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Abstract
Transactional memory (TM) is heavily used for synchroniza-
tion in the Haskell programming language, but its perfor-
mance has historically been poor. We set out to improve
this performance using hardware TM (HTM) on Intel proces-
sors. This task is complicated by Haskell’s retry mechanism,
which requires information to escape aborted transactions,
and by the heavy use of indirection in the Haskell runtime,
which means that even small transactions are likely to over-
flow hardware buffers. It is eased by functional semantics,
which preclude irreversible operations; by the static sepa-
ration of transactional state, which precludes privatization;
and by the error containment of strong typing, which en-
ables so-called lazy subscription to the lock that protects the
“fallback” code path.

We describe a three-level hybrid TM system for the Glas-
gow Haskell Compiler (GHC). Our system first attempts to
perform an entire transaction in hardware. Failing that, it
falls back to software tracking of read and write sets com-
bined with a commit-time hardware transaction. If necessary,
it employs a global lock to serialize commits (but still not the
bodies of transactions). To get good performance from hard-
ware TM while preserving Haskell semantics, we use Bloom
filters for read and write set tracking. We also implemented
and extended the newly proposed mutable constructor fields
language feature to significantly reduce indirection. Experi-
mental results with complex data structures show significant
improvements in throughput and scalability.

CCSConcepts •Computingmethodologies→Concur-
rent programming languages; • Software and its engi-
neering→ Concurrent programming languages; Con-
current programming structures.
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1 Introduction
Since its introduction in 2005 [6], Haskell’s Software Trans-
actional Memory (STM) has become the preferred means of
coordinating concurrent threads in Haskell programs, mak-
ing Haskell arguably the first successful transactional mem-
ory programming language outside the research commu-
nity. The implementation of the Glasgow Haskell Compiler
(GHC) run-time system is not without compromises, how-
ever. Transactions incur significantly more overhead than
in STM systems for mainstream imperative languages. Both
per-thread latency and scalability are very poor. Fairness
in the face of contention is also poor, and abort rates tend
to be high for all but the smallest transactions. As a result,
while STM is the de facto synchronization mechanism of
choice for real-world Haskell, it tends to be used in an id-
iosyncratic way—with small transactions and with heavy
use of the retry mechanism, which allows a transaction to
wait for a programmer-specified precondition.

We believe that a more performant implementation of
STM in Haskell would allow it to be used effectively in a
much more natural way—the way it is typically envisioned
in the TM literature—namely, as a means of encapsulating
complete, atomic updates to complex data structures. In this
more natural idiom, uses of retry would, we believe, be rela-
tively rare, and extraneous wake-ups (due to cheaper, more
approximate read set tracking) could be tolerated.

With this vision in mind, we set out to leverage the hard-
ware transactional memory (HTM) of recent IBM and Intel
processors. (We focused on the Intel version [7] because it has
considerably more robust support in GHC.) To our surprise,
the task turned out to be quite difficult. We expected to face
challenges with retry , which naturally requires information
(details of the awaited condition) to escape an aborted trans-
action. We soon realized that the representation of read and
write sets (required by retry even for successful hardware
transactions) introduced significant management overhead
and tended to bloat the cache footprint, causing transactions
to overflow hardware limits on the size and associativity
of buffered speculative state. The biggest challenge turned
out to be GHC’s dependence on multiple levels of indirec-
tion in the implementation: given lazy evaluation (evaluated
v. unevaluated values), speculation (transactional values),
type-safe variants, and boxing of primitive types, a single
integer, accessed in a transaction, could easily require four or
more cache lines of speculative state. As a result, even small
transactions risk exceeding hardware speculation limits.
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This paper describes and evaluates the TM system we
ultimately developed: a three-level hybrid design that first
tries to use HTM to perform an entire transaction, then falls
back to validating and committing in hardware (after first
devising a plan in software), and finally, when necessary,
employs a global lock for the commit phase. We leverage
Haskell semantics wherever possible. In particular,
• Due to pure functional semantics, transactions never

perform “irreversible” operations and never need to be “in-
evitable” [17].
• Due to static separation of non-transactional and trans-

actional values, transactions never need to worry about “pri-
vatization safety” [11].
• Due to strong typing, errors in “zombie” transactions—

those that have read inconsistent state, but do not yet realize
they are doomed to abort—can always (with care) be con-
tained, allowing us to safely employ lazy subscription [4, 10]
to the fallback lock, reducing abort rates.

To minimize the overhead of write-set tracking (needed in
order to tell whether a successful transaction has modified
state on which other transactions are waiting), our system
employs compact Bloom filters rather than dynamically allo-
cated precise effect maps. To contain any effects of zombie
transactions, it interposes validation checks in the garbage
collector and scheduler. To reduce indirection overheads, it
abandons the natural convention of referencing every trans-
actional value through an indirection object containing meta-
data; instead, it allows transactional values to be embedded
directly in structure fields and array elements. Prior work
demonstrated that the resulting reduction in speculative
cache footprint could significantly reduce abort rates [20],
but only in non-type-safe code. In this current work, we
use mutable constructor fields [12], a recently proposed but
heretofore unimplemented language feature, to restore type
safety without indirection. Our implementation of mutable
fields was a major engineering effort.

We evaluate our hybrid system on concurrent versions of
some of Haskell’s most sophisticated data structures: red–
black trees, hashed array mapped tries, and treaps. Our re-
sults demonstrate significant performance improvements
with respect to the best existing implementations, support-
ing tens of millions of data structure updates per second, and
scaling (in many cases) out to the limits of our 72-thread,
two-socket machine. We take our success with type-safe
indirection elision as a compelling endorsement of muta-
ble fields. We take our lazy subscription results as a similar
endorsement of type safety in transactional languages.

