RingSTM: Scalable Transactions with a Single Atomic
Instruction’

Michael F. Spear
Department of Computer Science
University of Rochester
spear@cs.rochester.edu

ABSTRACT

Existing Software Transactional Memory (STM) designs at-
tach metadata to ranges of shared memory; subsequent run-
time instructions read and update this metadata in order to
ensure that an in-flight transaction’s reads and writes remain
correct. The overhead of metadata manipulation and inspec-
tion is linear in the number of reads and writes performed
by a transaction, and involves expensive read-modify-write
instructions, resulting in substantial overheads.

We consider a novel approach to STM, in which trans-
actions represent their read and write sets as Bloom fil-
ters, and transactions commit by enqueuing a Bloom filter
onto a global list. Using this approach, our RingSTM sys-
tem requires at most one read-modify-write operation for
any transaction, and incurs validation overhead linear not
in transaction size, but in the number of concurrent writ-
ers who commit. Furthermore, RingSTM is the first STM
that is inherently livelock-free and privatization-safe while
at the same time permitting parallel writeback by concur-
rent disjoint transactions. We evaluate three variants of the
RingSTM algorithm, and find that it offers superior perfor-
mance and/or stronger semantics than the state-of-the-art
TL2 algorithm under a number of workloads.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel Programming; D.3.3 [Programming Lan-
guages|: Language Constructs and Features—Concurrent
Programming Structures

General Terms

Algorithms, Design, Performance

*At the University of Rochester, this work was supported in
part by NSF grants CNS-0615139, CCF-0702505, and CSR-
0720796; by equipment support from IBM; and by financial
support from Intel and Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’08, June 14-16, 2008, Munich, Germany.

Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

Maged M. Michael, Christoph von Praun

IBM T.J. Watson Research Center

magedm @us.ibm.com, praun@acm.org

275

Keywords

Software Transactional Memory, Synchronization, Atomic-
ity

1. INTRODUCTION

The recent flurry of research into the design and imple-
mentation of high-performance blocking and nonblocking
software transactional memory (STM) [6,8-11, 15, 16, 23]
was primarily influenced by Shavit and Touitou’s original
STM [26]. In this design, transactional data is versioned
explicitly by associating “ownership records” (orecs) with
ranges of shared memory, where each orec encapsulates ver-
sion and ownership information. The Shavit and Touitou
STM has formed the basis of numerous successful and scal-
able runtimes, most notably TL2 [6], widely considered to
be the state-of-the-art.

1.1 Tradeoffs in Orec-Based STMs

In orec-based runtimes such as TL2, the use of location-
based metadata represents a tradeoff between single-thread
overhead and scalability. The main overheads are outlined
below, and deal with the use of metadata. In return for
these overheads, transactions whose metadata accesses do
not conflict can commit concurrently.

e Linear Atomic Operation Overhead: A transaction writ-
ing to W distinct locations must update the metadata
associated with those W locations using atomic read-
modify-write (RMW) operations such as compare-and-
swap (CAS). Some implementations require atomic ac-
quire and atomic release, resulting in a total of 2W
RMW operations, but even the fastest runtimes can-
not avoid an O(W) acquire cost. Each RMW operation
has a high overhead, as it introduces some amount of
bus traffic and ordering within the processor memory
consistency model.

e Linear Commit-Time Overhead: In most STMs, a com-
mitting writer incurs overhead linear in both the num-
ber of reads and the number of writes. The com-
mit step of STMs using commit-time locking consists
of an O(W) orec acquisition, O(R) read-set valida-
tion, O(W) write-back, and O(W) orec release. When
encounter-time locking is used, the O(W) acquisition
overhead is incurred during transaction execution, rather
than at commit, and O(W) write-back can be avoided.
Furthermore, when writing transactions are infrequent,
the final O(R) validation overhead may be avoided via

heuristics [29] or global time [6,21]. Several hardware
proposals can decrease commit overhead to as low as
O(W) [17,24,27,31], albeit at increased hardware com-
plexity. On existing hardware with a heterogeneous
workload including a modest number of writing trans-
actions, commit overhead (excluding acquisition) has
a time overhead of O(R + W).

