
Efficient Nonblocking Software Transactional Memory 

Transactional Memory (TM) 
!   A powerful concurrent programming  
    abstraction 
!   Promises to simplify concurrent programming 
!   Evolved from earlier work in nonblocking 
    concurrent data structures 
!   Our work in context of Software TMs  
    (STMs) 
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The Blocking-Nonblocking Debate 
!   Recent STM proposals assume blocking 
    systems are inherently faster than 
    nonblocking systems 
!   Understanding largely based on intuition, and  
    no formal lower bound proofs 

Our Argument 
!   Can build a nonblocking STM that mimics 
    behavior of a fast blocking STM in the  
    common case, resorting to more expensive  
    transactional data displacement only when 
    necessary to guarantee nonblocking progress 

Our Idea 
!   Transaction steals ownership of locations if  
    necessary for forward progress 

  Logical contents of stolen locations are 
     displaced to a “different” place  
  All transactions must lookup this alternate  
    location for logical values of a stolen location 
  The system merges logical values in physical  
    locations when no transaction owns the  
    location’s ownership record 
  Inspired by Harris and Fraser’s stealing  
    methodology 

Design Details 

Basic (blocking) Algorithm 
!   Ownership Record (orec) table 
!   Each location hashes into one orec 
!   orec contains owner transaction’s ID, version 
!   Version numbers permit reuse of the same  
    transaction descriptor, and fast release 
!   Transaction contains private read and write sets 
!   Transaction makes buffered updates (updates are  
    locally maintained in the transaction’s write set, and 
    copied back to actual locations on commit) 
!   Transactions acquire orecs (CAS the transaction’s  
    ID and version in the orec) of updated locations  
    during the first write 
!   A transaction blocks when the orec it intends to  
    access is owned by a COMMITTED transaction 

  Means that the committed owner is copying back    
    its updates 

Extensions for Nonblocking Progress 
!   orec contains a stolen_orec flag to identify stolen  
    orecs (logical values of these are displaced in the 
    stealer’s descriptor) 
!   orec contains a copier_exists flag to determine  
    that some transaction is merging logical values to  
    physical locations that hash into the stolen orec 
!   First stealer sets stolen_orec and copier_exists 
    flags 

  logical values of locations hashing in the stolen orec 
    are in the stealer’s descriptor 

!   Victim resets copier_exists flag after its copyback 
!   A transaction may steal an already stolen orec 
!   The second stealer checks if copier_exists flag is  
    unset 

  if so, sets the flag (while stealing), and assumes the  
    copyback responsibility 
  resets both flags after the copyback if no other  
    transaction stole the orec in the interim 
  means that the logical and physical contents of  
    stolen locations is identical; direct access to  
    locations is permitted 

Illustration 
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Array of 16 Counters Binary Search Tree (256 keys) 

Experimental Setup 
!   144-processor SunFire E15K  
    cache coherent multiprocessor  
    with 1.5GHz UltraSPARC® IV+ 
    processors (72 dual core chips) 
!   Threading levels 1 – 64 (more  
    experiments conducted with  
    up to 256 threads) 
!   Binary Search Tree (80%  
    lookups, 10% inserts, 10%  
    deletes) 
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Keys 
Blocking STM 

Nonblocking STM, 
configured to never steal 

Nonblocking STM 

WSTM (by Harris & Fraser) 

Conclusions 
!   Improved significantly over  
    the state-of-the-art  
    nonblocking STM 
!   Stealing entails noticeable  
    overheads 
!   Question of inherent cost for 
    providing nonblocking progress 
    remains unclear 
!   Future Work: Adapt our ideas  
    to other high performance  
    STMs 
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