
Understanding and Optimizing Persistent Memory
Allocation

Wentao Cai
Haosen Wen

University of Rochester
Rochester, NY, USA

{wcai6,hwen5}@cs.rochester.edu

H. Alan Beadle
Chris Kjellqvist

University of Rochester
Rochester, NY, USA

{hbeadle,ckjellqv}@cs.rochester.edu

Mohammad Hedayati
Michael L. Scott

University of Rochester
Rochester, NY, USA

{hedayati,scott}@cs.rochester.edu

Abstract
The proliferation of fast, dense, byte-addressable nonvolatile
memory suggests that data might be kept in pointer-rich
“in-memory” format across program runs and even process
and system crashes. For full generality, such data requires
dynamic memory allocation, and while the allocator could in
principle be “rolled into” each data structure, it is desirable
to make it a separate abstraction.

Toward this end, we introduce recoverability, a correctness
criterion for persistent allocators, together with a nonblock-
ing allocator, Ralloc, that satisfies this criterion. Ralloc is
based on the LRMalloc of Leite and Rocha, with four key in-
novations: First, we persist just enough information during
normal operation to permit a garbage collection (GC) pass to
correctly reconstruct the heap in the wake of a full-system
crash. Second, we introduce the notion of filter functions,
which identify the locations of pointers within persistent
blocks to mitigate the limitations of conservative GC. Third,
we reorganize the layout of the heap to facilitate the in-
cremental allocation of physical space. Fourth, we employ
position-independent (offset-based) pointers to allow persis-
tent regions to be mapped at an arbitrary address.

Experiments show Ralloc to be performance-competitive
with both Makalu, the state-of-the-art lock-based persistent
allocator, and such transient allocators as LRMalloc and JE-
Malloc. In particular, reliance on GC and offline metadata
reconstruction allows Ralloc to pay almost nothing for per-
sistence during normal operation.

CCS Concepts: • Software and its engineering → Al-
location / deallocation strategies; • Hardware → Non-
volatile memory; • Computing methodologies → Shared
memory algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7566-5/20/06. . . $15.00
https://doi.org/10.1145/3381898.3397212

Keywords: dynamic memory allocation, nonvolatile mem-
ory, lock freedom, garbage collection, persistent pointer
ACM Reference Format:
Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mo-
hammad Hedayati, and Michael L. Scott. 2020. Understanding and
Optimizing Persistent Memory Allocation. In Proceedings of the
2020 ACM SIGPLAN International Symposium on Memory Manage-
ment (ISMM ’20), June 16, 2020, London, UK. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3381898.3397212

1 Introduction
Byte-addressable nonvolatile memory (NVM) offers signifi-
cantly higher capacity and lower energy consumption than
DRAM, with a latency penalty of less than an order of mag-
nitude. Intriguingly, NVM also raises the possibility that ap-
plications might access persistent data directly with load and
store instructions, rather than serializing updates through
a block-structured file system. Taking advantage of persis-
tence, however, is not a trivial exercise. If data is to be re-
covered after a full-system crash, the contents of NVM must
always represent a consistent logical state—ideally one that
actually arose during recent pre-crash execution [24]. En-
suring such consistency generally requires instrumentation
with explicit write-back and fence instructions, to avoid the
possibility that updated values may still reside only in the
(transient) cache when data that depend upon them have
already been written back. To avoid the need to instrument
by hand, various groups have developed persistent versions
of popular data structures [17, 37, 54, 55] as well as more
general techniques to add failure atomicity to code based on
locks [6, 23, 30], transactions [1, 10, 14, 39, 50], or both [41].
One could in principle insist that memory management

be integrated into the failure-atomic operations performed
on persistent structures, but this has the disadvantage of in-
troducing dependences among otherwise independent struc-
tures that share the same allocator. It also imposes a level
of consistency (typically durable linearizability [24]) that is
arguably unnecessary for the allocator: we do not in general
care whether calls to malloc and free linearize so long as
no block is ever used for two purposes simultaneously or is
permanently leaked.

As in work on transactional memory [21], it is desirable to
provide malloc and free as primitives to the authors of per-
sistent data structures. In so doing, one must consider how

60

https://doi.org/10.1145/3381898.3397212
https://doi.org/10.1145/3381898.3397212

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

to avoid memory leaks if a crash occurs between allocating
a block and attaching it persistently to the data structure—
or between detaching and deallocating it. Intel’s Persistent
Memory Development Kit (PMDK) [41] exemplifies one pos-
sible approach, in which the allocator provides a malloc-to
operation that allocates a block and, atomically, attaches it
persistently at a specified address. A similar free-from op-
eration breaks the last persistent pointer to a block and, atom-
ically, returns it to the free list. HPE’s Makalu [3] exemplifies
an alternative approach, in which a traditional malloc/free
interface is supplemented with post-crash garbage collection
to recover any blocks that might have leaked.
We adopt Makalu’s approach in our work. In addition to

making it easier to port existing application code, the tradi-
tional interface allows us to eliminate write-back and fence
instructions in allocator code, and frees the programmer of
the need to keep track (in persistent memory) of nodes that
have been allocated but not yet attached to the main data
structure—perhaps because of speculation, or because they
are still being initialized.
As a correctness criterion for a persistent allocator, we

introduce the notion of recoverability. Informally, we say
an allocator is recoverable if, in the wake of post-crash re-
covery, it ensures that the metadata of the allocator will
indicate that all and only the “in use” blocks are allocated.
In a malloc-to/free-from allocator, “in use” blocks would
be defined to be those that have (over the history of the
structure, including crashes) been malloc-to-ed and not
subsequently free-from-ed. In a malloc/free allocator
with GC, “in use” blocks are defined to be those that are
reachable from a specified set of persistent roots. In this case,
the application and the allocator must agree on a tracing
mechanism that enumerates the reachable blocks. In the case
of conservative tracing it is conceivable that a block will ap-
pear to be reachable without ever having been allocated; by
treating such blocks as “in use,” we admit the possibility that
a crash will leak some memory. As in prior work [4], this
never compromises safety, and leaked blocks may often be
recovered in subsequent collections, if values erroneously
interpreted as references have changed.
Armed with this notion of correctness, we present what

we believe to be the first nonblocking recoverable alloca-
tor. Our system, Ralloc, is based on the (transient) LRMal-
loc of Leite and Rocha [28], which is in turn derived from
Michael’s nonblocking allocator [32]. Like LRMalloc, Ralloc
uses thread-local caching to fulfill most allocation and deallo-
cation requests without synchronization. When it does need
to synchronize, it commonly issues two compare-and-swap
(CAS) instructions and a write-back & fence pair in malloc
or free. Most metadata needed for fast operation resides
only in transient memory (with no explicit writes-back re-
quired) and is reconstructed after a full-system crash. In the
event of a partial crash (e.g., due to a software bug outside
the allocator that takes down one of several cooperating

processes), memory may be leaked on a temporary basis: it
can be recovered via garbage collection in some subsequent
quiescent interval.
For type-unsafe languages like C and C++, Ralloc adopts

the conservative strategy of Boehm and Weiser [4]. To accel-
erate recovery, accommodate nonstandard pointer represen-
tations, and reduce the likelihood of erroneously unrecov-
erable blocks due to false positives during tracing, we intro-
duce what we call filter functions—optional, user-provided
routines to enumerate the pointers in a given block.
To allow persistent structures to be mapped at differ-

ent virtual addresses in different processes and at different
times, we use an offset-based pointer representation [8, 10]
to provide fully position-independent data. (Specifically, each
pointer stores the 64-bit signed offset of the target from the
pointer itself.) By contrast, several existing systems force
data to reside at the same address in all processes across all of
time [3, 50]; others expand the size of each pointer to 128 bits
for base-plus-offset addressing [38, 41]. The former approach
introduces an intractable bin-packing problem as application
needs evolve, and is incompatible with address space layout
randomization (ASLR) [44] for security; the latter introduces
space overhead and forces the use of a wide-compare-and-
swap (WCAS) for atomic updates.
Summarizing contributions:

• (Section 3) We introduce recoverability as the correctness
criterion for persistent allocators, eschewing unnecessary
ordering among allocator operations and preserving the
essential properties of conventional transient allocators
for a world with persistent memory.

• (Section 4) We introduce an allocator, Ralloc, that is fast,
nonblocking, and recoverable, and that provides a standard
API. Ralloc incorporates filter functions to enhance the
performance, generality, and accuracy of conservative
garbage collection. It also incorporates offset-based smart
pointers for fast position independence.

