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Abstract

Substantial advances in STM performance in recent years hav
mostly focused on blocking systems. We describe our wor-int
grating the most important techniques and optimizationsrging
from the recent work on blocking STMs into several variarita o
nonblocking STM.

In particular, our design is based on the philosophy of keep-
ing the common, contention free execution path as simples@o
quently fast) as possible, while resorting to the more egjwerdata
displacement and metadata management only in situatioesewh
transactions have problems making forward progress. Wdamp
novel ownership “stealing” and metadata management tqubasi
in our nonblocking STM to enable several recent blocking STM
optimizations such as timestamp-based validation and @hipe
release viatore instructions, all leading to a more streamlined and
efficient fast path. We present ando log(eager versioning) vari-
ant of our STM, as well as twedo log(lazy versioning) variants,
the latter of which are based on the two ownership acquistéch-
nigues (namelyagerandlazy) for writes made by transactions.

Experimental results show that our efforts have improvesl th
performance of nonblocking STMs up to the level of being com-
petitive with the state-of-the-art blocking STMs such a2TL

Categories and Subject Descriptors [D.1.3 Concurrent Pro-
gramming: Parallel Programming

General Terms Algorithms, Performance

Keywords software transactional memory, nonblocking

1. Introduction

Transactional Memory (TM) is a concurrent programming edast
tion that promises to simplify the task of writing parallebgrams.
TM allows programmers to expressatshould be executed atom-
ically, leaving the system to determihewthis atomicity should be
achieved. Herlihy and Moss [11] proposed hardware traiszait
memory (HTM) and Shavit and Touitou [24] proposed software
transactional memory (STM). A recent flurry of activity intho
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HTM (e.g., [1, 5, 18, 19]) and STM (e.g., [3, 6, 8, 10, 16, 2235h
yielded substantial progress towards making TM practical.

Foundational work on TM grew out of research imonblock-
ing concurrent data structures, which aim to overcome the many
well-known software engineering, performance, and rafess
problems associated with lock-based implementations.

Recently, many researchers have develdpedkingSTMs [3,

8, 22], recognizing that they are much easier to design aat th
most of the software engineering benefits of STM can be delie
even by a blocking STM. Nonetheless, hiding blocking frora th
application programmer does not eliminate all of its disatdages.
For example, as pointed out by Ramadan et al. [20], in their TM
enabled TxLinux kernel, it isnacceptabldor an interrupt handler

to be blocked by the thread it has interrupted.

The nonblocking STMs described in this paper alostruction-
free [9]: they guarantee that, if a transaction is repeatedlieet
and eventually encounters no interference from other &retiens,
then eventually the transaction commits successfullyti@bsgon-
freedom does not make any progress guarantees and adwits “li
locks”. An out-of-bandcontention managdil0, 23] can be used in
practice to eliminate such undesirable situations.

In this paper we present our algorithms irward-basedSTM
setting, where conflict detection is at the granularity afitiguous
blocks of memory. This setup is important for unmanagedrenvi
ments such as C and C++ since the STM cannot dictate the lafout
program data, for example to colocate transactional medaglidh
the program data it mediates. Word-based STMs keep traosatt
metadata (often callealwnership records- orecsin short) separate
from program data; Tabba et al. [27] describe preliminarykam
applying our initial design approach [14] to achieve efiitiaon-
blocking object-baseTMs.

The only other nonblocking word-based STM of which we are
aware is Harris and Fraser’s system (HF-STM)[6]. We fourarth
nonblockingcopybackmechanism ingenious, and in fact, our work
was inspired in part by theirs. However, we also felt thatnposed
too much overhead on the common case. As the results in 8éctio
show, we have been able to dramatically improve performanee
HF-STM and achieve performance that is competitive wittestd-
the-art blocking STMs.

1.1 Our Contributions
We make the following key contributions in this paper.

e We are the first to almost entirely decouple the contentiee fr
fast path of a nonblocking STM from the complicated data
displacement and metadata management required for forward
progress.

e We have successfully integrated key optimizations appgari
in recent state-of-the-art blocking STMs into our nonbiagk
STM. This includes timestamp based transaction validatiah
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Figure 1. Binary Search Tree with 32K nodes. Notice the progres-
sive improvement in performance of our nonblocking STMs.

simplestore instruction based ownership release, both enabling
a more streamlined fast path.

¢ We present an undo log based nonblocking STM. To our knowl-
edge, this is the first such nonblocking STM. We also present
some interesting performance tradeoffs between redo atd un
logs for heavily contended workloads.

1.2 Overview of design approach

The work reported in this paper proceeded in two phases. Giur p
losophy for the first phase was to mimic behavior of blockifig/s
as far as possible, and resort to the more expensive datiacksp

the salient features of state-of-the-art blocking STM$ pinanarily
contribute to drastic performance improvements. In Seciiave
describe extensions to our Phase-1 design that yieldedasias
improvements in performance. We also describe three Jariafn
our Phase-2 algorithm: two variants, based on eager andiaay
ership acquisition techniques, of a redo log version; andrato
log version. In Section 6, we present experimantal reshitsdcom-
pare all flavors of our Phase-2 nonblocking STM with the PHase
blocking and nonblocking STMs, the nonblocking STM by Har-
ris and Fraser [6], and TL2, a state-of-the-art blocking STIr
results demonstrate that our design approach has closee tfoe-
mance gap between blocking and nonblocking STMs. Some dis-
cussion appears in Section 7, and we conclude in Section 8.

2. Background on STMs

A transaction speculatively reads and writes memory locatiand
attempts to commit at the end, either “succeeding” as if titeree
transaction executed atomically, or “failing” as if thersaction
did not execute at all.

To provide the illusion that a successful transaction cot®mi
atomically, STM systems generally acquannershipof all mem-
ory locations modified by the transaction in order to preveont-
current transactions from observing partial updates. ®wisership
is coordinated through specialetadataassociated with program
data.