2 Background
2.1 Haskell TM
Haskell’s TM was introduced by Harris et al. [6]. Its imple-
mentation in GHC can be configured to use either of two
different locking strategies. The fine-grain strategy is based

on the OSTM of Fraser [5]; it uses a separate lock for each
transactional variable (TVar). The coarse-grain strategy uses
a single lock to protect the commit phases of transactions. In
both strategies, TVar accesses are recorded, provisionally, in
a local transactional record (TRec). Reads are then validated,
and writes performed, at commit time. We will mostly con-
cern ourselves with the coarse-grain implementation here,
because it is more suitable for pairing with hardware TM.
Details of the fine-grain implementation as well as a descrip-
tion of transactional structs discussed later in this section can
be found in prior work [20].
When a transactional variable is accessed for the first

time in a transaction, the variable address and its value are
stored in a new TRec entry. The entry also has a field for a
new value if the transaction writes to that variable. When
the body of the transaction completes (in the coarse-grain
locking implementation) its thread attempts to commit: it
acquires the global commit lock and visits each entry in
the TRec, checking that the expected value stored matches
the value currently in the TVar. If a value does not match,
the TRec is discarded, the lock is released, and the transac-
tion starts again from the beginning. If all the values match,
the transaction is valid and the entries are visited again to
perform updates to the TVars, after which the global lock
is released. The commit lock serializes updates, ensuring
atomicity. It does not serialize the bodies of transactions;
these may see a partial update, as they do not look at the
lock except at commit time. We discuss the consequences of
such inconsistency further in Section 3.2.1.

At the Haskell language level, transactional variables and
the operations on them are explicit. The implementation
keeps each TVar in a separate heap object that contains a
pointer to the value it holds.Work on transactional structs [20]
introduced additional heap objects called TStructs with mul-
tiple fields and unboxed (in-place) values. This implemen-
tation avoided much of the indirection required to access
fields of transactional structures, but it was only a run-time
level proof of concept: TStructs could be used only in source
code that explicitly broke the type system. In Section 4, we
describe extensions to the source language and type sys-
tem that allow us to employ a TStruct-like implementation
directly in (type-safe) Haskell code.
The following data declaration is an example of a trans-

actional binary tree. It uses Haskell’s generalized algebraic
data types (GADT) syntax, which directly captures the type
signature of the tree’s constructor function:

1 data Tree where
2 Node : : Key
3 → TVar Node −− l e f t chi ld
4 → TVar Node −− right child
5 → Tree
6 Nil : : Tree

95



Leveraging Hardware TM in Haskell PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Lines 2–5 indicate that the constructor for the non-empty
(Node) tree variant takes a key and two transactional trees
(the left and right children) as arguments, and returns a
value of type Tree. Line 6 indicates that the constructor for
the empty (Nil) tree variant takes no arguments and simply
returns a Tree. Each constructor is a pure function without
visible side effects. The transactional arguments, however,
must be created in a special execution context that accom-
modates mutability.
Readers familiar with Haskell will recall that while the

language is purely functional, it provides a monad mecha-
nism that allows nested and tail-recursive functions to be
written in an imperative (assignment- and loop-based) style.
The type system allows purely functional code to create ac-
tions that can then be executed in an appropriately labeled
monadic context. Interaction with the real world is captured
as action in a special “IO” context understood by the run-
time system. Atomic update of TVars is similarly captured as
an action in a special STM context.

GHC provides two functions—newTVar and newTVarIO—to
generate actions that will (when executed in an STM or IO
context, respectively) in turn create a TVar:

1 newTVar : : a → STM (TVar a)
2 newTVarIO : : a → IO (TVar a)

Note the notation for the function return type: STM (TVar a)
indicates an action that will generate a TVar of type a when
executed in an STM context.
Actions can be bound together into larger actions using

a familiar looking imperative syntax—namely, Haskell’s do
notation. Each line of a do block is an action to execute; the
result of the composed action (itself an action) is the result
of the last line in the block. For example, the code to insert a
value on the left in a binary tree looks like this:

1 insert : : Key → Tree → STM ( )
2 insert newKey (Node key leftVar rightVar )
3 | newKey < key = do
4 leftTree ← readTVar leftVar
5 case leftTree of
6 Nil → do
7 l ← newTVar Nil
8 r ← newTVar Nil
9 writeTVar leftVar (Node newKey l r )
10 tree → insert newKey tree
11 . . . −− Other cases follow .

Note the uses of newTVar at lines 7 and 8.
Line 1 gives the type of insert as a function that takes a Key

and a Tree and produces an STM action with no meaningful
result (the unit type, denoted by empty parentheses, and used
in an analogousway to C’s void). Lines 2 and 3 together form
the left-hand side of the equals defining one case (overload)
of our function. Line 3 is a condition that must match for
this case. Line 2 gives names to parameters and, in this case,

matches only when the second argument (in parentheses) is
a Tree constructed with the Node constructor. The fields of
that constructor are bound to the variables key, leftVar , and
rightVar . Note that leftVar and rightVar are bound to TVars,
not to the values the TVars contain. To access a value we
use readTVar (Line 4) and writeTVar (Line 9). The left arrow
in do notation is effectively assignment: it binds a name (in
an IO or STM context) to the result value of the action on
the right-hand side. On Line 4, readTVar leftVar has the type
STM Tree, so leftTree will have the type Tree.
To execute a transaction, an STM action is given to the

atomically function, which results in an IO action. Within a
transaction, Haskell supports conditional blocking with the
retry STM action. A transaction T executes retry to indicate
that it has encountered a condition in which it cannot pro-
ceed. The runtime attempts to validateT (i.e., to confirm that
it has seen consistent state). If validation fails, execution of
T restarts immediately. If validation succeeds, execution first
blocks until some other thread commits a transaction that
has updated (or appears to have updated) one of the TVars
in T ’s read set; then (and only then) does T restart.

Building on retry , Haskell also provides an orElse mecha-
nism that can be used to compose alternative transactions.
In the construct atomically ( t1 ‘ orElse ‘ t2 ), if t1 executes
retry , all of its effects are discarded (though its read set is
retained) and t2 is attempted. While no currently available
HTM is able to retain its read set while clearing its writes,
we observe that hardware transactions can still be used if
the write set is empty when retry is encountered in the first
half of an orElse at run time. To exploit this observation,
programs may be rewritten to delay their writes, either man-
ually or (in potential future work) as a compiler optimization.
Our current implementation supports fully general use of
orElse by falling back to software transactions when needed.

