
Fast Nonblocking Persistence for Concurrent Data Structures
Wentao Cai, Haosen Wen, Vladimir Maksimovski, Mingzhe Du,

Rafaello Sanna, Shreif Abdallah, and Michael L. Scott
{wcai6,hwen5,vmaksimo,mdu5,rsanna,selsaid,scott}@cs.rochester.edu

1. Introduction

Montage [6] is a general purpose system for building fast
recoverable data structures located in byte-addressable non-
volatile memory (NVM). Montage employs two key tech-
niques to minimize persistence overhead. First, it persists only
the abstract state of a concurrent object. In a mapping, for
example, only key-value pairs may be persisted, while the in-
dex (tree, hash table, skip list) can remain in transient DRAM.
Second, it embraces the buffered variant of durable lineariz-
ability [4], which allows the latency of flushes and fences to
be amortized over multiple operations.

Montage employs a slow-running clock that divides exe-
cution into epochs, and a background thread as the epoch
advancer to periodically persist updates in the old epoch and
increment the clock. To guarantee that post-recovery system
state reflects a consistent prefix of pre-crash execution, updates
in an old epoch must linearize before those in a new epoch,
and an epoch advance to e waits for all updates in e− 2 to
complete. If a crash happens in epoch e, Montage recovers
the structure to the end of epoch e− 2. Optionally, the user
may invoke a sync operation to request two epoch advances,
ensuring the persistence of a given operation.

Built on top of Ralloc [1], a lock-free allocator for persistent
memory, Montage guarantees lock-freedom during normal
operation, but the epoch advances are blocking: if the structure
itself is lock-free, it may still make forward progress despite
any stalled thread, but the advancer must wait for any stalled
thread to leave the epoch before proceeding. This potentially
indefinite waiting precludes a bound on the number of updates
that may be lost on a crash or the time required to complete a
sync. Because sync is implemented in a background thread
that must interact with all other threads, latency increases
dramatically with thread count, as shown in Figure 1.

To address these progress and performance issues, we have
developed nbMontage [2], a nonblocking variant of the orig-
inal Montage tailored for nonblocking data structures, and
with a fast, wait-free sync. The implementation is based on
the observation that to ensure consistency on a crash, each
operation must linearize in the epoch in which it created data.
This can be ensured if the linearization point is a compare-and-
swap (CAS) instruction that we can replace with a software
double-compare-single-swap (DCSS [3]) that verifies both the
expected value in memory and the current epoch. By making
the DCSS visible to other threads, we can arrange for sync to
abort slow operations instead of waiting for them. The aborted
operations then re-start in the newer epoch.

0

200

400

600

800

1000

1200

1400

nbMontage Montage nbMontage Montage nbMontage Montage nbMontage Montage

10 Threads 20 Threads 30 Threads 40 Threads

1 op/sync 5 op/sync 100 op/sync 1000 op/sync

sync() latency (µs)

Figure 1: Average latency of sync on hash tables.

Unfortunately, the waiting mechanism is deeply embedded
in the original Montage implementation. In the following sec-
tion, we summarize four significant changes required to obtain
a wait-free, responsive sync while still preserving Montage’s
negligible persistence overhead. Full details can be found in
our paper at DISC ’21 [2].

2. nbMontage

As in the original Montage, a typical nbMontage structure con-
sists of a collection of nonvolatile payload blocks that capture
abstract state, together with a much smaller index or other
auxiliary structure in DRAM. The global epoch clock is also
kept persistently in NVM. Each payload block is labeled with
the epoch of the operation that created it. A write operation
(in epoch e−2, for example) replaces an old payload block
(if any) with a new block. The old one is reclaimed after the
epoch clock has incremented to e, at which point we know
that the new block will survive a crash and the update has
persisted. Similarly, a delete replaces an old block with a
special “anti-block” that can itself be reclaimed in two epochs.
Major changes to the original system are as follows.

First, we deprecate the begin_op and end_op API calls,
which explicitly annotated failure-atomic sections, and intro-
duce a new, intuitive lin_CAS API, to simply replace lin-
earizing CAS of nonblocking operations, along with pnew

and pdetach functions that allocate payload blocks and anti-
blocks of pending operations prior to their linearization points.
At each lin_CAS, nbMontage annotates blocks allocated in
the current epoch, performs an epoch-verifying DCSS, and
automatically retries if the DCSS fails due to epoch change.
If an operation stalls after linearizing the DCSS but before



cleaning up its metadata, an epoch advancer or competing
thread will persist already staged updates.

Second, recovery must distinguish between payloads that
were created by committed and failed updates. To support
this, we persist DCSS descriptors and use thread ID and a
monotonic serial number to associate a unique ID with every
update. Each thread has a single, reusable descriptor; still-
extant payloads with earlier serial numbers can be assumed to
have committed; those corresponding to the serial number of
an aborted descriptor can be discarded, even if they belong to
an otherwise persisted epoch.