• (Section 5) We argue that Ralloc is both safe and live: it
never overlaps in-use blocks, it eventually reuses freed
blocks, it is lock-free, and it is recoverable.

• (Section 6) We present performance results confirming
that Ralloc scales well to large numbers of threads and
is performance competitive, on both allocation bench-
marks and real applications, with both JEMalloc [15] and
Makalu [3].

2 System Model
2.1 Hardware and Operating System
We assume that NVM is attached to the system in parallel
with DRAM, and directly exposed to the operating system
(OS) as byte-addressable memory. This model matches (but
is not limited to) recent Intel machines, in which Optane

61

Understanding and Optimizing Persistent Memory Allocation ISMM ’20, June 16, 2020, London, UK

DIMMs are configured in so-called App Direct mode [25].1
The OS, in turn, makes NVM available to applications
through a direct access (DAX) [40] mechanism in which
persistent memory segments have file system names and
can be mapped directly into user address spaces. DAX em-
ploys a variant of mmap that bypasses the traditional buffer
cache [9, 52–55]. Like traditional mmap-ed files, DAX con-
sumes physical NVM on demand: a page of physical memory
is consumed only when it is accessed for the first time. This
feature allows the programmer to define memory segments
that are large enough to accommodate future growth, with-
out worrying about space lost to internal fragmentation.

Some DAX operations (e.g., mmap) have effects that are en-
tirely transient: they are undone implicitly on a system shut-
down or crash. We assume that all others are failure atomic—
that is, the OS has been designed (via logging and boot-time
recovery) to ensure that they appear, after recovery, to have
happened in their entirety or not at all. By contrast, updates
to DAX files mapped into user-level programs are ordinary
memory loads and stores, filtered through volatile caches
that reorder writes-back during normal operation, and that
lose their contents on a full-system crash.

Applications that wish to ensure consistency after a crash
must generally employ special hardware instructions to con-
trol the order in which lines are written back to NVM. On
recent Intel processors [22, 40], the clflush instruction
evicts a line from all caches in the system, writes it back
to memory if dirty, and performs a store fence to ensure
that no subsequent store can occur before the write-back.
The clflushopt instruction does the same but without the
store fence; clwb performs the write-back without necessar-
ily evicting or fencing. The latter two instructions can be
fenced explicitly with a subsequent sfence. In keeping with
standard (if somewhat inaccurate) usage in the literature, the
rest of this paper uses “flush” to indicate what will usually
be a clwb instruction, and uses “fence” for sfence.
We assume that a persistent data structure must, at the

very least, tolerate full system, fail-stop crashes, as might be
caused by power loss or the failure of a critical hardware
component. On such a crash, dirty data still in cache may be
lost, but writes-back at cache-line granularity will never be
torn, and there is no notion of Byzantine behavior.

More ambitiously, we wish to accommodate systems that
share data among mutually untrusting applications with in-
dependent failure modes. This stands in contrast to previous
projects, which have assumed that all threads sharing a given
persistent segment are part of a single application, and are
equally trusted. Recent work [19, 48] has shown that it is
possible, at reasonable cost, to amplify access rights when
calling into a protected library and to reduce those rights on

1Intel also supports an alternative Memory Mode, in which DRAM serves
as a hardware-managed cache for the larger but slower Optane memory,
whose persistence is ignored. We ignore this alternative in our work.

return. The OS, moreover, can arrange for any thread cur-
rently executing in a protected library to finish the current
operation cleanly in the event its process dies (assuming,
of course, that the library itself does not contain an error).
Applications that trust the library can then share data safely,
without worrying that, say, a memory safety error in another
application will compromise the data’s integrity. Protected
libraries have the potential to greatly increase performance,
by allowing a thread to perform an operation on shared mem-
ory directly, rather than using interprocess communication
to ask a server to perform the operation on its behalf. They
introduce the need to accommodate situations in which re-
covery from process crashes, if any, proceeds in parallel with
continued execution in other processes.

2.2 Runtime and Applications
We assume that every persistent data structure (or group of
related structures) resides in a persistent segment that has a
name in the DAX file system and can be mapped into con-
tiguous virtual addresses in any program that wants to use it
(and that has appropriate file system rights). The goal of our
allocator is to manage dynamically allocated space within
such segments. We assume, when a structure is quiescent (no
operations active), that any useful block will be reachable
from some static set of persistent roots, found at the begin-
ning of the segment. We further assume that the OS allows
a manager process to be associated with any segment that is
shared among applications, and that it notifies this manager
whenever a process sharing the segment has crashed (but
the system as a whole has not). Finally, we assume that an
application can tell when it is the first active user of any
given segment, allowing it to perform any needed recovery
from a full-system crash (if the segment was not cleanly
closed) and to start any needed manager process.
For all persistent data, we assume that application code

takes responsibility for durable linearizability [17, 24] or its
buffered variant. Durable linearizability requires that data
structure operations persist, in linearization order, before
returning to their callers. Buffered durable linearizability
relaxes this requirement to allow some completed operations
to be lost on a crash, so long as the overall state of the system
(after any post-crash recovery) reflects a consistent cut across
the happens-before order of data structure operations. Both
variants extend in a straightforward way to accommodate
fail-stop crashes of a nontrivial subset of the active threads.
They do not encompass cases in which a crashed thread
recovers and attempts to continue execution where it last
left off. New threads, however, may join the execution.
While some data structures may be designed specifically

for persistence and placed in libraries, the requisite level of
hand instrumentation is beyond most programmers. To facil-
itate more general use of persistence, several groups have de-
veloped libraries and, in some cases, compiler-based systems
to provide failure atomicity for programmer-delimited blocks

62

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

of code. In some systems, these blocks are outermost lock-
based critical sections, otherwise known as failure-atomic
sections (FASEs); examples in this camp include Atlas [6],
JUSTDO [23], and iDO [30]. In other systems, the atomic
blocks are transactions, which may be speculatively exe-
cuted in parallel with one another; examples in this camp
include Mnemosyne [50], NV-Heaps [10], QSTM [1], and
OneFile [39]. Intel’s PMDK library [41] also provides a trans-
actional interface, but solely for failure atomicity, not for
synchronization among concurrently active threads.

3 Recoverability
Our allocator needs to be compatible with all the program-
ming models described in the previous section. As described
in Section 1, it must also address the possibility that a crash
may occur after a block has been allocated but before it has
been made reachable from any persistent root—or after it has
been detached from its root but before it has been reclaimed.
Rather than force these combinations to persist atomically,
together, we rely on post-crash garbage collection to recover
any memory that leaks. While GC-based systems require
a mechanism to trace the set of in-use blocks, they have
compelling advantages. Use of a standard API avoids the
need to specify attachment points in calls to malloc-to and
free-from; it also facilitates porting of existing code. More
importantly, the garbage collector’s ability to reconstruct
the state of the heap after a crash avoids the ongoing cost of
flushing and fencing both allocator metadata and, for non-
blocking structures, the limbo lists used for safe memory
reclamation [16, 31, 51].
We say that a persistent allocator is recoverable if, in the

wake of a crash, it is able to bring its metadata to a state
in which all and only the “in use” blocks are allocated. For
applications using the malloc-to/free-from API, “in use”
blocks can be defined to be those that have (over the history
of the structure, including crashes) been malloc-to-ed and
not subsequently free-from-ed. In a malloc/free alloca-
tor with GC, we define “in use” blocks to be those that are
reachable from the persistent roots. The notion of reachabil-
ity, in turn, requires a mechanism to identify the pointers in
each node of the data structure, so that nodes can be traced
recursively. If the identification mechanism is conservative,
then some blocks that were never actually allocated prior to
a crash may be considered to be “in use” after recovery.

We observe that, given an appropriate tracing mechanism,
almost any correct, transient memory allocator can be made
recoverable under a full-system-crash failure model. During
normal operation, no block will be leaked or used for more
than one purpose simultaneously; in the wake of a crash, a
fresh copy of the allocator can be reinitialized to reflect the
enumerated set of in-use blocks. (In a type-safe language, the
reinitialization process may also perform compaction. This
is not possible with conservative collection.) Very little in

the way of allocator metadata needs to be saved consistently
to NVM. This observation transforms the central question
of persistent allocation from “how do we persist our malloc
and free operations?” to “how do we trace our data struc-
tures during recovery?”
But not all allocators are created equal. There are com-

pelling reasons, we believe, why a persistent allocator should
employ nonblocking techniques. First, a blocking allocator
inherently compromises the progress of any otherwise non-
blocking data structure that relies on it for memory manage-
ment. Second, nonblocking algorithms dramatically simplify
the task of post-crash recovery, since execution can continue
from any reachable state of the structure (and the allocator).
Third, even if cross-application sharing employs a protected
library that arranges to complete all in-flight operations in
a dying process, the problem of priority inversion suggests
that a thread should never have to wait for progress in a
different protection domain.