Some STMs [2, 3, 6] buffer writes into a private write set dgri
transactional execution, and copy the values to the affectem-
ory locations upon successful commit; such STMs are sonestim

ment and metadata management only in situations where- trans referred to asedo logSTMs, because they “redo” the writes upon

actions have problems making forward progress. This agproa
effectively decouples almost all of the nonblocking pragree-
lated metadata management from the fast path, thus yiefting
formance comparable to the blocking STM in the common case.

In the summer of 2005, we took a simple blocking STM sim-
ilar to the one described in [2], and designed an obstrudtiea
STM that closely tracks the blocking scheme (particularighwe-
spect to metadata structure and cache behavior) until titection
manager decides that a transaction should not wait for anath
complete. In a blocking implementation, there is no choiagetb
wait in such circumstances: the mechanism dictates theypoli

For our Phase-1 nonblocking STM, we introduced the abitity t
“steal” ownership of a memory location from another trarigeg
rather than waiting for the other transaction to explicityease it.
Accessing stolen locations is more complicated and expertisan
accessing unstolen ones, but nonetheless stealing is wolth
in order to avoid waiting for another transaction that isageld
for a long time, for example due to preemption. Additionatyr
design focused on quickly switching the stolen locationskit®
the unstolen state so as to minimize the overhead of ocecedsio
stealing that happened due to high contention.

Our Phase-2 effort focused on incorporating optimizatecht
niques, such as timestamp based transaction validati@iJ3¥rom
state-of-the-art blocking STMs into out nonblocking STNyde 1
demonstrates the significant improvements rendered by loasd?

2 enhancements. Clearly, our nonblocking STM is competitiith
one of the leading blocking STMs, TL2 [3]. It therefore seqmes
mature to dimiss nonblocking STMs as fundamentally perfogn
worse than their blocking counterparts.

1.3 Roadmap

The remainder of this paper is structured as follows. We gine
overview of STM designs in Section 2. Section 3 describes our
simple Phase-1 blocking STM and the modifications we made to
make it nonblocking. Section 4 makes a qualitative argurabatit

commit. Other STMs [8, 22, 28] instead store speculativefit-w
ten values directly into the affected memory locations,ntaning
anundo logthat preserves overwritten values so that they can be
restored in case the transaction aborts. This approaclrictate
because it optimizes for the hopefully common case in whioBtm
transactions commit successfully: there is no need to rediesv
upon commit, and there is no need for transactional readsaick

the write set for values previously written by the transawti

Ownership acquisition can be either “eager” or “lazy”[18]ith
eager acquisition, a transaction acquires ownership otatilan
when it first writes to the location. In contrast, with lazygagsition
a transaction acquires ownership of locations it has spéealy
written only at commit time. Because undo log STMs store gpec
latively written data directly in the affected memory locais dur-
ing transactional execution, they must acquire ownershigedy
in order to prevent other transactions from observing \ahveit-
ten by a transaction that may subsequently abort. Redo IdgsST
can use either eager or lazy acquisition.

To guarantee isolation of transactions, the STM must ensure
that reads done by transactions are always mutually censist
This is achieved by verifying that all read locations have leen
modified since. This transaction “validation” can be aceekd
with timestampbased techniques [3, 21, 28]. We have incorporated
timestamp based validation in all our nonblocking STMs.

After committing or aborting, a transaction releases owhigr
of locations it has acquired. In blocking STMs, a transactinust
wait for a conflicting committed or aborted transaction tease
ownership of the locations under conflict.

3. Phase-1: Decoupling Nonblocking Progress

Related Work from the Fast Path
We first describe the simple Phase-1 blocking STM, which $&eta

on the one described in [2] and includes some novel optinoizst
We then explain how we modified this STM to be nonblocking,
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Figure 2. Data Structures of Nonblocking/Blocking STM.

Fields indalre required for the nonblocking version only.

while keeping the common case as close to the blocking STM as to identify the current owner transaction; andosv field, to iden-

we could in order to achieve a similar fast path.

3.1 STMAPI

Out STM API includes the following calls, similar to that aher
word-based STMs.

stm_begin(TxnDescriptor* my_txn)
stm_commit (TxnDescriptor* my_txn)
Word_t stm_read(TxnDescriptor* my_txn,
Word_t* addr)
void stm_write(TxnDescriptor* my_txn,
Word_t* addr,
Word_t value)

3.2 Data Structures
The primary data structures in our STMs are thensaction de-

scriptor, which is used to represent a transaction, and a table of

ownership recordgorecs), which are used to represent ownership
by transactions of memory locations. A many-one hashingtfan
maps memory locations into the orec table.

A transaction descriptor consists of a transactiontiB)( a ver-
sion numberyersion), astatus (Active, Committed, or Aborted),
and read and write sets. Th&l and version uniquely identify a
transaction. Thus, by incrementing the version numbeisitréns-
action descriptor, a thread can reuse the transactionigescr

The read and write sets are organized as per+ases, such that
all entries relating to memory locations that map to the samee
are stored in the same row. Each row contains an orec idenéfie
shapshot of the orec with which it is associated, and an afay

entries each of which is an address-value pair of some address

covered by the indicated orec. On a read/write operatiomhef
transaction does not already contain a row used for the ifgesht
orec, it uses the next available row in its read/write settierorec.
Figure 2 depicts the structure of a transaction descriptor.

Each orec is stored in one 64-hit word, and is atomically modi
fied using aCAS. Each orec consists ofid andversion fields, used

tify the row of the owning transaction’s write set in whictstbres
entries for locations mapping to that orec.

Embedding the owner transactionigl andversion in the orec
enables a novedhst releaseoptimization, wherein the transaction
may simply increment itsersion to implicitly release ownership
of orecs it owns. This eliminates from a transaction’s faathp
the overhead of explicitly releasing orecs using expen§ivé
instructions (as in HF-STM [6]). Note that this design demis
differs from our Phase-2 design described in Section 5.