2.2 Hardware Transactional Memory
Intel’s Transactional Synchronization Extensions (TSX) pro-
vides a simple way to speculatively execute code while the
hardware looks for conflicting accesses [7]. Hardware trans-
actions are started with XBEGIN, which takes the address
of an abort handler as an argument, and ended with XEND,
which attempts to commit the transaction.We also use XTEST,
which indicates if code is currently executing in a hardware
transaction and XABORT, which takes an 8-bit value and ex-
plicitly aborts the transaction, passing the value as an argu-
ment to the abort handler. (Note that in contrast to other
hybrid TM systems [3, 15, 16], we do not generate entirely
different code paths for hardware and software transactions.)

A TSX transaction T will abort if some other thread reads
or writes a location that T has already written, or writes
a location that T has already read or written. Like most
HTM implementations, TSX is “best effort” only: transactions
may also abort for a variety of “spurious” reasons. Certain
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instructions (e.g., syscalls) will always cause an abort, as
will overflow of the associativity or capacity of the L1 cache,
where speculative state is maintained.1 Nondeterministically,
certain system events (e.g., device interrupts or timer expira-
tion) may also lead to aborts. Hardware provides the abort
handler with an indication of the cause of the abort, but
this is only a hint. Conventional practice is to retry a failed
hardware transaction a limited number of times, then fall
back to a software implementation of atomicity, unless the
abort code indicates that failure is likely to be deterministic,
in which case immediate software fallback is advisable.

3 Hybrid Haskell TM
In Section 3.1 we describe several implementation strategies
for a hybrid TM system. Section 3.2 then considers the ways
in which these strategies interact and the circumstances un-
der which hardware transactions can be expected to improve
performance. Among other things, we explain why hardware
transactions in Haskell can, under reasonable assumptions,
safely “subscribe” to the software fallback lock at the end of
the transaction rather than the beginning. Finally, Section 3.3
describes our implementation of conditional blocking ( retry )
and its integration with hardware TM.

3.1 Hybrid Options
Our hybrid TM for GHC uses TSX in several ways. In Sec-
tion 3.1.1 we look at the simple scheme of eliding the coarse-
grain lock during the STM commit phase. This scheme has
some benefits over the fine-grain implementation and serves,
in Section 3.1.2, as the fallback mechanism for a second
scheme, in which we attempt to run Haskell transactions en-
tirely in hardware. Section 3.1.3 discusses a third implemen-
tation in which we use hardware transactions in the commit
phase of the fine-grain locking STM. Trade-offs and interac-
tions among these schemes are discussed in Section 3.2.

3.1.1 Eliding the Coarse-grain Commit Lock
The coarse-grain lock in GHC’s STM serializes transactional
commits. Replacing this lock with a hardware transaction
(eliding the lock) has the potential to greatly improve scal-
ability by allowing commits to overlap and relying on the
hardware for conflict detection. As the commit traverses the
TRec, it may see a TVar holding a value that does not match
the expected value. In this case we have it execute an XABORT
instruction with a value that indicates that validation has
failed. This conveniently will discard any updates we have
performed so far in the transaction. If fallback is required,
we acquire the global lock and perform two traversals of the
TRec, first to validate the read set and then to perform the
updates (the write phase).

1Strictly speaking, only writes are constrained by the capacity of the L1;
reads that overflow that capacity are tracked, conservatively, by a supple-
mental summary structure [8, Section 12.2.4.2].

Compared to the work of a full transaction, the commit
is compact and focused on the transactional accesses. To
improve this focus even more we move wakeup (support
for retry ) and the garbage collection (GC) write barrier to
another traversal of the TRec after the hardware transaction
commits. Details on these improvements are in Section 3.3
and 4.3 respectively. Note that eliding the commit lock does
not eliminate the need to maintain the transactional record
(TRec): to allow transactions to read their own writes and to
avoid interfering with peers, instrumentation is still required
on transactional loads and stores.

3.1.2 Full Haskell Transactions in HTM
The goal of executing an entire Haskell transaction within a
hardware transaction is to avoid the overhead of STM TRec
maintenance, relying instead on hardware conflict detection.
To achieve this goal, we use the coarse-grain locking imple-
mentation and start a hardware transaction in atomically . In
read and write operations we then use XTEST to see if we
are running a hardware transaction and, if so, access fields
directly (skipping most of the instrumentation). To support
retry , we still need to maintain a concise representation of
TRec read and write sets (as described in Sec. 3.3 below) for
wakeup or blocking after the transaction commits.

As noted in Section 2.1, hardware transactions do not
support partial aborts. We therefore fall back to software
transactions when orElse requires discarding writes. If the
transaction has not yet performed any writes when it en-
counters a retry in the first half of an orElse , it will continue
on to the second half in a hardware transaction.
If an all-hardware transaction fails to commit, we fall

back to a software transaction with the elision method de-
scribed in Section 3.1.1. Since an all-hardware transaction
could start and commit in the middle of the fallback transac-
tion’s write phase, we need to worry about the possibility
that the software transaction will see inconsistent state. We
address this in the standard way, by including the global
lock in each hardware transaction’s read set and checking
that it is unlocked. Transactions used for the commit phase
of fallback software transactions will be aborted whenever
they conflict with an all-hardware transaction, in a manner
analogous to the reduced hardware transactions of Matveev
and Shavit [15]. If we elide the global lock, aborts will not
be caused by conflicts on the coarse-grain lock itself: in the
absence of (true data) conflicts, software transactions can
commit concurrently with a running hardware transaction.
To understand and tune performance, we used Linux’s

perf tool (which provides access to hardware performance
counters) to track transaction starts, commits, total aborts,
conflict aborts, and contention aborts. First we focused on
single-thread performance, trying to ensure that most trans-
actions would fit in the capacity available to the hardware.
Poor performance here led to exploring constant space read
and write set tracking (see Section 3.3), to improving the
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hardware transaction code path to avoid extra register stores
for “foreign” calls (to parts of the runtime written in C), and,
eventually, to the mutable constructor field work we describe
in Section 4, which enhances both the type system and the
runtime in order to reduce indirection.

