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Abstract—This paper presents iDO, a compiler-directed ap-
proach to failure atomicity with nonvolatile memory. Unlike
most prior work, which instrument each store of persistent
data for redo or undo logging, the iDO compiler identifies
idempotent instruction sequences, whose re-execution is guaran-
teed to be side-effect-free, thereby eliminating the need to log
every persistent store. Using an extension of our prior work on
JUSTDO logging, the compiler then arranges, during recovery
from failure, to back up each thread to the beginning of the
current idempotent region and re-execute to the end of the
current failure-atomic section. This extension transforms JUSTDO
logging from a technique of value only on hypothetical future
machines with nonvolatile caches into a technique that also
significantly outperforms state-of-the art lock-based persistence
mechanisms on current hardware during normal execution, while
preserving very fast recovery times.

I. INTRODUCTION

With the emergence of fast, byte-addressable nonvolatile
memory, we can now conceive of systems in which main
memory, accessed with ordinary loads and stores, is “always
available,” and need not be flushed to the file system to survive
a crash. The obvious use case of such a technology is to allow
programmers to store heap objects persistently in memory,
bypassing the expensive serialization of those objects onto
traditional storage devices. Unfortunately, from the perspective
of crash recovery, nonvolatile main memory is compromised
by the fact that caches can write data back to memory in
arbitrary order, leading to inconsistent values after a crash.

In order to avoid such errors and ensure post-crash con-
sistency of persistent data, researchers have developed failure-
atomicity systems that allow programmers to delineate failure-
atomic operations on the persistent data—typically in the form
of transactions or failure-atomic sections (FASEs) protected
by outermost locks [1], [2] (our own work is based on FASE-
based locking). Given knowledge of where operations start
and end, the failure-atomicity system can ensure, via logging
or some other approach, that all operations within the code
region happen atomically with respect to failure and maintain
the consistency of the persistent data.
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To simplify the management of logs for FASE-based per-
sistence, Izraelevitz et al. introduced the notion of JUSTDO
logging [2]. The JUSTDO system logs enough information to
resume a FASE during recovery and execute it to completion
(“recovery via resumption”). Immediately prior to each store
instruction in a FASE, the JUSTDO system logs (in persistent
memory) the program counter, the to-be-updated address, and
the value to be written. During recovery, the system uses the
code of the crashed program to complete the remainder of each
interrupted FASE, beginning with the most recent log entry.

The problem with JUSTDO logging is its requirement that
the log be written and made persistent before the related
store—an expensive requirement to fulfill on machines with
volatile caches. The key contribution of our work is to demon-
strate that recovery via resumption can be made efficient on
machines with volatile caches and expensive persist fences.
The key is to arrange for each log operation (and in particular
each persist fence) to cover multiple store instructions of the
original application. We achieve this coverage via compiler-
based identification of idempotent instruction sequences. More
precisely, the compiler divides each FASE into a series of
idempotent regions, so that each instruction of the FASE
belongs to exactly one region. Because an idempotent region
of code can safely be re-executed an arbitrary number of times
without changing its output, the recovery procedure in the
wake of a crash can resume execution at the beginning of
the current region, eliminating the need to log each individual
store instruction of the original program.

This extended abstract introduces iDO, a practical compiler-
directed failure-atomicity system. Like JUSTDO logging, iDO
supports fine-grained concurrency through lock-based FASEs,
and avoids the need to track dependences by executing forward
to the end of each FASE during post-crash recovery. Unlike
JUSTDO, iDO allows the use of registers in FASEs, and persists
its stores at coarser granularity.

Instead of logging information at every store instruction,
iDO logs (and persists) a slightly larger amount of program
state (registers, live stack variables, and the program counter)
at the beginning of every idempotent code region within the
overall FASE. In practice, idempotent sequences tend to be sig-
nificantly longer than the span between consecutive stores—
tens of instructions in our benchmarks; hundreds or even
thousands of instructions in larger applications [3]. As iDO is
implemented in the LLVM tool chain [4], our implementation
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Fig. 1: iDO log structure and management: the number of iDO
logs matches the number of threads created.

is also able to implement a variety of important optimizations,
logging significantly less information—and packing it into
fewer cache lines—than one might naively expect.

II. IDO FAILURE ATOMICITY SYSTEM

Unlike UNDO or REDO logging, iDO logging provides fail-
ure atomicity via resumption and requires no log for individual
memory stores. Once a thread enters a FASE, iDO must ensure
that it completes the FASE, even in the presence of failures.
At the beginning of each idempotent code region in the body
of a FASE, all inputs to the region are known to have been
logged in persistent memory. Since the region is idempotent,
the thread never overwrites the region’s inputs before the next
log event. Consequently, if a crash interrupts the execution
of the idempotent region, iDO can re-execute the idempotent
region from the beginning using the persistent inputs.

For each thread, the iDO runtime creates a structure called
the iDO_Log, held in a linked list pointed to by the (persis-
tent) iDO_head. Each iDO_log structure comprises four
key fields. The recovery_pc field points to the initial
instruction of the current idempotent region. The intRF
and floatRF fields hold live-out register values. Finally,
the lock_array field holds indirect lock addresses for the
mutexes owned by the thread.

Here then is the series of steps required, within a FASE, to
complete the execution of idempotent region r and begin the
execution of region s:
1) Issue write-back instructions for all output registers of r
(saving them to intRF and floatRF) and for all output
values in the stack. Together, these comprise OutputSetr.
Note that live-out values that were not written in r are already
sure to have persisted; no additional action is required.
2) Update recovery_pc to point to the beginning of s.
Once this step is finished, s can be re-executed to recover
from failures that occur during its execution.
3) Execute the code of s, generating the values in OutputSets.
These values will be persisted at the end of s—i.e., at the
boundary between s and its own successor t, as described in
step 1. Note that by definition an idempotent region will never
overwrite its own input.

Recovery for iDO comprises the following general steps:
1) On process restart, iDO detects the crash and retrieves the
iDO_Log linked list.

2) iDO creates a recovery thread for each entry in the log list.
3) Each recovery thread reacquires the locks in its
lock_array, then synchronizes at a barrier.
4) Each recovery thread restores its registers (including the
stack pointer) from its iDO log, and jumps to the beginning
of its interrupted idempotent region.
5) Each thread executes to the end of its current FASE, at
which point no thread holds a lock, recovery is complete, and
the recovery process can terminate.

III. EVALUATION

For evaluation, we compared iDO against several other
failure atomicity runtimes [1], [2], [5] on the Redis [6], [7]
key-value store (for further results, see the full paper [8]). As
shown in Figure 2, iDO outperforms existing persistence sys-
tems by significant margins for all key ranges, with overhead
of 30–50% relative to the crash-vulnerable code. As Redis has
long FASEs with relatively few persistent writes, iDO can take
significant advantage of idempotent regions.
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Fig. 2: Redis throughput for databases with 10K, 100K,
and 1M-element key ranges using Redis’s “lru” test (80/20
read/write mix with power-law key distribution).
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