3.3 Simple Phase-1 Blocking STM

The blocking STM transaction executes in thetive state and uses
the write set as a redo log. Orecs are acquired eagerly. Turens
consistency at all times, a transaction validates itsentiad set ev-
ery time a new orec is accessed. This step is particularlgsssry
for unmanaged languages such as C/C++ since temporary-incon
sistencies in “doomed-to-abort” transactions may caubdrary,
irrecoverable program behavior. (Timestamp-based viédiddech-
niques [3, 21] were not invented when we designed this dlyor)

To commit, a transaction atomically switches its statusnfridc-
tive to Committed. Finally, the transaction copies the values from
its write set (redo log) to the affected memory locations] #ren
fast releases the orecs it owns by incrementing its versionker.

If a transactionT” intends to access a location already owned
by some committed transacti¢i) 7" must wait forS to release the
corresponding orec. Given the use of redo-loggifigioes not need
to wait if S has aborted.

3.4 Making the STM Nonblocking

Our nonblocking STM allows a transaction to “steal” ownépsbf
an orec from a committed transaction, rather than waitingtfto
complete. Until a transaction decides to steal an orec fraona-
mitted transaction, the nonblocking STM behaves very sirlyito
the blocking version.



@®)re-stea  '€SIde in the write sebow thatO points to provided there exists an
entry forl in thatrow. Otherwise the logical value is &ttself.
(reset copier & stolen failed) _ A stealer is usually irActive state during the stealing process.
(C) clear-copier Thereafter the stealer could either commit or abort. If ineaits, its
redo log updates hold the new logical values of locationspimap
into O. However, if it happens to abort, its redo log updates must be
discarded and the “old” (stolen) values must be retaineds figh
quirement of retaining old values if a stealer happens totabakes
maintainance obld and new values of stolen entries mandatory
Figure 3. Transitions among thenstolen and stolen states of (Figure 2). Thus, if the stealer commits, thew values become the
an orec.S and C represent the values of thetolen_orec and logical values of the locations; otherwise tld values remain the
copier_exists flags in the orec. All transitions use an ator@ias. logical ones. To indicate that a transaction committedritnges to
astolen_row, we add a new flagxn_committed to a write setow
(Figure 2), which is set torue if the stealer managed to commit,
andfalse otherwise.

Note that since the logical values of locations mapping into
a stolen oredD are retained in the write sebw that O points
to, there is no need for stealers to copy back their updates to
locations mapping int@; only the first victim is copying back
its updates. (In general we maintain the invariant that gtgiven
time, at most one transaction is copying back committed igsda
locations mapping into a given orec.) After the first victimisihes
its copyback, it verifies that all orecs it owns were not sidlef
an orecO was stolen, the victim has the opportunity to inform the
system that it has finished its copyback for

Access to stolen locations is expensive. Hence it is impotta
switch an orec back tonstolen state as quickly as possible. Since
the first victim is the only transaction doing a copyback aftions
mapping intoO, using a singlecopier_exists flag in O suffices to
inform the system that the lone copier©fhas finished: The first
stealer that steal® sets both thatolen_orec and thecopier_exists
flags (transitionA). The first victim, after its copyback, resets the
copier_exists flag indicating to the system that it has completed its
copyback (transitiorC'). This state of the orec gives the system
an opportunity to safely switch the orec back to thatolen state
as follows: At this point there exists no transaction cogyirack
updates to locations mapping infh As a result, the next stealer of
O can safely assume the responsibility of doing the copybbgk (
setting thecopier_exists flag during the stealing AS, transition
D). It copies back the most recent logical values of locations
mapping intoO in its write setrow, and subsequently resets both
thestolen_orec andcopier_exists flags using &AS (transitionE).
This switche€D back to theunstolen state.

Note that the stealer<CAS to clear O’s stolen_orec and
copier_exists flags may fail if another transaction stedbsin the
interim (transitionF). In such a situation, the stealer resél's
copier_exists flag (transitionG), thereby handing over the copy-
back responsibility to a future stealer.

Unstolen Stolen Logical values of a locatiohmapping into a stolen ore@ may
A) steal
(H) aCQuire—CASC S=0, C=0 @)s S=1,C=1

(E) reset copier
& stolen

(G) reset copier

(F) interim steal

(D) first steal
Stolen  after copier reset  Stolen

In the remainder of this section, we briefly describe thelstga
mechanism that we incorporated to make our Phase-1 STM non-
blocking, with reference to the state transition diagrarfigure 3.
This mechanism is presented in more detail, along with ailddta
example, in [14].

A transactionl” steals ownership of an orec (transitidn) from
another transaction bgASing the orec to point to a row ifi”’s
write set (" uses this row to store its subsequent speculative updates
to locations mapping into the orec). Although this seemaigitt-
forward, some more bookkeeping must be done to ensure that th
logical valuesof locations mapping into the stolen orec are cor-
rectly preserved during the stealing process.

Note that orec stealing happens if a transaction (the ‘st8al
encounters an ore&), owned by a committed transaction (the
“victim”). This means that the victim is still in the procesd
copying back its speculative updates to the locations write set.
The logical values of locations mapping infbmay thus reside in
the victim’s write setow, R,,, thatO points to before it is stolen by
the stealer. To correctly preserve this view of memory, tlealer
must first “merge”R, into an availableow, say Rs, in its write
set. Successful stealing will make point to R;.