In addition to perf we used Intel’s Software Development
Emulator (SDE) to diagnose conflicts in multi-threaded ex-
ecutions. SDE outputs a log of the memory locations and
accesses most often responsible for transaction aborts. Early
in our work, SDE showed a significant (but relatively low)
number of aborts in the scheduler code. By detecting and
delaying yields when running hardware transactions, we
avoid these aborts and the wasted execution they entail. In
another case we saw many conflict aborts on the state of the
pseudo-random number generator and the counters for our
testing framework. We eliminated these aborts by modifying
the library to pad the state variables to a full cache line. This
change improved peak hybrid performance by 15% without
inducing any measurable overhead in the fine-grain STM
version.

3.1.3 Fine-grain Locking with HTM Commit
A third hybrid strategy starts with the fine-grain locking STM
and attempts to perform its commit phase using a hardware
transaction. Because the fine-grain STM uses each TVar’s
value field as a lock, this alternative strategy ends up being
very similar to elision of the global lock in the coarse-grain
STM, as described in Section 3.1.1. We do not need to include
a global lock variable in our read set, however, as each TVar
value read in the hardware transaction is a fine-grain lock.
A locked TVar indicates a validation failure; we abort the
hardware transaction with XABORT and restart the entire
hybrid transaction at the beginning.

3.2 Interaction Among Transactions
To understand how the coarse-grain hybrid design of Sec-
tion 3.1.2 can improve performance, it helps to consider the
ways in which non-conflicting transactions can interact with
each other. Specifically, consider the four modes in which a
transaction may execute: all hardware, software fallback (of
the body of the transaction), hardware commit (of a software
fallback), and software commit (of a software fallback).
First, consider concurrent all-hardware transactions. If

there are no conflicts at cache line granularity, we do not
expect transactions to cause each other to abort. Similarly, all-
hardware transactions and software fallback, in the absence
of cache line conflicts, should cause each other no problems.
Next consider an all-hardware transaction alongside a

software commit. As soon as the software commit is reached
it acquires the fallback lock. If the full hardware transac-
tion has this lock in its read set, it will abort even if there is
no conflict with transactional variables. In the other direc-
tion, we can consider an all-hardware transaction that starts
while the fallback lock is held. Before the transaction ends it

will observe the lock variable and, if it isn’t free, abort the
transaction (more on this in Section 3.2.1).

In the case of an all-hardware transaction alongside a hard-
ware commit, the fallback lock is read, but not written. The
hardware commit can be thought of as performing all the ef-
fects of a full hardware transaction without the interleaving
computation. The resulting interactions are thus the same
as between two full hardware transactions. Similarly, a hard-
ware commit and a software commit interact in the same
way as an all-hardware transaction and a software commit.

3.2.1 Lock Subscription
In the original Haskell STM work, Harris et al. [6] note that
their implementation allows continued execution of trans-
actions (“zombies”) that have observed inconsistent state,
arguing that the allowed effects of Haskell execution limit
the ill effects of such executions. In particular, stores through
uninitialized data pointers and jumps through uninitialized
code pointers are guaranteed by the type system never to
occur—everything is always initialized before it can be ac-
cessed. The two effects that must be considered are allo-
cation (e.g., an attempt to create an enormous object) and
non-termination (i.e., an infinite loop). In the case of alloca-
tion, a problematic request will trigger garbage collection
(GC), which gives the runtime the opportunity to validate
the current transaction (if any) before continuing execution.
Similarly, non-termination can be handled by returning to
the scheduler periodically and performing validation. The
mechanism to trigger this return is the same as for GC: an-
other thread or interrupt handler can set the transaction
thread’s heap limit variable to zero, causing execution to
return to the scheduler at the next safe point.

Over time, changes to GHC have undermined this scheme,
prompting us to develop further mitigation mechanisms. For
instance, GHC is capable of producing non-allocating loops
that do not check if they have reached the heap limit. This
problem is easily fixed by using the no-omit-yield compiler
flag to ensure that all loops (in GHC’s case, recursive function
calls) contain a GC initiation check. This flag is reported
to incur a cost in binary size of around 5% while overall
performance remains unaffected[18].
Allocations have also become problematic (https://ghc.

haskell.org/trac/ghc/ticket/12607): some large allocations
may request memory directly from the OS, without trig-
gering GC, and potentially trigger an out-of-memory error.
Though we have yet to implement the fix, it would suffice to
validate before large allocations and to ensure they happen
in a place where the thread can return to the scheduler.

3.2.2 Unsafe Operations
So far we have assumed that only type-safe operations are
executed in transactions. In practice many Haskell library
operations deliberately escape the type system in order to
implement optimizations that can be proven safe by hand but
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are not guaranteed so by the compiler. By convention these
operations are labeled with the unsafe prefix. For example
the array library provides an unsafeRead operation, which re-
frains from checking the bounds on the index. This operation
allows the programmer to improve performance by reducing
the number of bounds checks when an index has already
been checked or can be proved to be in bounds. Unfortu-
nately, reading beyond the bounds of an array could easily
lead to execution of arbitrary code in a zombie transaction—
even an XEND instruction without a read of the fallback lock!
To safely use unsafe operations directly in transactions,

the programmer must devise a correctness proof that en-
compasses the possibility of transactions executing with an
inconsistent view of memory. Fortunately, unsafe operations
are typically not used directly, but rather inside library rou-
tines that can be proven (manually) to be type safe for all pos-
sible combinations of parameters. If we imagine a transaction
that calls such a routine with incorrect parameters (by virtue
of having read inconsistent state) and that subsequently ex-
periences an error (e.g., due to out-of-bounds indexing) there
must exist another (non-transactional) program that calls
the same library routine with the same parameters and thus
must experience the same error—contradicting the assump-
tion that the library routine is type safe for all parameters.
We can use similar reasoning to argue that the run-time

system itself is type safe, for all parameters, allowing trans-
actional support routines (e.g., for reads and writes), to be
safely employed within transactions. Other parts of Haskell
execution rely on similar safety guarantees. Parallel exe-
cution of pure functional code, for example, requires that
objects and lazy updates are all initialized in the right order
to prevent seeing uninitialized fields. This requires a correct
implementation of the run-time system, code generator, and
any compilation passes that might move accesses relative to
one another.