Among existing transient allocators, the first nonblocking
implementation is due toMagedMichael [32]. It makes heavy
use of the CAS instruction in allocation and deallocation and
is noticeably slower than the fastest lock-based allocators.
The more recent LRMalloc of Leite and Rocha [28] uses
thread caching to reduce the use of CAS on its “fast path,” and
makes allocations and deallocations mostly synchronization
free. Other lock-free allocators include NBmalloc [18] and
SFMalloc [43]. Due to the complexity of their internal data
structures, these appear much harder to adapt to persistence;
our own work is based on LRMalloc.
Despite the development of nonblocking allocators, fast,

nonblocking concurrent (online) collection remains an open
research problem. We adopt the simplifying assumption that
crashes are rare (mean times to failure on the order of hours
to months) and that a blocking approach to GC will be ac-
ceptable in practice. It is clearly so in the wake of a full-
system crash. In the event of partial (single-process) failures,
memory may leak temporarily. If the allocator identifies a
low-memory situation and knows that one or more processes
have crashed since GC was last performed, it can initiate a
stop-the-world collection.

4 Ralloc
From LRMalloc, Ralloc inherits the notion of thread-local
caches of free blocks; allocations and deallocations move
blocks from and to these caches in most cases, avoiding
synchronization. The rare cases that require synchronization
typically entail only two CAS instructions.
In adapting LRMalloc to persistence, we introduce four

principal innovations:

1. We rely on the fact that all blocks in a given superblock
(major segment of the heap) are of identical size to avoid
the need to persistently maintain a size field in blocks.
Instead, we persist the common size during superblock

63

Understanding and Optimizing Persistent Memory Allocation ISMM ’20, June 16, 2020, London, UK

1 Class Ralloc
2 Function init (string path, int size) : bool

// create or remap heap in path
// size of superblock region
// return true if heap files exist

3 Function recover () : bool
// issue offline GC if it is restart
// return true if heap was dirty

4 Function close () : void
// give back cached blocks and flush heap
// set heap as not dirty

5 Function malloc (int size) : void*
// allocate size bytes
// return address of allocated block

6 Function free (void* ptr) : void
// deallocate ptr

7 Function setRoot (void* ptr, int i) : void
// set ptr to be root i

8 Function getRoot<T> (int i) : T*
// update root type info
// return address of root i

Figure 1. API for Ralloc.

allocation, which is rare. In the typical malloc operation,
nothing needs to be written back to memory explicitly.

2. To improve the speed, accuracy, and generality of con-
servative garbage collection, we introduce the notion of
filter functions. These serve to enumerate the references
found in a given block, for use during trace-based col-
lection. In the absence of a user-provided filter function,
we conservatively assume that every 64-bit aligned bit
pattern is a potential reference.

3. We reorganize LRMalloc’s data into three respectively
contiguous regions, and utilize the major (superblock)
region in increasing order of virtual address as demand
increases. This strategy ensures that physical pages will
be allocated lazily by the operating system.

4. To allow a persistent heap to be mapped at different ad-
dresses in different applications (or instances of the same
application over time), we use an offset-based pointer rep-
resentation [8, 10] for Ralloc’s metadata references, and
encourage applications to do the same for data structure
pointers. The result can aptly be described as position-
independent data. In our code base, offsets are imple-
mented as C++ smart pointers.

4.1 API
The API of Ralloc is shown in Figure 1. Function init()
must be called to initialize Ralloc prior to using it. This func-
tion checks the persistent heap referenced by the parameter
path to determine whether this is a fresh start, a clean restart
without unaddressed failure, or a dirty restart from a crash.
A fresh start will create the persistent heap on NVM, map

it in DAX mode, initialize the metadata, and return false.
A clean restart will remap persistent heap to the address
space and also return false. A dirty restart will re-map the
heap and return true, indicating that recovery is needed. If
the application receives true from init(), it will need to
call recover() (after calling getRoot<T>()—see below) to
invoke the offline recovery routine and reconstruct metadata.
It is the programmer’s responsibility to provide a suf-

ficiently large size to init(). If space runs out, calls to
malloc()will fail (return null). Resizing currently requires
an allocator restart and an init() call with a larger size. As
a practical matter, resizing only changes the first word of the
superblock region and calls mmap with a larger size; no data
rearrangement is required.
At the end of application execution, close() should be

called to gracefully exit the allocator. In the process, any
blocks held in thread-local caches will be returned to their
superblocks, and the persistent heap will be written back to
NVM for fast restart.

The functions used for allocation and deallocation are sim-
ilar to the traditional malloc() and free(). Allocation and
deallocation requests are segregated by size class. Most re-
quests are fulfilled from thread-local caches of blocks of each
size class, avoiding synchronization. If the relevant cache
is empty, Ralloc either fetches a partially used superblock (a
chunk of blocks in the same size) from the partial list of the
size class, or fetches a free superblock from the superblock
free list. Both lists are accessible to all threads. All free blocks
in a fetched superblock will be pushed into the thread-local
cache. If the cache becomes too full as a result of deallocation,
blocks will be returned to their superblocks, which may then
appear in a partial list. Additional implementation details
appear in Section 4.4.

In support of garbage collection, Ralloc maintains a set of
persistent roots for data structures found in the heap. These
serve as the starting points for tracing. The setRoot() and
getRoot<T>() routines are used to store and retrieve these
roots, respectively. In C++, getRoot<T>() is generic in the
type T of the root; as a side effect, it associates with the
root a pointer to the T specialization (if any) of the GC fil-
ter function (Section 4.5.1), avoiding the need for position-
independent function pointers. When init() returns true,
the application should call getRoot<T>() for each persis-
tent root before it calls recover().

4.2 Data Structures
A Ralloc heap comprises a superblock region, a descriptor re-
gion, and ametadata region, all of which lie in NVM (Figure 2).
Only the fields shown in bold are flushed and fenced explic-
itly online. (All fields are eventually written back implicitly,
of course, allowing quick restart after a clean shutdown.)
The three regions are respectively mapped into the address
space of the application. The superblock region, which is by
far the largest of the three, begins with an indication of its

64

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

Descriptor Region

desc desc desc

desc desc desc

……

avail idx #free state

Size Class Block Size

Next Free Node

Next Partial Node

Superblock Region

size used

sb sb sb

sb sb sb

……

Block
Index

Next Free
Block

0 (allocated)

1

2

… …

n (allocated)

Size Class 1

Block Size: 8

Partial List cnt

desc

...

…

Superblock Free List cnt

Persistent Roots

Size Classes

Dirty Indicator

Size Class 39

Block Size: 14K

Partial List cnt

descdesc

Size Class 0
(for large allocations)

Block Size: 0

Partial List: NULL

Metadata Region desc … descdesc

Figure 2. Superblock, Descriptor, and Metadata Regions.
Variables written back explicitly online are bold.

maximum size, which is set at initialization time and never
changed. A secondword indicates the size of the prefix that is
currently in use. The descriptor region is always allocated at
its maximum size of size/1024 (a superblock is 64 KB whereas
a descriptor is 64 B). The metadata region has a fixed size,
dependent on the number of size classes, but not on the size
of the heap.
The superblock region holds the actual data of the heap.

After the initial size and used words, it holds an array of
superblocks, each of which comprises an array of blocks. All
blocks in a given superblock belong to the same size class. If
a block is free (not in use), its first word contains a pointer
to the next free block, if any, in the same superblock.
A descriptor describes a superblock, and is the locus of

synchronization on that superblock. Each descriptor is 32 B
in size, padded out to a 64 B cache line. Within a given heap,
the 𝑖-th descriptor corresponds to the 𝑖-th superblock, allow-
ing either to be found using simple bit manipulation given
the location of the other. Each descriptor contains five fields:
a 64 b anchor, a size class index, a block size, and two optional
pointers to form the superblock free list and a partial list. The
anchor, which is updated atomically with CAS, indicates the

index of the first block on the block free list, the number of
free blocks, and the state of the corresponding superblock.
The state is one of EMPTY, PARTIAL, or FULL, meaning the
superblock is entirely free, partially allocated, or fully allo-
cated. The size class field indicates which of several standard
sizes is being used for blocks in the superblock, or 0 if the
superblock comprises a single block that is larger than any
standard size. The block size field indicates the size of each
block in this superblock, either fetched from a size class or
set to the actual size of a large block during allocation. When
the superblock of this descriptor is in the superblock free list
or a partial list, one of the descriptor’s pointer fields is set to
the next node in the list.