During stealing, the victim is possibly in the process ofydog
back updates from its redo log (more specifically fra®g) to
the locations mapping int®. This “copyback” could be delayed
arbitrarily. As a result, a situation may arise where thealstie
after stealing ownership @, completes before the victim finishes
its copyback phase. In this case, the logical values of imeat
mapping intoO reside in the stealer’s redo log (more precisely in
R;). If the stealer were to copyback its update®ts locations and
fast release), there is a possibility that the victim’s now “stale”
updates may overwrite the stealer’s more recent updateavdid
such arace, we introduce a netslen_orec flag, represented as the
S flag in the state transition diagram, in an orec (see Figurétd}
flag indicates that ore© is in thestolen state, and logical values

of locations mapping int@ may reside in the write sebw that it Read Sharing Our implementation permits read sharing, even

points to R, in our example). for stolen orecs. A reader must ensure that the stolen oraotis
As long as thetolen_orec flag for O is true, the logical values concurrently modified by a stealer, and retrieve the logicédilies

of locations mapping int@ may reside in the write sebw (R in of the target locations from the write setw associated with the

our example) thaD points to. Consequently?, cannot be reused  stolen orec. The reader simply maintains a snapshot of tbe, or
by a subsequent transaction executed by the same threagthsin  and read validation is achieved by ensuring that all of teesfrom

same transaction descriptaRs may be reused only whe@® no which the transaction has read still match the previous smatp.
longer points to it. We use stolen_row flag (see Figure 2) in We ensure that the reader maintains exactly one copy of each o
a write setrow to indicate that a stolen oreg), points to that read in its read set.

row (Rs in our example). Thetolen_row flag is set during the
stealing process. Any subsequent transaction that “gdsSt€)

(transition B) must clear thestolen_row flag of R. Resetting of 1This is done with astealers list in the transaction descriptor (Figure 2)
the stolen_row flag happens indirectly, in that the new stealer sets that is atomically accessed with itersion field. The stealer atomically
the released_stolen_row flag in R (Figure 2), which is then used  adds itself in thestealers list to inform the victim about theft of an orec.
by the victim to “reclaim”R; for subsequent reuse. Our technical report [14] details all these design aspects.




4. What Makes Blocking STMs Fast? Unstolen Unstolen Stolen

B) re-steal
At the heart of the significantly better performance of reédsack- @w S @W (A) steal L@ - C ( )OR
ing STMs (see curves for our Phase-1 STMs and TL2 in Figure 1) release store
is their simplicity. This simplicity, combined with a numtef opti- (R) release stor (reset copier & stolen failed)
mization techniques [3, 8, 22, 28] has yeilded significarrione-

ments in STM performance. In this section we briefly discubatw
we believe to be the key features that make blocking STMssto fa (F) interim steal

(E) reset copier
& stolen

(C) clear—copier

(G) reset copier

- S=1, C=0
(D) first steal

Stolen  after copier reset  Stolen

(a) Streamlined Fast Path: Recent state-of-the-art blocking STMs
have been carefully engineered to make the fast path for spec !

. . .. X Unowned Owned
ulative reads and writes as efficient as possible. Amongakve
important design decisions are: (i) simple metadata stract
making common case conflict detection more efficient; ()si Figure 4. Transitions of the orec state in the Phase-2 nonblock-
ple ownership acquisition and release o_peratlo_ns congisti ing STM. S and C represent the values of theolen_orec and
a compare-and-swap (CAS) and astore instruction, respec-  cqpier_exists flags in the orecUnowned represents the state when
tively; and (iii) more streamlined read and write set impéam the orec’'sstolen_orec flag isfalse and the orec’sersion field con-
tations. tains a timestampwned state represents the orec’s state wherein

(b) Timestamp-based Validation: Some recent breakthroughs in it is either owned by arctive transaction, &ommitted transac-
guaranteeing transaction consistency at a low common casetion (where the transaction is in its copyback phase andtisoye
cost (such as timestamp-based transactiona validatio?[, release the orec), or is in thsolen state (although it may not be
have contributed significantly to performance improverriant ~ owned by amctive transaction at some give time). All transitions,
blocking STMs. To our knowledge, our work is the first to except theelease storéransitions, use an atomicAS.
integrate timestamp-based validation in a nonblocking STM

(c) Undo logging Capability: Undo log based implementations [8,

L2 ; - 5.1.1 Timestamp-based Validation
22] result in inexpensive reads of locations that have direa P

been modified by the same transaction. Timestamp-based validation employs a globally sharedct¢lo
When a transaction begins execution it reads the globakaod
5. Phase-2: Toward Fast Nonblocking STMs stores.the value in.a transaction Iolbag’in_timestlamp field.l Thi.s
value is used, during the transaction’s execution, to dater if
As suggested in Section 4, we believe that incorporatingkéye the locations accessed by the transaction are mutuallyistens
optimizations of blocking STMs is sufficient to make nonliog Each orec contains a timestamp field which approximatesltige “
STMs comparably efficient in the common case, thereby guaran jcal time” at which the orec was last modified by a transaction
teeing nonblocking progress for almost no extra cost. transaction is guaranteed to view a consistent version afran

O if O’s timestamp is less than or equal to the transactibe’s
gin_timestamp. This is the simple step of validating a transaction
Our first phase yeilded significant performance improvesener at each shared memory access. The whole read set of thedransa
the prior best word-based nonblocking STM, the HF-STM [@(s  tion may be revalidated at commit time. At commit time, a @rit
Figure 1). However, there were some key optimizations mgssi  reads the global tinfeand stores it in the timestamp field of all

5.1 Integrating Recent Blocking STM Optimizations

from our implementation. Firstly, recent state-of-thédalocking acquired orecs, thereby releasing them.
STMs employ the timestamp-based validation scheme, widech s
nificantly mitigates the overhead of transaction validatio 5.1.2 Efficient Ownership Release