3.3 Supporting Blocking
In the original GHC STM, when a transaction executes retry ,
its Haskell thread is suspended and placed on a watch list for
every TVar in its read set. When another transaction commits
it must wake up every thread in the watch lists of all the
TVars in its write set.

This scheme poses a challenge for all-hardware transac-
tions: if such a transaction encounters a retry and aborts, any
record of its read set will be lost. To address this issue, we
track whether a transaction has, as yet, written any TVars; if
not, we execute XEND instead of XABORT, and thus preserve
the read set. If the transaction has performed shared writes,
we execute an XABORT and restart the transaction from the
beginning on the software fallback path (at which point, if
execution follows the same path, it will block in software).
The maintenance of precise read and write sets also im-

poses significant overhead. Given that the complex data
structures on which our work is focused make little use

of retry , we have opted—in all our TM systems, including
GHC’s original STM—to represent sets imprecisely using
small, 64-bit Bloom filters. These require no dynamic mem-
ory management, and inserts, lookups, and intersections are
all extremely fast. (In the STM case, of course, TRecs still
contain precise information to allow the commit phase to
perform its validation and updates, and to allow transactions
to read their own writes.) Future work will explore the im-
pact of such parameters as Bloom filter size, hash function
choice, and wakeup structure design.

Bloom filters can of course give false positives, leading to
superfluous wakeups. Other designs might allow for false
negatives and periodically ensure that all blocked transac-
tions are woken. Certain programming idioms may tolerate
one approach or the other better. A barrier implementation,
for example, that uses retry to wait for the next phase of
computation might experience intolerable delays between
phases with false negatives. The popular async library, by
contrast, uses suspended transactions to represent a large
number of very rare conditions; false positives in this case
might result in substantial wasted work.
In place of per-TVar watch lists, our Bloom filter-based

retry implementation employs a simple global structure we
call the wakeup list, protected by a global wakeup lock. A
committing writer transaction acquires the global wakeup
lock, searches for overlapping read sets, and then wakes the
threads associated with those sets.
To minimize critical path length, we buffer wakeups and

performing them after the commit lock is released. We also
elide the global wakeup lock when searching for threads to
wake. When an all-hardware but (so far) read-only trans-
action executes retry , it acquires the global wakeup lock
before committing the hardware transaction. This avoids
any window between the end of the transaction and the in-
sertion into the list, during which a committing transaction
might overlook the retry -er. It also prevents data conflicts
on the wakeup structure itself from needlessly aborting the
all-hardware transaction. Speculative elision of the lock is
performed only by threads performing wakeup, so in the
event of a conflict the more expensive and important retry -
ing transaction wins. Because they acquire the lock for real,
no two all-hardware transactions can commit a retry at the
same time. The overlap here is quite small as long as we
optimize the wakeup list for quick insertion.

Our wakeup list is implemented as a linked list of chunks.
Under protection of the wakeup lock, insertion can be per-
formed by incrementing the chunk’s next-free-slot index
and storing the read set Bloom filter and thread pointer. If
a chunk is full, a new chunk is inserted to the head of the
list. When threads are woken, the Bloom filter is overwrit-
ten as zero (an empty read set). When searching the list for
matches, any chunk found to contain all zero entries is un-
linked. Garbage collection time also provides an opportunity
to compact the list.

99



Leveraging Hardware TM in Haskell PPoPP ’19, February 16–20, 2019, Washington, DC, USA

4 Mutable Constructor Fields
Hardware performance is highly sensitive to the memory
footprint of transactions. Minimizing the footprint, espe-
cially of locations that are written, increases the chances
that a transaction will commit and decreases the chances
that it will cause a concurrent transaction to abort. Previous
work with TStruct [20] reduced the indirections and the num-
ber of accesses by combining multiple transactional fields
into a single heap object. While this improves performance,
it comes at the cost of type safety and source-code clarity: as
a practical matter, the TStruct work served only as a means
of assessing the potential benefit of language extensions that
might enable a similar—but type-safe—combining of fields.

In this section we describe such a language extension and
its implementation, based on the (heretofore unimplemented)
mutable constructor fields language proposal [12]. We pro-
vide a brief introduction to mutable fields in Section 4.1.
We describe our extension to TM in Section 4.2 and outline
our implementation (of both the original proposal and our
extension) in Section 4.3. The extension fixes most of the
type-safety issues with TStruct while providing even greater
performance benefits.

4.1 Language Level Changes
The mutable constructor fields proposal uses the expressive-
ness of Haskell’s generalized algebraic data types (GADT)
syntax to declare data structures in which certain construc-
tors return actions instead of values, and in which certain
fields are identified as mutable (other fields are purely func-
tional). The actions returned by such constructors must then
be executed in the appropriate monadic context to produce
the desired value. As a result, in-place mutation can safely
be controlled without the need for indirection.
Constructors with a monadic context and mutable fields

can be mixed together with pure functional constructors in
a single data structure, allowing full support for Haskell’s
powerful pattern matching facilities and enabling the use of
pointer tagging, an implementation mechanism that uses the
low order bits of pointers to indicate the constructor of an
evaluated object. Marlow et al. [13] found such tagging to
improve the performance of typical programs by 10–15%.
As an example, consider a (non-transactional) variant of

the binary tree introduced in Section 2.1. This structure has a
Node constructor for a nontrivial tree, which holds a key and
a left and right subtree, and a Nil constructor for an empty
tree:

1 data Tree where
2 Node : : Key
3 → mutable Node −− l e f t chi ld
4 → mutable Node −− right child
5 → IO Tree
6 Nil : : Tree

Where the Node constructor of Section 2.1 returned a Tree
value, the version here (lines 2–5) returns an action that can
be executed to generate the Tree, but only in an IO context.
The Nil constructor still returns a pure Tree value. In the
Node definition the mutable keyword indicates that the left
and right subtree fields can be mutated, as we will see later.
This mutation will be safe because it will be guaranteed to
occur in an IO context.

Pattern matching in a case expression allows the program-
mer to bind variable names to fields of each constructor along
with the code to evaluate if the scrutinized value matches
that constructor. For example, we can write a function to
search the tree for the presence of a key:

1 contains : : Key → Tree → IO Bool
2 contains searchKey tree
3 = case tree of
4 Nil → return False
5 Node key leftVar rightVar → . . .