The size class field (and also block size if it is a large block)
has to be persisted before a superblock is used for allocation,
because Ralloc needs the size information of every reachable
block to recover metadata after a crash.
The metadata region holds the portion of Ralloc’s meta-

data, other than descriptors, that is needed on a clean restart.
Unlike LRMalloc, which always calls munmap() to give
empty superblocks back to the OS, Ralloc implements a su-
perblock free list. This list is a lock-free LIFO list (a Treiber
stack [46]) of descriptors, linked through their next free node
fields. Given the 1-to-1 correspondence between superblocks
and descriptors, Ralloc finds a free superblock easily given a
pointer to its descriptor.

Persistent roots point to the external entry points of persis-
tent data structures in the superblock region. They comprise
the starting points for tracing during garbage collection: only
blocks identified as potentially reachable from the roots will
be preserved; all other blocks will be identified as not in use.
In our current implementation, a metadata region contains
1024 roots; applications can initialize as many of these as
required for a given set of data structures.
Our current implementation supports 39 different size

classes, supporting blocks that range from 8 to 14 K bytes [28].
A 40th class (number 0) supports blocks that are larger than
those of any standard class. Each superblock holds blocks of
exactly one class. Each size class metadata record contains
the block size and a partial list; elements on this LIFO lists are
descriptors (linked through their next partial node fields) for
partially filled superblocks whose blocks are of the given size
class. The heads of both the partial lists and the superblock
free list have 34 bits devoted to a counter (a benefit of the
persistent pointers discussed in Section 4.6 below) to avoid
the ABA problem [42, Sec. 2.3.1].
Ralloc uses a dirty indicator, implemented as a “robust”

pthread_mutex_t [45], to indicate whether it is necessary
to perform recovery before using the allocator. Every time a
process starts or restarts a Ralloc heap, Ralloc tries to lock
the mutex. If it fails with error code EOWNERDEAD, meaning
that the previously owning thread terminated with the mu-
tex locked, then the allocator was not cleanly shut down.

65

Understanding and Optimizing Persistent Memory Allocation ISMM ’20, June 16, 2020, London, UK

During a normal exit, after all metadata has been writ-
ten back to NVM, the mutex is unlocked. Since a robust
pthread_mutex_t records failure for only a single applica-
tion, we will need to extend this mechanism to accommodate
independent failures of processes sharing a heap; more on
this in Section 4.5.2.

In addition to its three persistent regions, Ralloc maintains
transient thread-local caches of blocks of each size class. In
the event of a crash, all record of blocks held in thread-
local caches will be lost, and must be recovered via garbage
collection. On a clean shutdown, the thread-local caches are
naturally empty.
Superblocks, descriptors, size classes, partial lists, and

thread-local caches are all inherited from LRMalloc. Ralloc
reorganizes them into three contiguous regions; adds persis-
tent roots, the superblock free list, and the dirty indicator;
links descriptors rather than superblocks in partial lists; and
persists the necessary fields.

4.3 Persistent Region Management
In order to limit the length of the superblock free list, ini-
tially only 1GB of a heap’s superblock region is included.
More superblocks are made available on demand until the
heap reaches the size limit specified in the most recent call to
init(). Within the specified limit, Ralloc obtainsmore space
by CAS-ing a larger number into the used field (with an ex-
plicit flush and fence). This update happens inside malloc
either when no superblock is available or when a large al-
location request is made. Subsequent initialization with a
smaller size will trigger an exception.

4.4 Allocation and Deallocation
Allocation requests for “small” objects (14 KB or less) are seg-
regated by size class. The appropriate thread-local cache is
typically not empty, allowing the request to be fulfilled with-
out any synchronization. An empty thread-local cache will
be refilled before satisfying the allocation request. The refill
operation grabs all available blocks in a partial superblock,
or all blocks in a new superblock if the partial list is empty.
The anchor in the corresponding descriptor is updated with
a CAS to indicate the change. If a new superblock is needed
but the superblock free list is empty, that list is refilled by ex-
panding the used space of the superblock region. Our current
implementation performs such expansion in 1GB increments.
We did not observe significant changes in performance with
larger or smaller expansion sizes.

When a small object is being deallocated, its descriptor is
found via bit manipulation. Ralloc determines its size class
from the descriptor. If the thread-local cache is not full, then
the freed block is simply added to the cache. Otherwise, all
of the blocks in the cache are first pushed back to the block
free list(s) of their respective superblock(s). A descriptor
changed from FULL to PARTIAL is pushed to the partial list; a
descriptor changed from FULL to EMPTY is retired and pushed

to the superblock free list. A descriptor that is changed from
PARTIAL to EMPTY will be retired, later, when it is fetched
from the partial list.

Allocation and deallocation routines for small objects are
inherited largely from LRMalloc. Given space constraints,
the code is not shown here; it differs from the original mainly
in the addition of flush and fence instructions needed to per-
sist the fields shown in bold in Figure 2. Large objects see
a bit more change in the code. In LRMalloc, any allocation
over 14 KB is fulfilled directly by mmap at an arbitrary virtual
address. This approach is not applicable in Ralloc because
all of our allocations must lie in the same persistent segment
(i.e., the superblock region). Ralloc therefore rounds the size
of a large allocation up to a multiple of the superblock size
(64 KB) and allocates it by expanding the used space in the
superblock region. The size is persistently stored in the first
corresponding descriptor. Although this approach may in-
troduce some external memory fragmentation, we consider
it acceptable if large allocations are rare. Ralloc with mostly
small allocations has no external fragmentation and little
internal fragmentation.
When a large block is deallocated, it is split into its

constituent superblocks, which are then pushed to the su-
perblock free list. Both allocation and deallocation, for both
small and large objects, are lock-free operations. Updates to
persistent fields (those shown in bold in Figure 2) are flushed
and fenced to enable post-crash recovery. Other fields are
reconstructed during recovery.

4.5 Recovery
Recovery employs a tracing garbage collector to identify
all blocks that are reachable from the specified persistent
roots. Because the sizes of all blocks are determined by their
superblock (whose size field is persisted), it is easy to tell how
much memory is rendered reachable by any given pointer
(pointers to fieldswithin a block are not supported). After GC,
all metadata is reconstructed. In a bit more detail, recovery
comprises the following steps:
1. Remap persistent regions to memory.
2. Initialize thread-local caches as empty.
3. Initialize empty superblock free and partial lists.
4. Set the filter function for each persistent root.
5. Trace all blocks reachable from persistent roots and put

their addresses in a transient set.
6. Scan superblock region and keep only traced blocks.
7. Update each descriptor accordingly.
8. Reconstruct the partial list in each size class.
9. Reconstruct the superblock free list.
10. Flush the three persistent regions and issue a fence.

Steps 1–3 are done in init(). Step 4 is done when
getRoot<T>() is called for each persistent root. Steps 5–
10 are done in recover(). When init() is called, the dirty
indicator (see Section 4.2) is reinitialized and set dirty until

66

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

1 Class Ralloc
2 . . . // functions mentioned in API and metadata
3 roots : Persistent roots ;
4 rootsFunc : Functions for persistent roots ;
5 Function getRoot<T> (int i) : T*
6 rootsFunc[i] =
7 Lambda [] (void* p , GC& gc) : void
8 gc.visit<T>(p);

9 return roots[i] ;

10 Class GC
11 visitedBlk : Set of visited blocks ;
12 pendingBlk : Stack of pending blocks to be visited ;
13 pendingFunc : Stack of functions of pending blocks ;
14 Function visit<T> (T* ptr) : void
15 if ptr ∈ superblock region and ptr ∉ visitedBlk then
16 insert ptr to visitedBlk ;
17 push ptr to pendingBlk ;
18 push Lambda [] (void* p, GC& gc) : void
19 gc.filter<T>(p);

20 to pendingFunc ;

21 Function filter<T> (T* ptr) : void
// Default conservative filter function

22 get descriptor desc of ptr ;
23 read block size size from desc ; // 0 if invalid
24 for i = 0 to size−1 by alignof(pptr<>) do
25 read potential pointer curr at offset i in *ptr ;
26 visit(curr);

27 Function collect () : void
// To get the set of reachable blocks

28 for i = 0 to max root do
29 if roots[i] ≠ NULL then
30 rootsFunc[i](roots[i], *this) ;

31 while pendingBlk ≠ ∅ do
32 pop func from pendingFunc;
33 pop blk from pendingBlk;
34 func(blk, *this) ;

Figure 3. Filtered garbage collection.

a call to close(); any crash that happens in the recovery
steps leaves the allocator dirty.