Secondly, although our fast release optimization elinggahe  oyr new ownership release operation is based on the obmervat
need for explicit ownership release operations (imple@nis- 4t we can superimpose the timestamp value and the tréovsact
ing CASes in HF-STM), it introduces an extra level of indirec-  yersion number on an orecrsion field. Initially an orec’sver-
tion, where a transactioff; reading an ore® must identify if sion contains a timestamp. During an acquii&S, the writer trans-
the transactior points to, sayl>, is no longerActive. Such an  4ation swaps its current version (differentiated from aetitamp
approach not only requires extra instructions on the fast, gaut by the least significant bit) into the oreciersion field. The new

may also lead to expensive bus transactions due to cachedniss  qynership release operation of a transactivis simple — use an
lazy cleanustrategy (as in ASTM [16]), wherein the first reader of 5 ginary store instruction to overwrite the version in an acquired
orecO CASes it to arUnowned state, seems like an attractive alter- - orec O with the most recent timestamp value in the global clock

native. However, Iazy cleanup simply moves the ownersHegee (accessed b§’ at commit time). Our key insight is that permitting
CAS from the owner's commit/abort cleanup time (as in HF-STM) - this hehavior, and the already existing representatioh@gtolen
to a later time, and does not seem like a real improvement. state of an orec, lets us define anowned state for an orec in a

Our second phase addressed both optimizations with some gifferent way. We say that an orecisowned when it is not stolen
novel, and surprisingly simple extensions to the Phase-M.ST  (thestolen_orec flag isfalse) and it contains a timestamp.
Specifically, we integrated, in our Phase-1 STM, an inexpens Although it may sound straightforward, the new orec release
orec release operation that employs a single véooe instruction operation has several subtleties that arise in stealingrangaction
per acquired orec. This ownership release operation mirthies abort scenarios. As a result, we explain the details of the or
behavior of current high performance blocking STMs moreuacc  glease operation on a case-by-case basis. In our desnripie

rately than fast release. Furthermore, our new ownerstigase  refer to the new state transition diagram in Figure 4.
operation facilitates incorporation of the recent timagtabased
transaction validation schemes [3, 21] in our STMs. Spelfic 2Several alternatives for scalable clocks in the contextTi¥IS have been

we were able to superimpose a timestamp with the orec version proposed recently [3, 21]. We use the implementation afeilan the
number. With some more simple modifications we were able to TL2 [3] library, where the global clock is a counter that ismically
build an undo log version of our Phase-2 nonblocking STM. incremented by a committing transaction.



TheUncontended Case Note that in all cases, except for the orec
release operation, the entire orec (two adjacent 32-bitig)as ac-
cessed by transactions atomically. An unowned orec is i@
quired by theCAS shown in transitionX. Consider an example
where transactiorfi owns orecO; i.e. O containsTi’s ID, the

orec’sversion field was used to determine if the currently execut-
ing version of the transaction descriptor that the orectsdimis the
one that acquired the orec. In our new algorithm, the stoten’®
version field may be overwritten by a timestamp of the first victim,
causing loss of information about the transaction verdian actu-

write setrow number that contains the speculative updates made ally stole the orec. Our solution was to add another field éostite

by T3 to locations mapping int@, and the currentersion of T}
(both thestolen_orec andcopier_exists flags of O arefalse). If T
commits, it first copies back all speculative updates totiooa
mapping intoO and thereafter releasé€s by storing a new times-
tamp inO'’s version field (transitionR). SinceO’s stolen_orec flag
is false, the release essentially switch@sback to theunowned
state.

The Stealing Case Now consider transactiofi; that intends to
acquire O. If T1 has already release@ (via transition R), O
is already in theunowned state, andl» does not need to steal
O. However, if T1 has not yet release®, T» stealsO as per
our stealing algorithm discussed earlier (transitidh Stealing
requires a&CAS over the entire orec, which also sets #elen_orec
andcopier_exists flags inO. This switchegD into thestolen state.

MeanwhileT: may finish copyback of its speculative updates
and attempt to releas@ by storing its release timestamp @'s
version field, which now contaings’s version (transitionB). Al-
though this release overwrités’s version, O still persists in its
stolen state since itstolen_orec flag (set byT3) is still true. (Note
that the algorithm ignores the orea/grsion field contents when
the stolen_orec flag istrue.) At this pointT; can verify thatO is
stolen by another transactiofiy in our example).

Since we continue to adhere to our invariant that there cast ex

setrow data structure, which we call thetealing_time_version.
The stealer transaction, during the stealing processesits cur-
rent version into its target write sebw’'s stealing_time_version
field. Any new transactions that access the orestdfen state use
thestealing_time_version field to determine whether the current (or
a past) version of the owner owns (or owned) the orec.

The Abort Case  Since the Phase-1 STM used redo log and im-
plicit fast release techniques, the operation of acquizimgrec that
points to an aborted transaction was not considered as teak s
ing. In our new algorithm, we continue to adhere to the palieat
acquiring an orec that points to an aborted transactiontisteal-
ing (this policy changes in case of our undo log version,dised
later). However, now an aborted transaction must also eitiglie-
lease an acquired orec. The simptere instruction based release
operation on an ore®, by an aborted transaction, sdy, may
overwrite theversion field of O, which contains the version @¥'s
current owner, sa¥s, with a timestamp. Sinc@'s stolen_orec flag

is nottrue, T1's store illegitimately switche€D’s state taunowned.