Third, to tolerate doomed threads in an arbitrary number of
old epochs, we redesign the set containers used to buffer to-
be-persisted (TBP) payloads and to-be-freed (TBF) payloads
in each epoch: TBP containers are implemented as wait-free
single-producer-multiple-consumer FIFO circular buffers, in-
tentionally allowing duplicated pops for better performance,
as duplicated flushes are benign; TBF containers, on the other
hand, can be handled lazily by the freeing thread.

Fourth, we use a locality-aware variant of Liu et al.’s Mindi-
cator [5] structure to implement a fast, decentralized, collabo-
rative sync. The structure is a fixed-size, wait-free balanced
tree, in which each leaf represents a thread and indicates the
epoch of its current operation. Each interior node indicates
the minimum epoch in its subtree. Any thread that invokes
sync can find the epochs and operations that need to be per-
sisted by scanning up and down from the thread’s own leaf.
NUMA locality is reflected in the structure of the tree, lead-
ing to locality-aware search and helping, and reducing sync

latency to a few microseconds. As shown in Figure 1, the
improvement with respect to the original Montage can be two
full orders of magnitude.

In general, nbMontage supports any nonblocking data struc-
tures whose write operations linearize at a compare-and-swap
(CAS) and that know, immediately after the CAS returns,
whether it forms the linearization point. Most nonblocking
structures in the literature appear to meet this requirement. We
have adapted numerous examples, including queues, skiplists,
hash tables, and binary search trees. With the new API, the
adaptation is straightforward and “mostly mechanical.”

3. Experimental Results
Like that of the original Montage, nbMontage’s performance
generally exceeds that of both prior general-purpose systems
and custom-designed persistent structures. Figure 2 shows
the throughput of million-element hash tables with an 18–
1–1 ratio of lookups, inserts, and removes. Only SOFT [7]
offers both persistence and higher performance. Because it
keeps a full copy of its data in DRAM, however, SOFT is
unable to exploit the high capacity of NVM. It also employs
optimizations that preclude provision of an atomic replace
operation for existing keys.

Our experiments employ an epoch length of 10 ms by de-
fault, but throughput remains remarkably high and stable even

Figure 2: Hash tables on a 40-thread CPU (90% lookups).

when the epoch length is as short as 10 µs. More experiments
and example code for a nonblocking hash table can be found
in the full-length paper [2].

4. Conclusion
To the best of our knowledge, nbMontage is the first general-
purpose system to combine buffered durable linearizability and
nonblocking progress of the persistence frontier. Nonblock-
ing persistence allows nbMontage to provide a fast wait-free
sync routine and to strictly bound the work that may be lost
on a crash. Experience with a variety of nonblocking data
structures confirms that they are easy to port to nbMontage,
and perform extremely well. Given that programmers have
long been accustomed to sync-ing their updates to file sys-
tems and databases, a system with the performance and formal
guarantees of nbMontage appears to be of significant practical
utility. The code of both Montage and nbMontage is publicly
available at github.com/urcs-sync/montage.

References
[1] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L.

Scott. Understanding and optimizing persistent memory allocation. In
19th Intl. Symp. on Memory Management (ISMM), June 2020.

[2] W. Cai, H. Wen, V. Maksimovski, M. Du, R. Sanna, S. Abdallah, and
M. L. Scott. Fast Nonblocking Persistence for Concurrent Data Struc-
tures. In 35th Intl. Symp. on Distributed Computing (DISC 2021), pages
14:1–14:20, 2021. Extended version arXiv:2105.09508.

[3] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-
and-swap operation. In 16th Intl. Symp. on Distributed Computing
(DISC), pages 265–279, Toulouse, France, Oct. 2002.

[4] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Intl. Symp.
on Distributed Computing (DISC), pages 313–327, Paris, France, Sep.
2016.

[5] Y. Liu, V. Luchangco, and M. Spear. Mindicators: A scalable approach to
quiescence. In IEEE 33rd Intl. Conf. on Distributed Computing Systems
(ICDCS), pages 206–215, Philadelphia, PA, 2013.

[6] H. Wen, W. Cai, M. Du, L. Jenkins, B. Valpey, and M. L. Scott. A fast,
general system for buffered persistent data structures. In 50th Intl. Conf.
on Parallel Processing (ICPP), Aug. 2021.

[7] Y. Zuriel, M. Friedman, G. Sheffi, N. Cohen, and E. Petrank. Efficient
lock-free durable sets. Proc. of the ACM on Programming Languages,
3(OOPSLA):128:1–128:26, Oct. 2019.

2

https://github.com/urcs-sync/montage
https://arxiv.org/abs/2105.09508

	Introduction
	nbMontage
	Experimental Results
	Conclusion