4.5.1 Filter Garbage Collection. Precise GC, of course,
is impossible in C and C++, due to the absence of type safety.
Conservative collection admits the possibility that some 64 b
value will erroneously appear to point to a garbage block,
resulting in a block that appears to be in use, despite the
fact that it was not allocated (or was freed) during pre-crash
execution—in effect, a memory leak. Arguably worse, con-
servative collection is incompatible with pointer tagging and
other nonstandard representations. Filter functions serve to
address these limitations.

1 Class TreeNode
2 . . . // content fields
3 left, right : TreeNode* ;

4 Function filter (TreeNode* ptr) : void
5 visit(ptr→left); visit(ptr→right);

Figure 4. Example of a filter function for binary tree nodes.

Figure 3 shows the basic variables and functions related to
filter GC. The basic principle is that, when getRoot<>() is
called after init() but before recover(), its type (obtained
via template instantiation) is recorded in the transient array
rootsFunc, in the form of a lambda expression that calls
the visit<T>() function. Then in recover(), collect()
traces all reachable blocks by calling visit<T>() itera-
tively from persistent roots until no more new blocks are
found. Each visit<T>() function marks its block as reach-
able and then calls filter<T>(), which is assumed to call
visit<U>() for each pointer of type U in the block.

For each type U used for persistent data, the programmer
is encouraged to provide a corresponding filter<U>(). Fig-
ure 4 presents an example filter for binary tree nodes. If no
filter<U>() has been specialized, the default conservative
filter, defined in Figure 3, is called instead.
While the implementation shown here utilizes C++ tem-

plates, filter functions are easily adapted to pure C by ar-
ranging for visit() and getRoot() to take a pointer to
the appropriate filter function as an extra parameter, and for
filter functions themselves to pass the appropriate function
pointer in each of their calls to visit().
Note that the function pointers used in GC are reestab-

lished in each execution, avoiding any complications due
to recompilation or address space layout randomization
(ASLR) [44]. Mechanisms to tag persistent roots with persis-
tent type information are a potential topic for future work.

4.5.2 Sharing Across Processes. The mechanisms de-
scribed above suffice to manage a persistent heap that is
used by one application at a time. While this application
may be multithreaded, its threads all live and die together.
If we wish to allow a heap to be shared by threads in dif-
ferent processes—either with mutual trust or via protected
libraries [19]—we must address a pair of problems. While
neither is addressed in our current implementation, solutions
appear straightforward.

First, if a heap in a newly rebooted system may be mapped
into more than one process concurrently, we need a mecha-
nism to determine which of these processes is responsible
for recovery. While several strategies are possible, perhaps
the simplest assigns this task to a dedicated manager process.
Such a process could be launched by any application that
calls init() on a currently inactive segment.
Second, we must consider the possibility that a process

may crash (due to a software bug or signal) while others

67

Understanding and Optimizing Persistent Memory Allocation ISMM ’20, June 16, 2020, London, UK

continue to use the heap. While nonblocking allocation en-
sures that the heap will remain usable and consistent, blocks
may leak for the same reasons as in a full-system crash:
they may be allocated but not yet attached, detached but
not yet deallocated, held in a per-thread cache, or held in a
limbo list awaiting safe reclamation. Given our reliance on
post-crash garbage collection, these blocks can be recovered
only by tracing from persistent roots. As indicated at the
end of Section 3, we assume that crashes are rare and that it
will be acceptable to implement blocking, “stop-the-world”
collection when they occur. A likely implementation would
employ a failure detector provided by the operating system
and fielded by the manager process mentioned above. In
the wake of a single-process crash, the manager could initi-
ate stop-the-world collection using a quiescence mechanism
adapted from asymmetric locking [49].

4.6 Position Independence
There are several reasons not to implement pointers as abso-
lute virtual addresses in persistent memory. If an application
uses more than one independent persistent data structure,
the addresses of those structures will need to be distinct. If
new applications can be designed to use arbitrary existing
structures, then every such structure would need to have
a globally unique address range, suggesting the need for
global management and interfering with security strategies
like ASLR.
One option, employed by our earlier work on Inter-

Weave [7], is to explicitly relocate a heap when it is first
mapped into memory, “swizzling” pointers as necessary. Un-
fortunately, this approach requires precise type information
and still requires that all concurrent users map a heap at the
same virtual address.

Some systems (e.g., PMDK [41]) use offsets from the begin-
ning of a destination segment rather than absolute addresses,
and specify the ⟨base, offset⟩ pair in 128 bits. This based
pointer convention requires that the starting address of the
segment be available (e.g., in a reserved register) in order to
convert a persistent pointer to a virtual address. An attrac-
tive alternative, used by NV-Heaps [10] is to calculate the
offset not from the beginning of the segment but from the
location of the pointer itself, since that location is certain to
be conveniently available when storing to or loading from it.
Chen et al. [8] call such offset-based pointers off-holders.

We implement off-holders as 64-bit pptr<T> smart point-
ers in C++, and instruct programmers to use them instead
T* pointers. All of the usual pointer operations work as one
would expect, with no additional source-code changes. Chen
et al. [8] report overheads for this technique of less than 10%.
For cross-region metadata pointers within the same in-

stance of Ralloc (e.g., persistent roots that reside in the meta-
data region and point to the superblock region), pptr takes
an optional template parameter as the index of a region. The
default value indicates that this is an off-holder pointing to

a target in the current region. Three other values can be
used to indicate a based pointer for the metadata, descrip-
tor, or superblock region of the segment. Ralloc records the
base address of regions during initialization, allowing it to
look up these addresses while converting a region-specific
pointer to an absolute address. Note that based pointers are
never needed by application programmers; they appear only
within the code of Ralloc itself.

Given a hard limit on the size of a superblock region (cur-
rently 1 TB), Ralloc is able to repurpose some of the bits in a
64 b pptr. As noted in Section 4.2, part of each list head is
used for an anti-ABA counter. For an off-holder, the unused
bits hold an arbitrary uncommon pattern that is masked
away during use; this convention serves to reduce the like-
lihood that frequently-occurring integer constants will be
mistaken for off-holders during conservative post-crash GC.

The pptr implementation does not currently support gen-
eral cross-heap references. Among our near-term plans is
to implement a Region ID in Value (RIV) [8] variant of pptr,
retaining the smart pointer interface and the size of 64 bits.

5 Correctness

During crash-free execution, LRMalloc is both safe and
live: blocks that are concurrently in use (malloced and not
yet freed) are always disjoint (no conflicts), and blocks that
are freed are eventually available for reuse (no leaks). We ar-
gue that Ralloc preserves these properties, and is additionally
lock free and recoverable.

Theorem 5.1 (Overlap freedom). Ralloc does not overlap
any in-use blocks.

Proof sketch. This property is essentially inherited from LR-
Malloc. All small allocations are eventually fulfilled from
thread-local caches, which are recharged by removing su-
perblocks from the global free and partial lists. Large alloca-
tions, likewise, are fulfilled with entire superblocks, obtained
using CAS to update the used size field. Only the CASing
thread has the right to allocate from the new superblocks.

The global lists are lock-free Treiber stacks [46]. Only one
thread at a time—the one that removes a superblock from a
global list—can allocate from the superblock. Expansion of
the heap (to create new superblocks) likewise happens in a
single thread, using CAS to update the used size field.
Small blocks in separate superblocks are disjoint, as are

blocks within a given superblock. The blocks that tile a
superblock change size only when the superblock cycles
through the free list; the superblocks that comprise a large
allocation likewise cycle through the free list. Thus blocks
of different sizes that overlap in space never overlap in time.

A thread that cannot allocate from a given superblock may
still deallocate blocks, but the free list within the superblock
again functions as a Treiber stack, with competing opera-
tions mediated by CASes on the anchor of the corresponding

68

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

descriptor. These observations imply that allocations of the
same block never overlap in time. □

Theorem 5.2 (Leakage freedom). Freed blocks in Ralloc
eventually become available for reuse.