We have a simple solution for this problem — an orec-wide
CAS based release. THEAS ensures that theersion field of the
orec will not be overwritten by an aborted transaction if titec
was already acquired by another concurrent transactioweSt is
reasonable to assume that aborts will be rare, we believeotlra

at most one transaction doing the copyback for an orec at any solution does not entail significant overhead.

given time,T1 is the only transaction doing the copyback far
Following our stealing protocol7; can inform the system that
it has finished the copyback by resettiGys copier_exists flag
(transition C)). A subsequent transaction, sd@y, that intends to
acquireO, may switchO back tounstolen (albeit owned byT3)
state, as per the state transition diagram in Figure 4 (tians D
followed by FE). If these transitions are successfli}, can release
O with a simple releasstore (transition R). This portion of the
algorithm is identical to the Phase-1 algorithm from Seto

There exist two subtleties in ordering of events which maylle
to unpredictable behavior in our new stealing algorithme Tinst
concern is that we cannot guarantee that ¢here-based orec-
release followed by verification that the orec is not stoletihthap-
pen atomically. As a result, a situation may arise wheresaation
T releases unstolen oréz and is delayed arbitrarily before it re-
readsO to verify that it was not stolen. In the interim) may be
modified several times by concurrent transactions and eaént
switch to thestolen state. IfT; readsO at this point, assumes that
it is the victim, and clears theopier_exists flag (which was set for
another transaction, sa, to clear) the runtime may end up with
more than one copier for an orec, a violation of our invariant

To ensure that the right transactidf(in our example) clears
the copier_exists flag of a stolen orec@ in our example), we
added a newopier_ID field in the write setrow data structure
(from Figure 2). The first stealer of an orec sets tpier_ID
field in its write setrow to the value of the victim'dD. Only
when the possible victim'tD is the same as theopier_ID of the
write setrow that the stolen orec points to, should the victim clear
the orec’scopier_exists flag. In our example, only’> can clear
O'’s copier_exists flag. When a transaction, sdk;, assumes the
responsibility of doing a copyback (via transitidn), it sets the
corresponding write sebw’s copier_ID to its own ID.

5.1.3 Read and Write Set Implementations

As may be clear from our description, the write set impleragah
in our new algorithm (except for the newly added fieldspier_ID
andstealing_time_version — in the write setow data structure) is
more or less the same as our Phase-1 STM.

Realizing that the read set implementation need not be the
same as the write set implementation, we modified the read set
data structure to a more streamlined version consistinglioear
linked-list of entries superimposed on a list of contigudlscks
of 256 entries each. This structure is very similar to thatdus
in recent blocking STMs [3, 8, 22]. To make the fast path for
reads more streamlined, for each new read operation thedcéion
appends an entry in the read set. Each entry consists of &n ore
address, which is used at commit time for read set validation
Thus, redundant entries for the same location may existamahd
set. As shown by Harris et al. [8], for long running transas,
these redundancies may be reduced by periodiddthring the
read set. If the target location’s orec is already owned by th
transaction itself, the transaction’s corresponding avsiét row is
searched for a possibly updated value (by the same traosacti
of the target location. This searching is inherent in redpbased
implementations, but not in undo log based implementations

5.2 Lazy Ownership Acquisition

The algorithm presented thusfar useseager ownership acqui-
sition policy for writes. Modifying the algorithm to suppoazy
ownership acquisition [15] (where the the writer acquireser-
ship of locations written to at commit time) was quite strafgr-
ward. We introduced a linear write list data structure, vahicas
very similar to the streamlined read set data structuredtthe dif-
ference being that the write list entries contain addredsevpairs),

The second source of concern is related to the fact that now anto retain the redo log of the transaction. At commit time, titags-
orec’sversion field contains either a transaction version or a times- action traverses the write list and acquires correspondiegs. In
tamp. Recall that in the Phase-1 STMs the version numberein th the process, the transaction also builds up the 2-dimeakiorite



set (as is in the eager acquire version of the STM). This estep
of replicating the redo log made the lazy acquire STM versias-
ily compatible with our nonblocking stealing algorithm tvitittle
extra overhead (shown in Section 6).

5.3 The Undo Log Algorithm

In a redo log based STM, a transaction intending to read aadyr
modified location must refer to its write set for the most rdce
logical value of the location. This lookup foread-after-writeop-
eration is potentially a significant source of overhead itoréog
based STMs. In undo log based STMs a writer transactionsstore
the old value of the target location in its write set, and makes a
direct update to the location. This avoids the lookup required in
a subsequent read-after-write operation by the transacbo the
flip side, in redo log based blocking STMs, a transaction émat
counters a conflict with an already aborted transaction nadéglys
acquire ownership of the location without waiting for theoeted
transaction’s release. However, for correctness, a tciiosain an
undo log based blocking STM must wait for such an abortedstran
action to release ownership of the location, which may fbgsi
take an arbitrary amount of time, particularly because thartaed
transaction may not notice that it is aborted for a long tiéth
nonblocking progress guarantees in undo log based STMsame ¢
get the best of both worlds — elimination of read-after-e/tdokup
overhead and of arbitrary waiting during transaction ahort

The undo log variant of our algorithm was surprisingly simpl
In redo log based STMs, stealing is necessary in case a donglic
transaction has already committed since the logical vahies|
its updates may reside in its write set. The same reasoniplieap
to conflicting aborted transactions in the undo log varisnowar
nonblocking STM. Thus, in our STM’s undo log variant steglin
pre-dominantly happens when transactions abort.

Contrary to our initial impression, in our undo log based non
blocking STM, stealing is necessary even when a transaetion
counters an already committed transaction. This is areattdf our
store instruction based orec release policy, which we maintained
our undo log STM. The orec release operation races with timesa
orec’s acquisition by another transaction. Note howevext steal-
ing is needed in this case only to maintain a consistent vieiveo
orec’s state. The logical values of the locations modifiethieyvic-
tim already reside in the respective locations. Thus we dmeed
to merge the victim’s write set row into the stealer’s writ.sAll
other parts of the nonblocking stealing algorithm remaim shme
in the undo log STM.

5.4 Fast Path Behavior

As our empirical evaluation (Section 6) suggests, our nazkihg
STMs are competitive with state-of-the-art blocking STN#ost
of the credit goes to the fast path behavior of our STMs.

