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As NVM proliferates, there will be more and more opportunities to 
soften the traditional boundary between (transient, byte- 
addressable) memory and (persistent, block-structured) storage.  As 
we seek to formalize the development of persistent data structures, 
the PODC/DISC community will want to consider not only alterna-
tive correctness criteria, but also evolving hardware characteristics.  
Issues to be considered include the choice between evicting and 
non-evicting write-back, the introduction of nonvolatile caches, and 
the possibility that NVM bandwidth and latency may vary greatly 
with access granularity, locality, and concurrent DRAM activity. 
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For machines with nonvolatile memory (NVM) but volatile caches, 
most work on persistent data structures has assumed that every op- 
eration must be guaranteed to survive any crash that occurs after 
returning to the caller. Most programmers, however, don't want to 
persist existing transient structures: they want to avoid serializing 
and deserializing structures traditionally kept in block-structured 
files and databases. For these, programmers are accustomed to buff- 
ered semantics, which allow persistence to be delayed—either for a 
brief period of time or until the execution of an explicit sync opera- 
tion. Experiments with Rochester’s Montage system confirm that 
buffered persistence can approach the performance of nonpersistent 
structures placed in NVM—arguably the best one could hope for, and 
dramatically faster than systems with stricter semantics.
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