Proof sketch. Reasoning here is straightforward. Small
blocks, when deallocated, are returned to the thread-local
cache. Superblocks are returned to global partial lists or (if
EMPTY) to the global free list when the thread-local cache
is too large, or when a large block is deallocated. In either
case, deallocated blocks are available for reuse (typically by
the same thread; sometimes by any thread) as soon as free
returns. Exactly when reuse will occur, of course, depends
on the pattern, across threads, of future calls to malloc and
free. Note that safe memory reclamation [31, 51], if any, is
layered on top of free: the Ralloc operation is invoked not
at retirement, but at eventual reclamation. □

Theorem 5.3 (Recoverability). Ralloc is recoverable.

Recall that an allocator is recoverable if it ensures, in the
wake of post-crash recovery, that the metadata of the allo-
cator will indicate that all and only the “in use” blocks are
allocated. For Ralloc, “in use” blocks are defined to be those
that are reachable from a specified set of persistent roots. In
support of this definition, Ralloc assumes that the application
follows certain rules. Specifically:
1. It is (buffered) durably linearizable (Ralloc does not trans-

form a transient application to be persistent).
2. It registers persistent roots in such a way that all blocks

it will ever attach in the future will be reachable.
3. It eventually attaches every allocated block to the struc-

ture to make it reachable.
4. It eventually calls free for every detached block.
5. It specializes a filter function for any block whose inter-

nal pointers are not 64-bit aligned pptrs.

Proof sketch. These rules ensure that the application never
leaks blocks during crash-free operation (rules 3 and 4), and
that it enables GC-based recovery (rules 2 and 5). The size
information of any in-use block in a descriptor is safely
available to recovery via the size class and block size
persistent fields. Assuming that pointers in types without
specialized filter functions are always aligned and in pptr
format, Ralloc’s garbage collection, with or without special-
ized filter functions, is guaranteed to find all in-use blocks
by tracing from the persistent roots. Having identified these
blocks, Ralloc re-initializes its metadata accordingly, updat-
ing each descriptor and reconstructing free lists and partial
lists. By the end of the recovery, all and only the in-use
blocks are allocated (where “in use” is defined to include all
blocks found by the collector, even if they were not actually
malloced during pre-crash execution). □

Theorem 5.4 (Liveness). Ralloc is lock free during crash-
free execution.

Proof sketch. The only unbounded loops in Ralloc occur in
the Treiber-stack–like operations on the superblock free and
partial lists and the free lists of individual superblocks, and
in operations on anchors and the used size field. In all cases,
the failure of a CAS that triggers a repeat of a loop always
indicates that another thread has made forward progress.
Significantly, there are no explicit system calls (e.g., to

mmap) inside Ralloc’s allocation and deallocation routines.
We assume that implicit OS operations, such as those related
to demand paging and scheduling, always return within
a reasonable time; we do not consider them as sources of
blocking in Ralloc. □

6 Experiments
6.1 Setup
We ran all tests on Linux 5.3.7 (Fedora 30), on a machine with
two Intel Xeon Gold 6230 processors, each with 20 physical
cores and 40 hyperthreads. Threads were first pinned one
per core in the first socket, then on the extra hyperthreads,
and finally on the second socket. All experiments were con-
ducted on 6 channels of 128GB Optane DIMMs, all in the
first socket’s NUMA domain. Persistent allocators ran on
an EXT4-DAX filesystem built on NVM; transient allocators
ran directly on raw NVM [25].

We compared Ralloc to representative persistent and tran-
sient allocators including Makalu [20], libpmemobj-1.6 from
PMDK [41], JEMalloc [15], and LRMalloc [28] (Ralloc with-
out flush and fence). Since all benchmarks and applica-
tions in our experiments used malloc/free, for PMDK’s
malloc-to/free-from interface we had to create a local
dummy variable to hold the pointer for easy integration. For
all tests we report the average of three trials. The source code
for Ralloc is available at https://github.com/qtcwt/ralloc.

6.2 Benchmarks
Our initial evaluation employed four well known allocator
workloads.

Threadtest, introduced with the Hoard allocator [2], al-
locates and deallocates a large number of objects without
any sharing or synchronization between threads. In every
iteration of the test, each thread allocates and deallocates
105 64-byte objects; our experiment comprises 104 iterations.

Shbench [34] is designed as an allocator stress test.
Threads allocate and deallocate many objects, of sizes that
vary from 64 to 400 bytes (the largest of Makalu’s “small”
allocation sizes), with smaller objects being allocated more
frequently. Our experiment comprises 105 iterations.

Larson [26] simulates a behavior called “bleeding” in
which some of the objects allocated by one thread are left
to be freed by another thread. This test spawns 𝑡 threads
that randomly allocate and deallocate 103 objects in each
iteration, ranging in size from 64 to 400 bytes. After 104 it-
erations, each thread creates a new thread that starts with

69

https://github.com/qtcwt/ralloc

Understanding and Optimizing Persistent Memory Allocation ISMM ’20, June 16, 2020, London, UK

>>>

>>>

>>>

>>>

>>>
>>> >>>

>>>
>>> >>>

>>>
>>>

>>> >>>
>>> >>>

1 × 10
+0

1 × 10
+1

1 × 10
+2

1 × 10
+3

1 10 20 30 40 50 60 70 80 90

Threads

T
im

e
 (

s
e
c
o
n
d
)

>Ralloc
Makalu

PMDK
LRMalloc

JEMalloc

(a) Threadtest (lower is better)

>>>

>>>

>>>

>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>> >>> >>>

>>> >>>

1 × 10
−1

1 × 10
+0

1 × 10
+1

1 × 10
+2

1 10 20 30 40 50 60 70 80 90

Threads

T
im

e
 (

s
e
c
o
n
d
)

>Ralloc
Makalu

PMDK
LRMalloc

JEMalloc

(b) Shbench (lower is better)

>>>

>>>

>>>

>>>
>>>

>>>
>>> >>> >>> >>>

>>>
>>> >>> >>> >>> >>>

1 × 10
+0

1 × 10
+1

1 × 10
+2

1 × 10
+3

1 10 20 30 40 50 60 70 80 90

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
) >Ralloc

Makalu
PMDK
LRMalloc

JEMalloc

(c) Larson (throughput—higher is better)

>>>

>>>

>>>

>>>

>>>
>>> >>>

>>>
>>>

>>>
>>>

>>> >>>

>>> >>>

1 × 10
−1

1 × 10
+0

1 × 10
+1

1 10 20 30 40 50 60 70 80 90

Threads

T
im

e
 (

s
e
c
o
n
d
)

>Ralloc
Makalu

PMDK
LRMalloc

JEMalloc

(d) Prod-con (lower is better)

0.75
1.00

2.50

5.00

7.50
10.00

25.00

1 10 20 30 40 50 60 70

Threads

T
im

e
 (

s
e
c
o
n
d
)

Ralloc
Makalu

Built−in allocator
PMDK

(e) Vacation (lower is better)

>>>

>>>

>>>
>>>

>>>
>>> >>> >>> >>> >>>

>>>

>>> >>> >>> >>> >>>

500

750

1000

1500

2000

1 10 20 30 40 50 60 70 80 90

Threads

T
h
ro

u
g
h
p
u
t
(K

 o
p
s
/s

e
c
)

>Ralloc
Makalu

PMDK
LRMalloc

JEMalloc

(f) Memcached (higher is better)

Figure 5. Performance (log2 scaled). Each socket has a total of 20 two-way hyperthreaded cores.

the leftover objects and repeats the same procedure. Our
experiment runs this pattern for 30 seconds.
Prod-con is a local re-implementation of a test originally

devised for Makalu [3]. It is meant to assess performance
under a producer-consumer workload. The test spawns 𝑡/2
pairs of threads and assigns a lock-free M&S queue [33] to
each pair. One thread in each pair allocates 107 · 2/𝑡 64 B
objects and pushes pointers to them into the queue; the
other thread concurrently pops pointers from the queue and
deallocates the objects.
Performance results appear in Figures 5a–5d. In many

cases, curves change shape (generally for the worse) at 20
and 40 threads, as execution moves onto sister hyperthreads
and the second socket, respectively. The 20-thread inflec-
tion point presumably reflects competition for cache and
pipeline resources, the 40-thread inflection point the cost
of cross-socket communication. Overall, Ralloc outperforms
and scales better than PMDK and Makalu on all benchmarks,
and is close to JEMalloc for low thread counts. Makalu, how-
ever, usually stops scaling before 20 threads.