5.4.1 Read Fast Path

In the fast path, a speculative (transactional) read in oublock-
ing STM is very similar to that of state-or-the-art blockiBg Ms
— a transaction computes the target location’s orec addreads
the entire orec atomically in registers, makes two ownersbsts
(one to check if the orec contains a version and the otherdolcif
the orec is stolen, either of which indicates that the oremised),
verifies that the orec’s timestamp is consistent, and filatig the
orec in the read set. Figure 5 depicts the fast path in C-lgeup
docode form. Of these instructions, our algorithm’s faghpdif-
fers from recent blocking STMs in the orec size, and an extsa t
for the stolen orec case, which amounts to slight increasegis-
ter pressure (for one extra orec word), and bitwise opematigith
a comparison (for testing stolen state) which typically caerls.

Word_t stm_read(Word_t* addr) {
ORec_t* p_orec = get_orec(addr);
ORec_t orec = *p_orec;
if (is_stolen(orec) || is_version(orec.version))

goto slowpath;

if (orec.version > my_read_timestamp)
// assume inconsistency
self_abort();

return log_read(addr);

slowpath:
// acquired myself, contention, or stolen orec case

Figure 5. Fast path for speculative (transactional) reads.

Our empirical results indicate that this overhead is nohigicant
enough to make a noticable difference in performance.

5.4.2 Write Fast Path

void stm_write(Word_t* addr, Word_t value) {
ORec_t* p_orec = get_orec(addr);
ORec_t orec = *p_orec;
if (is_stolen(orec) || is_version(orec.version))
goto slowpath;

if (orec.version > my_read_timestamp)
// assume inconsistency
self_abort();
ORec_t new_orec = [my_ID | row | my_version];
if (CAS(p_orec, orec, new_orec)) {
log_write(addr, value);
return;

}

slowpath:
// acquired myself, contention, or stolen orec case

Figure 6. Fast path for speculative (transactional) writes.

In the fast path for speculative (transactional) writesamsac-
tion: computes the target location’s orec address, reazleikire
orec atomically in registers, makes the two ownership téstids
the new orec contents in two 32-bit registef#\Ses the new orec
in the target orec, and logs the new value in the write set: Fig
ure 6 depicts the fast path in C-like pseudocode form. Effelgt
as compared to recent blocking STMs, the fast path requives t
extra 32-bit registers (one each for the old and new orecegju
some computation to determine the correct valueaf and mem-
ory accesses, which are usually cache hits, for the fietdslD,
row, andmy_version) of the writer's descriptor. However, the sub-
sequeniCAS acts as a memory barrier (our experimental machine
contains UltraSPARC processors where @S instruction results
in a memory barrier) and tends to hide the latency of many ear-
lier operations. Our experiments indicate that the resgitastpath
overhead for writes is quite low.



(a) Counter Throughput
5e+06

T T T
Phase-2 Eager —+—
Phase-2 Lazy
Phase-2 Undo -3
Phase-1 [}
Phase-1 Blocking
TL2

4e+06

TL2 No schedctl ---@
HF ST A

3e+06

2e+06

Operations per second
Operations per second

1le+06
la

. . . .
30 40 50 60
Thread #

L
20 70

(b) Array (16) Counter Throughgput
T

500000 T T T
Phase-2 Eager —+—
Phase-2 Lazy
Phase-2 Undo -¥
Phase-1 (I
Phase-1 Blocking
TL2

400000

TL2 No schedctl -
HF-STI

e

300000

200000

100000 |

B

By S

. . .
30 40 50 60
Thread #

L
0 10

20 70
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6. Performance Evaluation
6.1 Methodology

All our STMs were implemented as C language libraries. We im-
plemented the Phase-1 blocking and nonblocking STMs (both e
ploying eager orec acquisition policy), the redo log basadee
and lazy variants, and the undo log based variant of our Phase
design. For comparison purposes we used the publicallyadlai
HF-STM [6] and the TL2 library [3], both of which employ redo
logs and lazy orec acquisition policy. Both these STM lileaare
also implemented in C. In all cases we used Foéite contention
manager, which employs exponential backoff during a canflic
TL2 has been carefully engineered to minimize possibility o
preemption when a transaction is in the process of releasing
quired locks. This was done by addiathedctl calls at the begin-

ning of the lock-release phase. In our benchmarks, thitestyahas
been very effective for TL2 — in the absence of sudiedctl! calls,
TL2's performance rapidly deteriorates with increasinggamption
rate. Even though these strategies may be effective in ge(as
they are in our benchmarks), they rely on external systeripe
functionality and may not be easily portable.

We used four microbenchmarks to study performance of all
these STMs.

Counter (cntr): is a simple shared counter that all threads continu-
ously try to increment via transactions. This benchmarleotdl
behavior of high contention workloads consisting of extegm
short transactions.

Array Counter (array_cntr): is a shared array of 16 counters,
where all counters are incremented (starting from the small
est index) by transactions. It represents highly contenazd-
loads with more realistic write set sizes.

Hash Table (hashtable): is a concurrent hash table consisting of
64 buckets and 256 keys. Each bucket contains an overflow
linked list. A transaction either does amsert, a delete, or a
lookup of a given key; we present results with 10/10/80 percent
distribution of the three operation types respectively.

Binary Search Tree (bst): is a simple binary search tree. The set
of operations and their distribution dtst were the same as
that of hashtable. We tested thebst with two different sizes:
256 keys and 32K keys. The small size increases contention,
whereas the larger size depicts performance in more riealist
low-contention scenarios.

Note that our choice of microbenchmarks was deliberate. We
believe such workloads amplify performance tradeoffs agnon
blocking and nonblocking STM design choices. Due to their te
dency of aggravating contention, they are more like “sttests”
for these systems. For low thread counts however, they Hlso i
trate the behaviour of these STMs under the common contentio
free case. As a result, our microbenchmarks serve to stuely th
behaviour of our STMs across a wide range of scenarios.

We conducted experiments on two machines: (i) a 16-processo
Sun Fire 6800, a cache-coherent multiprocessor with 1.2 GHz
UltraSPARC Il processors; (i) a Sun Fire T1000 UltraSPARC
T1[13]-based single-chip multiprocessdrlQ0Q with 8 cores and
4 multiplexed threads per core. Results on the two machirezs w
qualitatively similar. Due to space restrictions, we presesults
from the 16-processor system. All the libraries were coetpil
usingGCC v4.2.0at-O3 optimization level.