The case expression on Line 3 scrutinizes the value bound
to the tree parameter. This value can either be a Nil value,
leading to the code on Line 4, or a Node value, leading to
Line 5. The variables introduced by the pattern match nor-
mally hold the values from the fields of the object being
scrutinized. With mutable constructor fields, however, we
cannot directly access the value as it may change over time.
Instead the left and right fields will be bound to references of
type Ref Tree. The underlying value can be accessed by prim-
itive operations readRef and writeRef, which, when executed
in IO, perform the access. The key variable is an immutable
field and is bound to its value. We can now give the code for
the Node case alternative:

5 Node key leftVar rightVar →
6 case compare searchKey key of
7 EQ → return true
8 LT → do
9 leftTree ← readRef leftVar
10 contains searchKey leftTree
11 GT → do
12 rightTree ← readRef rightVar
13 contains searchKey rightTree

The compare function gives an ordering value for the two
keys. For the less than (LT) and greater than (GT) case al-
ternatives, we use Haskell’s do-notation to bind actions to
access the object. On Line 9, for example, leftTree is a new
variable bound to the value found in the leftVar field of tree .
The key, leftVar , and rightVar variables are scoped to only
the code to the right of the right arrow (→). In the previ-
ous TStruct work, field accesses did not have this safety and
invalid dereferences could easily be expressed.
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4.2 TM Extensions
In our extended version of mutable fields, we include support
for the STM monadic context. Pattern matching an STM mu-
table field binds a TRef transactional reference; dereferencing
is provided by readTRef and writeTRef operations. Since an
immutable field pattern match will bind the value of the
field, we do not need the unsafe APIs for non-transactional
accesses that TStruct required for good performance.

We also added support for a single mutable array field per
constructor by allowing the keyword mutableArray on the
last parameter type. This extension supports such structures
as the hashed array mapped trie (HAMT) (to be discussed
in Section 5.1.2). When constructing a mutable array field,
the size of the array and the initializing value are given as
arguments for the field. Patternmatching binds to a TRefArray
which can be accessed by operations that take an additional
index argument. We leave safe nontrivial initialization of
these arrays for future work.

4.3 Code Generation
The layout of each constructor’s heap object is fixed at
code generation time. With our extensions there are up
to five parts to each heap object: header, extended header,
pointer fields, non-pointer fields, and mutable array fields.
The header is a reference to a shared info table that describes
the layout of the heap object for GC. The extended header
holds STM metadata; it is compatible with the TStruct layout.
Pointer fields come next, to reduce the amount of memory
traversed by GC. If the constructor has a mutable array field,
its size is in the last non-pointer field. If the mutable array
fields are pointers, then they are also traversed by GC.
GHC generates code for case expressions to evaluate the

scrutinized expression and then jump to the correct code
alternative based on which constructor matches. Each alter-
native begins with code to read the values of the various
bound variables. The offsets for the reads come from the
heap object layout. References are not bound to values but
instead are GHC-internal pointers. Just before code gener-
ation these are expanded to two fields, an address and an
offset. The address is bound to the pointer-tagged version of
the main object, already a live value as it is used to choose
the case alternative. The offset is bound to a constant that
is adjusted to account for the specific tag bit pattern for the
constructor. This constant avoids the need to mask the tag
at run time, allowing the address of the field to be computed
with a simple add. Addresses internal to a heap object can-
not be stored on the heap, as GC requires all addresses it
traverses to point to the header of a heap object.

4.4 Run-time Support
Two changes to TStruct layout were required for mutable
fields. First, fields with mutable arrays have pointers at in-
dexes beyond the non-pointer part of the heap object. When

a field access is recorded in the transactional record it is now
treated as a pointer access if its index is before or after the
non-pointers. Second, all TStructs have a single info table,
but for constructors with mutable fields we generate a new
info table for each unique layout.

GHC’s garbage collection is generational andwhen objects
in older generations are mutated to point to values in a
younger generation they need to be treated as roots in minor
(nursery-only) collections. GHC uses a mutated list to track
these objects and the GC write barrier adds mutated heap
objects to the list. As an optimization, every mutable object
has two possible info tables—clean and dirty. When mutated,
if the header is clean it is switched to point to dirty and the
object is added to the mutated list. Subsequent mutations do
not add the object to the list again.

5 Performance Evaluation
Our results are from a 2-socket, 36-core, 72-thread Intel Xeon
E5-2699 v3 running Fedora 24. We use a branch of the 8.0.2
version of GHC that supports TStruct and fine control over
GHC’s thread pinning mechanism.We fill cores of one socket
(1–18), then the second socket (19–36), then hyperthreads
(37–72). We compare the performance of three TM systems:

Hybrid– Attempt an entire transaction in HTM (Sec. 3.1.2),
then fall back to elision of the coarse-grain commit
lock (Sec. 3.1.1), then fall back to the coarse-grain STM.

Fine HTM– Attempt the commit phase of fine-grain STM
in a hardware transaction (Sec. 3.1.3), then fall back to
the existing fine-grain GHC implementation.

Fine STM– GHC’s existing fine-grain code.

5.1 Data structures
We have results from three data structures implementing
a concurrent set. We initialize each structure with 50,000
entries from a key space of 100,000. Worker threads then
perform random insert, remove, and lookup operations in a
90:5:5 ratio. Because inserts and removes are balanced, the
structure is expected remain half full, meaning that half of
the inserts and removes will not change the structure and
will thus be read-only transactions.

5.1.1 Red–Black Tree
For red–black trees, the TStruct work reduced both the size
of nodes and the number of indirections relative to the equiv-
alent TVar version. Mutable fields offer the same benefits, but
better code generation: we can express trees as a two-way
sum type, with a Node constructor (with data and muta-
ble color and pointer fields) and a Nil constructor. With the
TStruct implementation, the empty tree had to be represented
as a top-level value rather than a constructor, and pointers
to nodes could not take advantage of GHC’s pointer tagging.
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Figure 1. Throughput of TVar, TStruct, and mutable field structures with coarse-grain hybrid, fine-grain software with hardware
commit, and fine-grain software runtimes. Note the differing y-axis scales. The line style key in (a) indicates the TM variant;
the shape and color key in (b) indicates the data structure. Both keys combine to describe the lines in all three plots.