On Threadtest and Shbench, Ralloc performs around 10×
faster than Makalu and PMDK, presumably because the ear-
lier systems must log and flush multiple words in synchro-
nized allocator operations, while Ralloc needs no logging
at all, and flushes only occasionally—and then only a single
word (the block size during superblock allocation).

On Larson, Ralloc performs up to 37× faster than Makalu.
We attribute this to Makalu’s lack of robustness for large
numbers of threads. We have also (results not shown) tested
the allocators on Larson with a wider range of sizes (64–2048

bytes, the largest “medium” allocation size in Makalu). In
this test Makalu stopped scaling after only 2 threads, and
performed up to 100× slower than Ralloc (1M versus 100M
at 16 threads). This may suggest that “medium” allocations
severely compromise Makalu’s scalability.
On Prod-con, Ralloc’s performance is close to that of

Makalu for low thread counts, but afterwards scales bet-
ter. This is because most of the time for low thread counts is
spent synchronizing on the M&S queues, hiding the differ-
ence in allocation overhead.

6.3 Application Tests
We also tested Ralloc on a persistent version of Vacation and
a local version of Memcached. Vacation (from the STAMP
suite [5]) is a simulated online transaction processing sys-
tem, whose internal “database” is implemented as a set of
red-black trees. We obtained the code for this experiment,
along with that of the Mnemosyne [50] persistent transac-
tion system, from the University of Wisconsin’s WHISPER
suite [35]. Memcached [29] is a widely used in-memory key-
value store. We modified it to function as a library rather
than a stand-alone server: instead of sending requests over a
socket, the client application makes direct function calls into
the key-value code, much as it would in a library database
like Silo [47]. Our version of memcached can also be shared
safely between applications using the Hodor protected li-
brary system [19]; to focus our attention on allocator perfor-
mance, we chose not to enable protection on library calls for
the experiments reported here.

70

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

50

100

150

200

2e+07 4e+07 6e+07

Number of Reachable Blocks

G
C

 T
im

e
 (

s
)

(a) Treiber Stack

5

10

15

1e+07 2e+07 3e+07 4e+07 5e+07

Number of Reachable Blocks

G
C

 T
im

e
 (

s
)

(b) Natarajan & Mittal Tree

Figure 6. GC Time Consumption.

The Vacation test employs a total of 16384 “relations” in
its red-black trees. Each transaction comprises 5 queries, and
the 106 transactions performed by each test target 90% of the
relations. All queries are to create new reservations. Given
that the code had been modified explicitly for persistence, we
tested only the persistent allocators, which exclude LRMalloc
and JEMalloc, but include Mnemosyne’s built-in allocator, a
persistent hybrid of Hoard [2] and DLMalloc [27].
The Memcached test runs the Yahoo! Cloud Serving

Benchmark (YCSB) [13], configured to be write dominant
(workload A [12] with 50% reads and 50% updates). In total,
5M operations were executed on 1M records.
Application performance results appear in Figures 5e

and 5f. Results on Vacation resemble those of the alloca-
tor benchmarks: Ralloc scales better than other persistent
allocators, and performs fastest for all sampled thread counts.
Memcached tells a slightly more interesting story: Perfor-
mance is relatively flat up to 40 threads, with Ralloc outper-
forming both Makalu and PMDK. Performance deteriorates
with the cost of cross-socket communication, however, and
Makalu gains a performance edge, outperforming Ralloc by
up to 7% at 62 threads. Our best explanation is that Makalu
provides slightly better locality for applications with a large
memory footprint. In particular, instead of transferring an
over-full thread-local free list (cache) back to a central pool
in its entirety, as Ralloc does, Makalu returns only half, allow-
ing the local thread to continue to allocate from the portion
that remains.
On memcached’s read-dominant workload (workload

B [12] with 95% reads and 5% updates—not shown here),
Ralloc continues to outperform Makalu by a small amount at
all thread counts. The curves are otherwise similar to those
in Figure 5f.

6.4 Recovery
In a final series of experiments, we measured the cost of Ral-
loc’s recovery procedure by running an application without
calling close() at the end, thereby triggering recovery at
the start of a subsequent run.
We inserted random key-value pairs into a lock-free

Treiber stack [46] in one experiment and, in the other, into
the nonblocking binary search tree of Natarajan and Mit-
tal [36]. The size of nodes in both is 64 B. We recorded re-
covery time for varying numbers of reachable blocks; results

appear in Figure 6. As expected, recovery time is linear in
the number of reachable blocks. Per-node time is higher in
the case of the tree, presumably due to poorer cache local-
ity. After recovery, the application was able to restore the
structure correctly in all cases, and to continue performing
operations without error.
We were unable to run Makalu’s recovery routine in our

local environment. Our recovery experiment, however, is
similar to the one reported by Makalu’s creators [3]. Accord-
ing to their paper, Makalu takes around 1 second, parallelized
on 6 threads across persistent roots, to recover a collection of
Treiber stacks when the longest chain is 50 K nodes and the
data left in the heap is 1563MB. Ralloc, on the other hand,
takes about 17.5 seconds, single-threaded, to recover one
Treiber stack of 50M nodes, with 3052MB left in the heap.
These data suggest that Ralloc does not incur dramatically
higher recovery cost than Makalu.
While we currently run recovery on a single thread, it

would be straightforward in the procedure of Section 4.5 to
parallelize Step 5 across persistent roots and Steps 6–9 across
superblocks; we leave this to future work.

7 Conclusions
In this paper, we introduced the notion of recoverability as a
correctness criterion for persistent memory allocators. Build-
ing on the (transient) LRMalloc nonblocking allocator, we
then presented Ralloc, which we believe to be the first recov-
erable lock-free allocator for persistent memory.
As part of Ralloc, we introduced the notion of filter func-

tions, which allow a programmer to refine the behavior of
conservative garbage collection without relying on compiler
support or per-block prefixing [11]. We believe that filter
functions may be a useful mechanism in other (e.g., transient)
conservative garbage collectors.
Using recovery-time garbage collection, Ralloc is able to

achieve recoverability with almost no run-time overhead
during crash-free execution. By using offset-based pointers,
Ralloc supports position-independent data for flexible sharing
across executions and among concurrent processes.

Experimental results show that Ralloc matches or exceeds
the performance of Makalu, the state-of-the-art lock-based
persistent allocator, and is competitive with the well-known
JEMalloc transient allocator. Near-term plans include the
addition of general cross-heap persistent pointers, integra-
tion with persistent libraries [19], parallelized and optimized
recovery, and detection and (stop-the-world) recovery for in-
dependent process failures. Longer term, we plan to explore
online recovery.

Acknowledgments
This work was supported in part by NSF grants CCF-1422649,
CCF-1717712, and CNS-1900803, and by a Google Faculty
Research award.

71

Understanding and Optimizing Persistent Memory Allocation ISMM ’20, June 16, 2020, London, UK

References
[1] H. A. Beadle, W. Cai, H. Wen, and M. L. Scott. Towards efficient

nonblocking persistent software transactional memory. Technical
Report TR 1006, Department of Computer Science, Univ. of Rochester,
Apr. 2019. Extended abstract published as a brief announcement at
PPoPP 2020.

[2] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard:
A scalable memory allocator for multithreaded applications. In 9th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 117–128, Cambridge, MA, Nov.
2000.

[3] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast recov-
erable allocation of non-volatile memory. In ACM SIGPLAN Intl. Conf.
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 677–694, Amsterdam, Netherlands, Oct. 2016.

[4] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820, Sept.
1988.

[5] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford transactional applications for multi-processing. In IEEE Intl. Symp.
on Workload Characterization (IISWC), pages 35–46, Seattle, WA, Sept.
2008.

[6] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging
locks for non-volatile memory consistency. In ACM Intl. Conf. on
Object Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 433–452, Portland, OR, Oct. 2014.

[7] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L. Scott. Multi-level
shared state for distributed systems. In Intl. Conf. on Parallel Processing
(ICPP), pages 131–140, Vancouver, BC, Canada, Aug. 2002.

[8] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu. Efficient support
of position independence on non-volatile memory. In 50th IEEE/ACM
Intl. Symp. on Microarchitecture (MICRO), pages 191–203, Cambridge,
MA, Oct. 2017.

[9] D. Chinner. xfs: DAX support, Mar. 2015. https://lwn.net/Articles/
635514/.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson. NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In 16th Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 105–118, Newport Beach, CA, Mar. 2011.

[11] N. Cohen, D. T. Aksun, and J. R. Larus. Object-oriented recovery
for non-volatile memory. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):153:1–153:22, Oct. 2018.