e Privatization Overhead: When a transaction removes
or otherwise logically disables all global references to
a region of shared memory, subsequent access to that
region should not require transactional instrumenta-
tion. However, such “privatizing” transactions may
need to block at their commit point, both to permit
post-commit cleanup by logically earlier transactions,
and to prevent inconsistent reads by doomed trans-
actions [14, 28]. While future research may discover
efficient solutions to privatization, the current state of
the art appears to involve significant overhead, possi-
bly linear in the number of active transactions.

e Read Consistency Overhead: A transaction reading R
distinct locations must ensure that there exists a logi-
cal time at which all R reads were simultaneously valid.
STMs descended from DSTM [11] achieve this condi-
tion through O(R?) incremental validation, which can
be reduced via heuristics [29]; time-based STMs [6,21,
22,33] use a postvalidation step that has constant over-
head for each transactional read. Some STMs ignore
read consistency until commit-time, and rely on sand-
boxing, exceptions, and signals to detect inconsisten-
cies [7,8,10,23]. In these systems, additional instruc-
tions or compiler instrumentation may be required to
detect infinite loops, and “doomed” transactions may
run for extended periods (as long as a garbage collec-
tion epoch) after performing an inconsistent read.

1.2 Alternative Hardware and Software TMs

Among software-only TMs, the most prominent exception
to the Shavit and Touitou design is JudoSTM [19], which
includes a variant in which only one atomic operation is
required. By using a single lock, sandboxing, and write-
back on commit, JudoSTM implicitly avoids the privatiza-
tion problem, and incurs only O(1) atomic operations and
O(R) commit-time validation overhead, for a total commit
overhead of O(W + R). However, these benefits come at
the cost of strongly serialized commit: when a transaction
is in the process of committing updates to shared memory,
no concurrent reading or writing transactions can commit.

Several proposals for hardware transactional memory
(HTM) do not require the use of per-location metadata, in-
stead relying on cache coherence messages or custom proces-
sor data structures to ensure atomic and isolated updates by
successful transactions [14]. Naturally, these systems incur
minimal overhead (often constant). Unfortunately, these de-
signs are either complex, or else limited in their ability to
support transactions unbounded in space and time. Recent
designs have shown, however, that Bloom filters [2] can be
implemented efficiently in hardware and used to accelerate
memory transactions [5,17,20, 34].

1.3 Contributions

In this paper we present RingSTM, a novel STM algo-
rithm with several advantageous characteristics. By using

276

per-transaction Bloom filters [2] to detect conflicts among
transactions, RingSTM avoids the heavy overheads associ-
ated with per-location metadata that are common to most
existing STM designs, and provides stronger and simpler
sematics than other STM designs. The RingSTM design en-
ables all of the following advantages at the same time: (1)
read-write transactions commit using only one atomic oper-
ation, and read-only transactions do not require any atomic
operations, (2) the runtime is inherently livelock-free, (3)
non-conflicting read-write transactions do not prevent read-
only transactions from committing, (4) all transactions are
seamlessly privatization-safe, (5) non-conflicting read-write
transactions can commit concurrently, and (6) the runtime
avoids the time and space overheads of read set logging.
We consider three variants of RingSTM, which trade worst-
case overheads for increasingly concurrent commit. Experi-
ments on a 32-thread Sun Niagara T1000 chip multiproces-
sor show that RingSTM offers superior performance and/or
stronger semantics than TL2 in some cases. Based on these
results, we believe that RingSTM is the preferred choice of
STM design for a number of cases, such as when privatiza-
tion is frequent, seamless privatization is necessary, writing
transactions are rare, or transactions have very large read
and write sets. When transactions are used to implement
thread-level speculation [32], we also expect RingSTM to
outperform other STMs, due to its short commit sequence.
We describe the design of RingSTM in Section 2, and
present three variants that trade higher concurrency for weaker
worst-case guarantees on validation overhead in Section 3.
Section 4 evaluates the performance of RingSTM, comparing
to TL2. Lastly, we discuss future directions in Section 5.

2. RINGSTM DESIGN

RingSTM transactions detect conflicts and ensure atom-
icity, isolation, and consistency through manipulation of an
ordered, fixed size ring data structure (the ring)'. Trans-
actional writes are buffered and performed upon successful
commit. Appending an entry to the ring effects a logical
commit and is the explicit linearization point of a writing
transaction; this ensures that ring entries only describe suc-
cessful writer transactions, preventing unnecessary valida-
tion. In the default RingSTM configuration, the position
of an entry in the ring specifies both logical and physical
commit order (that is, when the transaction added a ring
entry and when it completed write-back). This framework
permits numerous novel design aspects, outlined below.

