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ABSTRACT
Commodity operating systems such asWindows, Linux, andMacOS
form the trusted computing base of today’s computing systems,
and execute with elevated privileges to protect applications from
malicious behavior. However, since they are written in C and C++,
they have memory safety errors and are vulnerable to kernel-level
code-reuse attacks. In this talk, we present IskiOS: a system for
operating systems on the x86 processor that mitigates code reuse
attacks by providing three key pieces of functionality: a race-free
integrity-protected shadow stack, execute-only code memory, and
leakage-resilient diversification with code-pointer hiding.
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1 INTRODUCTION
Control-flow hijacking attacks [14, 18] exploit memory corruption
vulnerabilities to take over execution and control the behavior of a
program. When that program is the operating system kernel, every-
thing running on the machine is at risk. Even in the absence of con-
ventional control-flow attacks which inject a malicious payload [13],
code-reuse attacks (CRAs) may repurpose existing code in memory,
bypassing widely deployed data-execution prevention mechanisms.
Advanced code-reuse attacks [15] also exploit memory disclosure
vulnerabilities [16] to circumvent address space layout randomiza-
tion [17]. Existing defenses against kernel-level CRAs [2, 3, 8, 12]
rely on static analysis to tag legitimate code paths and use run-time
checks to force execution to follow these code paths. Unfortunately,
because static analysis is inevitably imprecise, such defenses are
easily bypassed by advanced code-reuse attacks [1, 4].

To defend against kernel-level CRAs, we propose a comprehen-
sive solution that (1) diversifies code layout through fine-grained
address space randomization, (2) protects against direct disclosure
of the layout by making executable memory unreadable, and (3) pre-
vents corruption of return addresses during execution. This talk
presents IskiOS [5], a system that leverages the PKU [7] feature
available on Intel’s recent x86 processors to implement execute-only
memory and protected shadow stacks with low run-time overhead.
Execute-only memory protects against direct disclosure of the code
layout bymaking executablememory unreadable; protected shadow
stacks prevent corruption of return addresses during execution. In
addition, IskiOS diversifies kernel code at compile time to mitigate
indirect memory disclosure attacks that leak code pointers from
readable memory (e.g., heap and stack) to infer the protected code
layout.
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2 ISKIOS: DESIGN AND IMPLEMENTATION
The key to our design is a novel use of Intel’s memory protec-
tion keys, which it calls Protection Keys for Userspace (PKU) [7].
PKU allows the program to indicate, dynamically, that read and/or
write access should be disabled for certain sets of pages. As the
name implies, PKU applies only to memory whose page table en-
tries (PTEs) are marked as user space. Over the past year, however,
widespread adoption of kernel page-table isolation (KPTI) [6] as
mitigation for Meltdown attacks [9] has essentially obviated use of
the user/supervisor bit in PTEs. Since we use an entirely separate
page table when running in the kernel, there is no reason kernel
pages cannot be marked as “user” memory, making PKU usable in
kernel space. Intel’s x86 processors use one PTE bit to distinguish
between read/write and read-only pages and another to indicate
executability [7]. This convention does not support an execute-only
(unreadable) mode. By leveraging PKU and KPTI, however, IskiOS
obtains the effect of such a mode by disabling read access for all
code pages in the kernel. Unlike previous work, IskiOS places no re-
strictions on virtual address space layout: the OS kernel can scatter
code pages throughout the address space, allowing randomization
techniques to use as much entropy as desired.

Separately, IskiOS uses PKU to ensure the integrity of a race-
free shadow stack that is used to protect all function returns and
that is writable only during short sequences of straightline code in
function prologues. Because the wrpkru instruction uses are hidden
through diversification and execute-only memory, an attacker who
cannot inject code into the kernel is unable to override either the
execute-only code segment or the protected shadow stack.

3 RESULTS
We used the LMBench micro-benchmark suite [10] to quantify
IskiOS’s overhead on basic kernel operations and the Phoronix
Test Suite [11] to measure the performance impact on real-world
applications. We demonstrate that our PKU-based implementation
of execute-only memory incurs a geometric mean of 10% overhead
across the LMBench micro-benchmarks, almost all of which is
due to the KPTI implementation. The addition of code-pointer
hiding and protected shadow stacks bumps the overhead up to
103% (geomean) compared to an unmodified Linux 4.19 kernel. On
the Phoronix system benchmarks, our full-IskiOS defenses lead to
an overhead of 3.5% (geomean).
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