[12] B. Cooper. YCSB core workloads, 2010. https://github.com/
brianfrankcooper/YCSB/wiki/Core-Workloads.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In 1st ACM Symp. on
Cloud Computing (SoCC), pages 143–154, Indianapolis, IN, June 2010.

[14] A. Correia, P. Felber, and P. Ramalhete. Romulus: Efficient algorithms
for persistent transactional memory. In 30th on Symp. on Parallelism in
Algorithms and Architectures (SPAA), pages 271–282, Vienna, Austria,
July 2018.

[15] J. Evans. A scalable concurrent malloc (3) implementation for FreeBSD.
In BSDCan Conf., Ottawa, Ontario, Canada, May 2006.

[16] K. Fraser. Practical Lock-Freedom. PhD thesis, King’s College, Univ. of
Cambridge, Sept. 2003. Published as Univ. of Cambridge Computer Lab
technical report #579, Feb. 2004. https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-579.pdf.

[17] M. Friedman, M. Herlihy, V. Marathe, and E. Petrank. A persistent
lock-free queue for non-volatile memory. In 23rd ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPoPP), pages 28–40,
Vienna, Austria, Feb. 2018.

[18] A. Gidenstam, M. Papatriantafilou, and P. Tsigas. NBmalloc: Allocating
memory in a lock-free manner. Algorithmica, 58(2):304–338, Oct 2010.

[19] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty. Hodor: Intra-process isolation for high-throughput
data plane libraries. In USENIX Annual Technical Conf. (ATC), pages
489–504, Renton, WA, July 2019.

[20] Hewlett Packard Enterprise. makalu_alloc, May 2017. https://github.
com/HewlettPackard/Atlas/tree/makalu/makalu_alloc.

[21] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg. McRT-
Malloc—A scalable transactional memory allocator. In Intl. Symp. on
Memory Management (ISMM), pages 74–83, Ottawa, ON, Canada, June
2006.

[22] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual,
May 2019. 325462-070US.

[23] J. Izraelevitz, T. Kelly, and A. Kolli. Failure-atomic persistent memory
updates via JUSTDO logging. In 21st Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
427–442, Atlanta, GA, Apr. 2016.

[24] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Intl. Symp.
on Distributed Computing (DISC), pages 313–327, Paris, France, Sept.
2016.

[25] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic
performance measurements of the Intel Optane DC persistent memory
module. CoRR, abs/1903.05714, 2019.

[26] P. Larson andM. Krishnan. Memory allocation for long-running server
applications. In 1st Intl. Symp. on Memory Management (ISMM), pages
176–185, Vancouver, BC, Canada, Oct. 1998.

[27] D. Lea. A memory allocator, Apr. 2000. http://gee.cs.oswego.edu/dl/
html/malloc.html.

[28] R. Leite and R. Rocha. LRMalloc: A modern and competitive lock-free
dynamic memory allocator. In 13th Intl. Meeting on High Performance
Computing for Computational Science (VECPAR), pages 230–243, São
Pedro, São Paulo, Brazil, Sept. 2018.

[29] libMemcached.org. libmemcached, 2011. https://libmemcached.org/
libMemcached.html.

[30] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. iDO:
Compiler-directed failure atomicity for nonvolatile memory. In 51st
IEEE/ACM Intl. Symp. on Microarchitecture (MICRO), pages 258–270,
Fukuoka, Japan, Oct. 2018.

[31] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems,
15(6):491–504, June 2004.

[32] M. M. Michael. Scalable lock-free dynamic memory allocation. In ACM
SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), pages 35–46, Washington DC, June 2004.

[33] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In 15th ACM Symp. on Prin-
ciples of Distributed Computing (PODC), pages 267–275, Philadelphia,
PA, May 1996.

[34] MicroQuill, Inc. shbench, 2014. http://www.microquill.com/
smartheap/shbench/.

[35] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. An
analysis of persistent memory use with WHISPER. In 22nd Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 135–148, Xi’an, China, 2017. ACM.

[36] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search
trees. In 19th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP), pages 317–328, Orlando, FL, Feb. 2014.

[37] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey III, D. R. Chakrabarti,
and M. L. Scott. Dalí: A periodically persistent hash map. In Intl. Symp.
on Distributed Computing (DISC), volume 91, pages 37:1–37:16, Vienna,
Austria, Oct. 2017.

[38] I. Oukid, D. Booss, A. Lespinasse,W. Lehner, T.Willhalm, andG. Gomes.
Memory management techniques for large-scale persistent-main-

72

https://lwn.net/Articles/635514/
https://lwn.net/Articles/635514/
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://github.com/HewlettPackard/Atlas/tree/makalu/makalu_alloc
https://github.com/HewlettPackard/Atlas/tree/makalu/makalu_alloc
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
http://www.microquill.com/smartheap/shbench/
http://www.microquill.com/smartheap/shbench/

ISMM ’20, June 16, 2020, London, UK W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, & M. L. Scott

memory systems. Proceedings of the VLDB Endowment, 10(11):1166–
1177, Aug. 2017.

[39] P. Ramalhete, A. Correia, P. Felber, and N. Cohen. OneFile: A wait-
free persistent transactional memory. In 49th IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks (DSN), pages 151–163, Portland, OR,
June 2019.

[40] A. Rudoff. Persistent memory programming. Login: The Usenix Maga-
zine, 42:34–40, 2017.

[41] A. Rudoff and M. Slusarz. Persistent memory development kit, Sept.
2014. https://pmem.io/pmdk/.

[42] M. L. Scott. Shared-Memory Synchronization. Morgan & Claypool,
2013.

[43] S. Seo, J. Kim, and J. Lee. SFMalloc: A lock-free and mostly
synchronization-free dynamic memory allocator for manycores. In
2011 Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT), pages 253–263, Galveston, TX, Oct. 2011.

[44] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In 11th ACM
Conf. on Computer and Communications Security (CCS), pages 298–307,
Washington DC, Oct. 2004.

[45] The Open Group. pthread_mutex_lock. IEEE Std 1003.1-2017, 2018.
[46] R. K. Treiber. Systems programming: Coping with parallelism. Tech-

nical Report RJ 5118, IBM Almaden Research Center, Apr. 1986.
[47] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy Trans-

actions in Multicore In-memory Databases. In 24th ACM Symp. on
Operating Systems Principles (SOSP), pages 18–32, Farmington, PA, Nov.
2013.

[48] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Dru-
schel, and D. Garg. ERIM: Secure, efficient in-process isolation with
protection keys (MPK). In 28th USENIX Security Symp. (SEC), pages
1221–1238, Santa Clara, CA, Aug. 2019.

[49] N. Vasudevan, K. S. Namjoshi, and S. A. Edwards. Simple and fast
biased locks. In 19th Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT), pages 65–74, Vienna, Austria, Sept. 2010.

[50] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight per-
sistent memory. In 16th Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 91–104,
Newport Beach, CA, Mar. 2011.

[51] H. Wen, J. Izraelevitz, W. Cai, H. A. Beadle, and M. L. Scott. Interval-
based memory reclamation. In 23th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPoPP), pages 1–13, Vienna,
Austria, 2018.

[52] M. Wilcox. Add support for NV-DIMMs to Ext4, Dec. 2017. https:
//kernelnewbies.org/Ext4.

[53] D. Williams. Persistent memory, Aug. 2019. https://nvdimm.wiki.
kernel.org/.

[54] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conf. on File and
Storage Technologies (FAST), pages 323–338, Santa Clara, CA, Feb. 2016.

[55] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A distributed file system
for non-volatile main memory and RDMA-capable networks. In 17th
USENIX Conf. on File and Storage Technologies (FAST), pages 221–234,
Boston, MA, Feb. 2019.

73

https://pmem.io/pmdk/
https://kernelnewbies.org/Ext4
https://kernelnewbies.org/Ext4
https://nvdimm.wiki.kernel.org/
https://nvdimm.wiki.kernel.org/

	Abstract
	1 Introduction
	2 System Model
	2.1 Hardware and Operating System
	2.2 Runtime and Applications

	3 Recoverability
	4 Ralloc
	4.1 API
	4.2 Data Structures
	4.3 Persistent Region Management
	4.4 Allocation and Deallocation
	4.5 Recovery
	4.6 Position Independence

	5 Correctness
	6 Experiments
	6.1 Setup
	6.2 Benchmarks
	6.3 Application Tests
	6.4 Recovery

	7 Conclusions
	Acknowledgments
	References