5.1.2 Hashed Array Mapped Trie
A hashed array mapped trie (HAMT) [1] is a set implemen-
tation that hashes the key of each value and then uses suc-
cessive bit slices of the hash to control multi-way branching
at each level of a search tree. To avoid wasted space for
null pointers, internal nodes employ a compact representa-
tion that combines a presence bitmap with a dense array
of pointers. Again building on the TStruct work, which in
turn employs code from the stm−containers library [19], we
use mutable fields for the compact arrays of both internal
and leaf nodes. As in our red–black tree, HAMT benefits
from better code generation. It offers three constructors, for
empty trees, internal array nodes, and leaf array nodes.

5.1.3 Treap
A treap [14] is a binary tree that simultaneously maintains
left-to-right ordering for keys and priority-queue (heap) or-
dering for randomly assigned “priorities.” The randomization
serves to maintain expected log-time operations without the
complexity of typical rebalancing schemes. Code for the
treap is much simpler than that of the red–black tree or
HAMT. We experimented with several versions to assess
their impact on on performance: one in which recursive calls
return a triple of values, one that uses continuation passing,
and one that passes mutable locations by reference. Working
with more than one of these would have been extremely
difficult without the type safety provided by mutable fields.
Treaps allow us to observe an important factor in the

performance of hybrid transactions. When a key is inserted
or removed from a treap, the code performs writes up the
spine of the data structure. As they reach the top, these
writes are likely to be superfluous, writing the value that is
already in the field. The fallback path tracks values read and
written in its TRec fields, allowing it to refrain from rewriting

existing values, but all-hardware transactions cannot effect
this optimizationwithout redundant reads. As a consequence,
all-hardware transactions that write to the treap are likely
to conflict-abort regardless of the number of attempts.

We initially used a policy in which the maximum number
of pre-fallback retries, for both all-hardware transactions
and the fallback commit, was proportional to the number of
active threads. The high conflict rate in treap suggested that
we should lower the number of attempts for all-hardware
transactions. Performance suffered, however, if we also low-
ered the number of attempts for the fallback commit: for that
we needed to retain the proportional number of retries. For
red–black trees, uniformly proportional retries had yielded
the best results.

Treaps were not included in the TStruct work, and wewere
unable to evaluate their performance without the benefit of
mutable fields. We do, however, compare with a TVar version.

5.1.4 Other Data Structures
The TStruct work included results for skip lists and cuckoo
hash tables. While the code for these is unsafe, and uses soft-
ware transactions only, the results suggest that these struc-
tures, too, should scale well in the hybrid system. Unfortu-
nately, they require complex non-transactional initialization,
a feature beyond the scope of our initial implementation of
mutable fields.

5.2 Results
Figure 1 presents performance results for the red–black tree,
HAMT, and treap. Our coarse-grain hybrid system does well
in all cases, though Fine STM outperforms it slightly at scale
on the red-black tree and ties it on treap. On HAMT, per-
formance peaks with only one socket and no active hyper-
threads. At this point, the hybrid system with mutable fields
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Figure 2. (a) Eventual commit rate for treap, separated into all-hardware transactions (Hard), fallback hardware commit (Fall),
and taking the fallback lock (Lock). Dotted lines are for the TVar version and solid lines are for the mutable fields version.
(b) Early v. lazy subscription, with modified runtime that always acquires the lock during fallback. (c) Hybrid hardware
transaction retry policies on treap. Key entries indicate all-hardware attempts followed by fallback hardware commit attempts
(t is the number of threads).

outperforms Fine STM with TVars and TStructs by 52% and
28%, respectively. The TStruct version of HAMT outperforms
mutable fields on hyperthreads, where we see an improved
commit rate for fallback hardware commits. We attribute
this to a small difference in layout with TStruct objects giving
slightly better locality.

Treap shows the most drastic benefit from mutable fields.
Note that without them, both Hybrid and Fine HTM perform
worse than Fine STM. Our alternative versions of treap, dis-
cussed in Section 5.1.3, had similar performance; we show
results for the tuple-returning version, which was generally
the fastest. The indirections inherent in the TVar implementa-
tion greatly increase the read set of all-hardware transactions.
Combining this with the inflated number of writes leads to a
drastic decline in commit rate for all-hardware transactions.
Figure 2a shows the rate at which treap transactions eventu-
ally commit, for each type of commit, on both the mutable
field and TVar versions. To calculate the eventual commit
rate for all-hardware transactions, we divide the number of
all-hardware commits by the number of attempted transac-
tions. Similarly, for fallback hardware commits, we divide
the number of successful hardware commits by the number
of transactions that fall back. Finally, for lock commits, we
divide the number of successful validations by the number
of lock acquisitions. This accounting lumps together hard-
ware retry attempts, which should be significantly faster on
successive attempts due to cache warming.
Figure 2b compares the performance of early and lazy

lock subscription in our course-grain hybrid system. Under
normal conditions there is no significant performance differ-
ence, as the fallback hardware transaction is very success-
ful in avoiding lock acquisitions. To exhibit a difference in

performance, we show results that skip the fallback hardware
transaction and acquire the lock on fallback. This captures
the behavior that would arise if, for example, hardware as-
sociativity conflicts interfered with fallback HTM. In this
context, early subscription gives up to an 18% improvement
in throughput.
Figure 2c looks at the retry policies mentioned in Sec-

tion 5.1.3. Two attempts for each full hardware transaction
and proportional attempts for each Fine HTM transaction
gives the best performance on treap.

6 Conclusions and Future Work
Our work demonstrates transactional memory can provide
not only attractive semantics but also good performance—
and, in particular, that it can make effective use of hardware
TM on current Intel processors. We explored several alter-
native means of leveraging HTM. In general, our results
suggest that the best overall performance will be obtained
with a three-level hybrid system that first attempts to exe-
cute a transaction entirely in hardware, then falls back to a
software transaction body with an HTM commit phase, and
finally resorts to a global commit-phase lock.
For scalable data structures without heavy reliance on

Haskell’s retry mechanism, we benefit significantly from us-
ing a compact Bloom-filter representation of read and write
sets for transactional blocking and wakeup. We also can ben-
efit from lazy subscription to the global commit lock within
hardware transactions—an optimization that is fundamen-
tally unsafe in languages like C, but can (with some effort)
be made to be safe in Haskell.
Finally, we implemented the recent proposal for mutable

constructor fields in Haskell (a major engineering effort), and
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showed that they could be used to collapse indirection in
transactional data structures, thereby achieving the bene-
fits promised by earlier work on TStructs—namely, a major
reduction in the memory footprint of transactions and a
commensurate reduction in HTM abort rates.

