
How Should We Think About Persistent Data Structures?

Michael L. Scott
University of Rochester

Rochester, NY, USA
mlscott@acm.org

https://orcid.org/0000-0001-8652-7644

ABSTRACT

As NVM proliferates, there will be more and more opportunities to
soften the traditional boundary between (transient, byte-
addressable) memory and (persistent, block-structured) storage. As
we seek to formalize the development of persistent data structures,
the PODC/DISC community will want to consider not only alterna-
tive correctness criteria, but also evolving hardware characteristics.
Issues to be considered include the choice between evicting and
non-evicting write-back, the introduction of nonvolatile caches, and
the possibility that NVM bandwidth and latency may vary greatly
with access granularity, locality, and concurrent DRAM activity.

CCS Concepts
• Computer systems organization ~ Dependable and fault-tolerant
systems and networks ~ Reliability • Theory of computation ~ De-
sign and analysis of algorithms ~ Concurrent algorithms

Author Keywords
Durable linearizability; periodic persistence; nonvolatile memory

BIOGRAPHY
Michael L. Scott is the Arthur Gould Yates Professor of Engineering
and Chair of the Department of Computer Science at the University
of Rochester. He received his Ph.D. from the University of Wiscon-
sin–Madison in 1985. During the 2014–2015 academic year he was
a Visiting Scientist at Google. He is best known for work in syn-
chronization algorithms and concurrent data structures, in recogni-
tion of which he shared the 2006 SIGACT/SIGOPS Dijkstra Prize.
His textbook on programming language design and implementation
(Programming Language Pragmatics, 4th edition, Morgan Kaufmann,
2016) and his monograph on Shared Memory Synchronization (Mor-
gan & Claypool, 2013) are standard references in the field. He has
been named a Fellow of the ACM, the IEEE, and the AAAS. At the
University of Rochester, he has received the lifetime achievement
award of the Hajim School of Engineering and Applied Sciences, to-
gether with awards for both graduate and undergraduate teaching.

ACKNOWLEDGEMENTS
Ideas described in this keynote reflect joint work with past and cur-
rent students, including Joseph Izraelevitz, Haosen Wen, Wentao
Cai, Mingzhe Du, and Chris Kjellqvist. This work was supported in
part by NSF grants CCF-1717712, CNS-1900803, and CNS-1955498,
and by a Google Faculty Research award.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s).
PODC ’22, July 25–29, 2022, Salerno, Italy.
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9262-4/22/07.
https://doi.org/10.1145/3519270.3538455

Keynote 1 PODC ’22, July 25–29, 2022, Salerno, Italy

3

For machines with nonvolatile memory (NVM) but volatile caches,
most work on persistent data structures has assumed that every op-
eration must be guaranteed to survive any crash that occurs after
returning to the caller. Most programmers, however, don't want to
persist existing transient structures: they want to avoid serializing
and deserializing structures traditionally kept in block-structured
files and databases. For these, programmers are accustomed to buff-
ered semantics, which allow persistence to be delayed—either for a
brief period of time or until the execution of an explicit sync opera-
tion. Experiments with Rochester’s Montage system confirm that
buffered persistence can approach the performance of nonpersistent
structures placed in NVM—arguably the best one could hope for, and
dramatically faster than systems with stricter semantics.

mailto:mlscott@acm.org
https://doi.org/10.1145/3519270.3538455

