence;
after the CAS, write back the loaded value by issuing
a pwb, then issue another pfence.

5. Take no persistence action on lds.
6. Before taking any I/O action, issue a psync to ensure

all changes have reached persistent storage.

2.1 Argument for Correctness
Let O = x.inst(params) denote an instruction ins that is

performed by thread t on memory location x, with parame-
ters params. Let M be the set of memory instructions {ld,
str, ld acq, str rel, CAS}, and P the set of persistence instruc-
tions {pwb, pfence, psync}. For any O = x.inst(params),
with ins ∈M, let P = x.pxO

t denote the persistence opera-
tion with px ∈ P associated with the transformation of op-
eration O. Note that x.pxO

t is well-defined and unique, given
our transformation. We treat x.CASt(a, b) as an atomic
〈O1 ;O2 〉 = 〈x.str relt(b); x.ld acqt(a)〉 pair), transformed

to pfenceO1
t ; 〈O1 ; O2 〉; x.pwbO1 ,O2

t ; pfenceO2
t .

For every memory location x, we have a total order of
values written to x, as memory is coherent. Without loss
of generality, assume that the i-th value written to x is i,
and its initial value is 0. Operations in our execution history
are partially ordered by the happens-before relation, denoted
≺, respecting the constraints of the memory and persistence
models. We wish to show that, in the wake of a crash,



the contents of persistent memory will always respect the
happens-before order of str and str rel instructions in the
pre-crash execution.

Assume the contrary: ∃A = x.st1 t(a), B = y.st2u(b),
with st1 , st2 ∈ {str, str rel}, such that A ≺ B, but in the
wake of a crash, B is seen to have persisted while A has
not. Without loss of generality, we may assume that A and
B are consecutive operations—that is, @C : A ≺ C ≺ B
(otherwise, if C has persisted, proceed with C in place of B
or, if C has not persisted, with C in place of A).

Let WB = y.pwbu(b) be the write-back that persisted B.
Our starting assumption implies that @WA = x.pwbv(a′) ≺
WB , with a′ ≥ a. Note the arbitrary issuing thread in WA.

In the discussion below, we write ≺(i,...,vi) to justify a
happens-before statement based on ordering properties (i)
through (vi), enumerated in Section 1.2. The following cases
are exhaustive:

1. If t = u and st2 = str, then y = x (otherwise A 6≺ B,
since A and B are consecutive). In this case, we have

y.pwbAt (a) ≺(iv) y.pwbBt (b).
2. If t = u and st2 = str rel, either y = x or y 6= x.

In either case, we have x.pwbAt (a) ≺(i) pfenceBt ≺(vi)

B ≺(ii) y.pwbBt (b).
3. If t 6= u, then st1 = str rel, or we contradict the fact

that A and B are consecutive. Hence, [A = x.str relt(a)]
≺ [L = x.ld acqu(a)] ≺ [B = y.s2u(b)]. However,

(a) A ≺ L, so A ≺ L ≺(iii) x.pwbLu (a′) ≺(i) pfenceLu ,
with a′ ≥ a since writes-back are coherent; and

(b) L ≺ B, so pfenceLu ≺(i) y.pwbu(b).

Therefore, x.pwbLu (a′) ≺ pfenceLu ≺ y.pwbBu (b).

In all three cases, we have contradicted the starting assump-
tion that @WA ≺ WB . That is, for any consecutively or-
dered stores A and B, if WB = y.pwbu(b) persists into mem-
ory, some WA = x.pwbv(a′) also persists into memory, and
becomes visible before WB does. Between any consecutive
stores, we have a pwb and a pfence (cases 2 and 3), or their
persistence respects coherence (case 1).

3. CONCLUSIONS AND FUTURE WORK
Explicit epoch persistency, we believe, accurately captures

the semantics that can be expected of forthcoming NVM sys-
tems. Our construction demonstrates that simple, mechan-
ical transformations can preserve the happens-before order
of properly synchronized programs, leading to meaningful
post-crash memory contents. More specifically, in the wake
of a crash, the contents of memory will reflect some consis-
tent cut of the happens-before graph of pre-crash execution.
For nonblocking concurrent objects, this cut represents a
valid static state of the object, which can be trivially recov-
ered [9]. For blocking objects, if the cut interrupts a failure-
atomic or critical section, additional recovery mechanisms
may be needed to roll the cut forward or backward [3,7,12]
to reach a consistent state [2].

In ongoing work, we are continuing to investigate the
notion of correctness for persistent programs and to de-
velop programming methodologies to (1) reduce the cost
of persistence for nonblocking concurrent objects, (2) pre-
serve the consistency of blocking objects, and (3) support
the composition of atomic operations into larger ACID
transactions—atomic, consistency-preserving, isolated, and
persistent (durable).

4. REFERENCES
[1] ARM Limited. ARM Cortex-A series programmer’s

guide for ARMv8-A. Technical Report
DEN0024A:ID050815, ARM Limited, Mar. 2015.

[2] H.-J. Boehm and D. Chakrabarti. Persistence
programming models for non-volatile memory.
Technical Report HP-2015-59, HP Labs, Aug. 2015.

[3] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari.
Atlas: Leveraging locks for non-volatile memory
consistency. In Proc. of the 2014 ACM Intl. Conf. on
Object Oriented Programming Systems Languages and
Applications, Portland, OR, USA, 2014.

[4] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In Proc. of the
ACM 22nd Symp. on Operating Systems Principles,
Big Sky, MT, USA, 2009.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory
multiprocessors. In Proc. of the 17th Intl. Symp. on
Computer Architecture, Seattle, WA, USA, 1990.

[6] Intel Corporation. Intel architecture instruction set
extensions programming reference. Technical Report
319433-022, Intel Corporation, Oct. 2014.

[7] J. Izraelevitz, T. Kelly, and A. Kolli. Failure-atomic
persistent memory updates via JUSTDO logging. In
Proc. of the 21st Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems,
Atlanta, GA, USA, 2016.

[8] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas.
Efficient persist barriers for multicores. In Proc. of the
48th Intl. Symp. on Microarchitecture, 2015.

[9] F. Nawab, D. R. Chakrabarti, T. Kelly, and C. B.
Morrey III. Procrastination beats prevention: Timely
sufficient persistence for efficient crash resilience. In
Proc. of the 18th Intl. Conf. on Extending Database
Technology, Brussels, Belgium, Mar. 2015.

[10] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory
persistency. In Proc. of the 41st Intl. Symposium on
Computer Architecture, Piscataway, NJ, USA, 2014.

[11] S. Venkataraman, N. Tolia, P. Ranganathan, and
R. H. Campbell. Consistent and durable data
structures for non-volatile byte-addressable memory.
In Proc. of the 9th USENIX Conf. on File and Storage
Technologies, Berkeley, CA, USA, 2011.

[12] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proc. of the 16th
Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Newport Beach,
CA, USA, 2011.

[13] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and
B. He. NV-Tree: Reducing consistency cost for
NVM-based single level systems. In Proc. of the 13th
USENIX Conf. on File and Storage Technologies,
Santa Clara, CA, USA, Feb. 2015.