There are several improvements to mutable fields that we
leave to future work. We hope to offer type-safe initializa-
tion for mutable array fields along the lines of Haskell’s ST
monad [9] or the newly proposed and implemented linear
types [2]. We might also hope to lift the restriction to a single
mutable array at the end of a given structure.

Haskell’s advanced type system is well suited to carrying
additional information about transactions. Future work could
use such information to generate better code. If, for instance,
we know that a transaction cannot execute retry , we need
not track its read set. Similarly, read-only transactions need
not create, initialize, or postprocess a write set for waking
up blocked peers.
The mutable fields feature also offers opportunities for

further code improvements—e.g., to find and eliminate re-
dundancies in the use of base-plus-offset addressing.
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A Artifact Appendix
A.1 Abstract
The artifact contains both source and binary distributions
of two versions of our changes to the GHC compiler as well
as the benchmarks and supporting code used in our evalu-
ation. Building and running according to the instructions
below will result in plots matching Figures 1 and 2 from the
PPoPP‘2019 paper Leveraging Hardware TM in Haskell.

A.2 Artifact check-list (meta-information)
• Program: TM throughput micro benchmarks are in-
cluded.
• Compilation: GHC 8.0.2, gcc 7.3.0, g++ 7.3.0, and GNU
make 4.1 are used to build our variants of GHC 8.0.2:
hybrid, hybrid-early, and fine. These are used to build
our benchmarks.
• Transformations: sed is used to switch hybrid source
to hybrid-early.
• Binary: GHC 8.0.2 hybrid and fine.
• Run-time environment: Ubuntu 18.04.
• Hardware: Intel TSX.
• Run-time state: Sensitive to cache contention.
• Execution: Sole user execution for about 40 minutes
for each figure on a large machine.
• Metrics: Logs record detailed per thread transaction
statistics and per run throughput.
• Output: Plots in HTML5 files.
• Experiments: Scripts and manual steps.
• Howmuch disk space required (approximately)?: 5GB
• How much time is needed to prepare workflow (ap-
proximately)?: 3 hours
• How much time is needed to complete experiments
(approximately)?: 2 hours
• Publicly available?: Yes.
• Code/data licenses (if publicly available)?: BSD3, GPL,
MIT, and GHC licenses.

A.3 Description
A.3.1 How delivered
Our modifications to GHC are open source under the The
Glasgow Haskell Compiler License and are hosted with binary
and source distributions on Zenodo:

https://doi.org/10.5281/zenodo.1998472
After building the distribution will occupy about 5GB of disk
space.

A.3.2 Hardware dependencies
Building and running our compiler and benchmarks requires
a machine with Intel Transactional Synchronization Exten-
sions (TSX). We have tested on a single socket, four core with
two hyperthreads per core Intel i7-4770 and a dual socket,
18-core per socket, and two hyperthreads per core Intel Xeon
E5-2699v3. In both these machines, TSX is not turned on.
We followed instructions from Intel for enabling TSX for

development. We recommend using a machine with TSX on
by default.

A.3.3 Software dependencies
We have tested building and running on a clean install of
Ubuntu 18.04. This required installation of gcc, g++, make,
libgmp-dev, and libncurses-dev. It should work with any
Linux distribution.

A.4 Installation
Detailed build instructions are included in the distribution.
The source distributions of our variants of GHC are built
with a standard configure script and make. Benchmarks are
built with each compiler variant via a bash script build.sh.
This needs the compilers to be put in a location the script
can find by looking for each variant under an environment
variable GHC COMPILERS.

A.5 Experiment workflow
As described in the build instructions linked above, bench-
marks can be run with the scripts included with the bench-
marks: fig-1.sh, fig-2a.sh, and fig-2bc.sh.

A.6 Evaluation and expected result
Running the benchmark scripts results in plots in the output
child directory. These plots should be consistent with the
results from thematching figures in the paper. Some of the re-
sults are only apparent on machines with high thread counts.
Relative order of code and compiler variations presented in
the results should match.
We found results to be highly sensitive to thread affinity.

We have provided some files (topo-*) that assign thread
affinity by filling all the cores on a single socket before mov-
ing to the next and after all the discrete cores are assigned,
filling hyperthreads in the same order. Individual machines
may have a drastically different mapping from processor
number to physical location.

A.7 Experiment customization
Additional parameters and configurations can be explored by
following the pattern of the fig-*.txt files which specify a
label, benchmark, compiler variant, benchmark code variant,
full transaction attempt policy, and commit transaction at-
tempt policy. For example, results on the coarse-grain STM
(not shown in the paper) can be obtained by using the hybrid
compiler and 0 for both the attempt policy columns. Addi-
tional benchmark command-line parameters can be set in
the fig-*.sh scripts. The benchmark programs can be given
a --help argument to see a list of configuration options.

The plot.hs and plot-stats.hsHaskell scripts are used
to extract plots from the benchmark run logs. These scripts
can be modified to plot additional information contained in
the log files. The benchmarks output significant per-thread
transaction event counts in a human readable format. In
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addition GHC’s runtime can output other statistics such as
garbage collection.

A.8 Notes
We have benefited greatly from using Linux perf to get hard-
ware transaction event counts and Intel’s software develop-
ment emulator to get detailed information about memory
conflicts.
While we would like to support architectures with hard-

ware transactions beyond Intel’s TSX, GHC’s support for
other architectures is currently too limited.

A.9 Methodology
Submission, reviewing and badging methodology:
• https://cTuning.org/ae/submission-20180713.html
• https://cTuning.org/ae/reviewing-20180713.html
• https://www.acm.org/publications/policies/
artifact-review-badging
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