Memory Management. STM implementations impose some in-
teresting restrictions on memory management systems [4,7]2
In this paper, we do not address these issues, and use pcatati
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Figure 9. Throughput on Binary Search Trelsf) with 256 keys and 32K keys.

data structures for our experiments (specifically for noihebst
andhashtable). Although primitive, we believe that our approach
isolates the effect of memory allocation performanceuisity on
our results to a great extent, allowing us to more directijmpare
different STM designs.

6.2 Performance Results

Figures 7 through 9 show throughput in transactions perrseco
with concurrent thread count ranging from 1 to 64 in all the mi
crobenchmarks. Each thread exectit@® transactions in each test

reason for performance degradation of our undo log STMrin
ray_cntr, we experimented with alternate means of delaying the
stealing process, e.g. a transaction exponentially baffkseéore
stealing an orec. Although the stealing frequency dropihetipver-
all throughput did not change noticably. Interestinglpughcntr
does not permit any scaling, we observed that the abort sateti
high (lower than 2%). The transactions are short enoughttieat
window for aborting conflicting transactions is too small.

Our observation brings out an interesting new tradeoff leetw
undo and redo log based STMs from the perspective of nonisigck
progress guarantees: too much contention may result inewors

run. Throughput was averaged over 3 test runs. As may be clearperformance degradation in undo log STMs.

from the performance curves, our Phase 2 extensions hawtdibo
performance of our nonblocking STMs to the level of being eom
petitive with state-of-the-art blocking STMs (TL2 in oursits).
We believe these results indicate the success of our effodigy-
nificantly reducing the performance gap between blockirggreon-
blocking STMs, contrary to the commonly perceived notioatth
nonblocking STMs are “inherently” much slower than the kloc
ing ones. Moreover, withoutchedctl support, TL2's throughput
degrades significantly in several benchmarks, indicatiegpoten-
tial performance hazards of blocking STM implementatiofithw
out scheduler support [22].

Specifically, Figure 7 compares performance of all STMs unde
very high contention workloads. Botintr andarray_cntr are write
intensive benchmarks. These benchmarks show the stiltimxis
fastpath overhead in the write operation in our STMs. Weebeli
these to be examples of “worst case” behavior for our STMs. In
more realistic benchmarks the ratio of reads to writes isetqd to
be higher thus reducing this performance gap. Notice thatiodo
log STM performs slightly better than the redo log, eagenieq
based nonblocking STM. This is because of the extra memory
operations required in the latter STM to redo its specutatipdates
from its write set to the target locations. The lazy acquieesion
incurs slightly more overhead of replicating the write det@mmit
time, which manifests in the throughput curves.

Notice that the throughput of our undo log STM degrades
slightly after hitting preemption in therray_cntr experiments.
Figure 10 gives an insight into the reason behind the detjcada
Recall that transaction aborts may trigger stealing in owtaulog
STM. The abort rate iarray_cntr peaks at about 25% for all STMs
by the time we reach 16 threads, and remains there with isitrga
thread count. This relatively high abort rate, coupled waitbitrary
delays due to preemption are responsible for a drastic aserén
the orec stealing rate in our undo log STM, to up to 35%. In com-
parison, the stealing frequency is not as dramaticallycédfdin the
redo log STMs as shown in Figure 10.

The impact on throughput afray_cntr, although not really sig-
nificant, is noticable in Figure 7. Since stealing was thenpry

The hash table and the binary search tree are scalable \adeklo
that exhibit low contention. As is clear from all three grapbur
nonblocking STMs are competitive with TL2. In fact, our STMs
scale better than TL2 on theshtable benchmark.

7. Discussion

Nonblocking progress conditions have some interestingramt
tions with some aspects of transactional memory runtimek as
privatization [26] and condition synchronization [7].

Privatization. To allow memory to be accessed both transaction-
ally and non-transactionally, and to support dynamic menabr
location [3], STMs should generally suppanivatization[25, 26,
28]. Most privatization solutions known to date are blogkiand it
seems likely that practical solutions will be blocking. Ndimeless,
some purposes of privatization can be supported in a nokioigc
manner, for example, dynamic memory allocation can be stggo
by deferring freeing of blocks of memory until they have beein
vatized, without blocking the thread that frees memory.ther
more, some applications may not require privatization.réfore,
although some restrictions may be needed, the privatizatiob-
lem does not prevent the construction of useful nonbloclEmiyls.

Conditional Waiting. Harris et al. [7] introduced theetry con-
struct for condition synchronization in memory transaatioAl-
though conditional waiting may seem in direct conflict witbna
blocking STMs, we argue that there is no real conflict herer- co
ditional waiting is a part of application semantics wherégead
intentionally waits for an event, and nonblocking STMs gudee
forward progress in the absence of such intentions.

8. Conclusion

Although there may be some fundamental design tradeoffsdsat
blocking and nonblocking STMs, we claim that their commoseca
performance may not be inherently different. To support ¢tfem,
we showed how to decouple fast path transactional code fnem t



infrastructure that enables nonblocking progress in oS TThis
decoupling enables more recent optimizations of blockifi¢/1$
in our nonblocking STMs with surprisingly simple extenso@ur
work has shown that most key optimizations applied to stéte-
the-art blocking STMs can also be applied to nonblocking STM
Moreover, nonblocking STMs are naturally tolerant of pétlages
such as preemption, priority inversion, and thread fagufo our
knowledge, our work is the first to show that one can build an
undo log based nonblocking STM. Empirical results show #tlat
variants of our nonblocking STM are competitive with stafe-
the-art blocking STMs. Future directions include more r@s
experimentation with larger workloads and migrating owdd to
object-based nonblocking STM designs.
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