
Efficient Nonblocking Software Transactional Memory

Transactional Memory (TM)
!   A powerful concurrent programming
 abstraction
!   Promises to simplify concurrent programming
!   Evolved from earlier work in nonblocking
 concurrent data structures
!   Our work in context of Software TMs
 (STMs)

Virendra J. Marathe
University of Rochester

Mark Moir
Sun Microsystems Laboratories

The Blocking-Nonblocking Debate
!   Recent STM proposals assume blocking
 systems are inherently faster than
 nonblocking systems
!   Understanding largely based on intuition, and
 no formal lower bound proofs

Our Argument
!   Can build a nonblocking STM that mimics
 behavior of a fast blocking STM in the
 common case, resorting to more expensive
 transactional data displacement only when
 necessary to guarantee nonblocking progress

Our Idea
!   Transaction steals ownership of locations if
 necessary for forward progress

  Logical contents of stolen locations are
 displaced to a “different” place
  All transactions must lookup this alternate
 location for logical values of a stolen location
  The system merges logical values in physical
 locations when no transaction owns the
 location’s ownership record
  Inspired by Harris and Fraser’s stealing
 methodology

Design Details

Basic (blocking) Algorithm
!   Ownership Record (orec) table
!   Each location hashes into one orec
!   orec contains owner transaction’s ID, version
!   Version numbers permit reuse of the same
 transaction descriptor, and fast release
!   Transaction contains private read and write sets
!   Transaction makes buffered updates (updates are
 locally maintained in the transaction’s write set, and
 copied back to actual locations on commit)
!   Transactions acquire orecs (CAS the transaction’s
 ID and version in the orec) of updated locations
 during the first write
!   A transaction blocks when the orec it intends to
 access is owned by a COMMITTED transaction

  Means that the committed owner is copying back
 its updates

Extensions for Nonblocking Progress
!   orec contains a stolen_orec flag to identify stolen
 orecs (logical values of these are displaced in the
 stealer’s descriptor)
!   orec contains a copier_exists flag to determine
 that some transaction is merging logical values to
 physical locations that hash into the stolen orec
!   First stealer sets stolen_orec and copier_exists
 flags

  logical values of locations hashing in the stolen orec
 are in the stealer’s descriptor

!   Victim resets copier_exists flag after its copyback
!   A transaction may steal an already stolen orec
!   The second stealer checks if copier_exists flag is
 unset

  if so, sets the flag (while stealing), and assumes the
 copyback responsibility
  resets both flags after the copyback if no other
 transaction stole the orec in the interim
  means that the logical and physical contents of
 stolen locations is identical; direct access to
 locations is permitted

Illustration

Shared Heap Ownership Records

hashing ver# ID, flags
T1

COMMITTED
o1

o2

o3

o4

o5

first
owner

T2
ACTIVE

T3
ACTIVE

T1’s copyback in progress;
o1 in unstolen mode, points
to T1

1

2 T2 merges locations in
that map into o1

Steps

3

4

5

T2 steals o1, setting both
flags; logical values are in
T2’s descriptor
T1 finishes copyback,
resets copier_exists flag

second owner (stealer 1)

third
owner
(stealer 2)

T3 decides to steal o1 from
T2, aborts T2, sets
copier_exists flag, does
a copyback, and resets both
flags

6 o1 back in unstolen mode

Array of 16 Counters Binary Search Tree (256 keys)

Experimental Setup
!   144-processor SunFire E15K
 cache coherent multiprocessor
 with 1.5GHz UltraSPARC® IV+
 processors (72 dual core chips)
!   Threading levels 1 – 64 (more
 experiments conducted with
 up to 256 threads)
!   Binary Search Tree (80%
 lookups, 10% inserts, 10%
 deletes)

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

of Threads (1– 64)

Keys
Blocking STM

Nonblocking STM,
configured to never steal

Nonblocking STM

WSTM (by Harris & Fraser)

Conclusions
!   Improved significantly over
 the state-of-the-art
 nonblocking STM
!   Stealing entails noticeable
 overheads
!   Question of inherent cost for
 providing nonblocking progress
 remains unclear
!   Future Work: Adapt our ideas
 to other high performance
 STMs

mls
poster session, PoPP 2007