2.1 Global Metadata Describes Committed
Transactions, not Locations

Each entry in the fixed-size ring describes a successful
writer transaction, and consists of four fields: a logical times-
tamp (ts), a Bloom filter representing the set of locations
modified (wf), a status field, and a priority (prio). Figure 1
depicts an 8-entry ring. Only writing transactions make
modifications to the ring, and entries are added to the ring
with a single RMW operation. Initially, an entry’s status
is writing, indicating that the corresponding transaction is
logically complete, but it has not performed all of its writes.
Once all writes are performed, the status is updated to com-
plete. Multiple ring entries can be in the writing state.

!The semantic limitations imposed by a fixed-size ring are
discussed in Section 3.4

writin'gj'
prio=0

Figure 1: Example ring holding 8 entries. The
newest entry (47) represents a transaction that has
linearized but has not started writeback. Entries
44 ... 46 are performing write-back. Entries 40... 43
are complete.

When an entry’s status is writing, all newer transactions
must treat the entry’s write set as locked. For concur-
rent committing writers, this means that write-after-write
(WAW) ordering must be respected. We provide WAW be-
tween concurrent writers 77 and 7% as follows: If T%’s ring
entry has an earlier commit time than 75’s entry, and 7% de-
termines that its write filter has a nonzero intersection with
Ty’s filter, then T3 cannot perform its writes until 77 sets its
entry’s status to complete. The update of T7’s status serves
to release the set of logical locks covering its write set.

The rest of the commit sequence has minimal overhead:
the ring entry is initialized and added to the ring with a
single RMW operation (O(1)). W writes are then performed
(O(W)), and the entry status is set to complete (O(1)). In
contrast, orec-based STMs incur O(W) overhead to acquire
and release up to W physical locks, and O(W) overhead to
perform their writes.

2.2 Trade Precision for Speed in Validation

When a transaction T, begins, it identifies the oldest ring
entry with a status of writing, and sets its start time to im-
mediately before that transaction’s commit time. Whenever
a shared location is read, T, validates by scanning the ring
and identifying any entries with commit times later than
its start time; T, intersects its read set with each such en-
try’s write set. If the intersection is nonzero, T, aborts and
restarts. When T, computes a zero intersection with a filter
F whose writeback status is complete, T, can ignore all fu-
ture intersections with F. Thus if My transactions commit
after T, begins, then T, can issue at most R X N}y intersec-
tions, but at least Ayy intersections, where R is the number
of locations read by T,. For a fixed-size filter, this results in
Q(Mp) validation overhead.

There are a number of tradeoffs involved in validation.
First, filter intersection is prone to false conflicts. If trans-
actions logged their read sets precisely, they could test indi-
vidual reads for membership in published write filters. How-
ever, such tests still admit false positives due to hash colli-
sions, and we believe that adapting filter size while incurring

277

only constant storage overhead is preferable to incurring lin-
ear space overhead and potentially O(RQ) time overhead.
Furthermore, when membership tests are not necessary, us-
ing fewer hash functions decreases false conflicts at any filter
size. Bloom filters are also prone to the “Birthday Paradox”
observation [35], which can be mitigated to a degree by dy-
namically changing filter size.

Next, we note that the validation strategies listed above
ensure consistent reads (no sandboxing) but introduce polling.
Since each of the Ny filters must be checked before T, com-
mits, there is no practical benefit to replacing polling with
sandboxing. In fact, polling decreases the incidence of false
conflicts, since write filters are tested early and then ignored
once their status is complete. If all potentially conflicting
write filters were tested during T,’s commit, T,’s read fil-
ter would be at its most full, increasing the chance that a
read-after-write order be misinterpreted as a conflict. Fur-
thermore, polling decreases the risk of a transaction expe-
riencing ring overflow. If the number of write filters that
must be validated exceeds the number of ring entries, then
T. must abort and restart. By polling, T, can ignore log-
ically older filters once they are complete, and such filters
can then be reused by newer committing writers without
impeding T,’s progress.

2.3 Low Commit Overhead and Livelock
Freedom

Transactions do not perform validation after acquiring a
ring entry: instead, they validate before acquiring a ring en-
try and then attempt to add a ring entry by issuing a RMW
operation that will only succeed if the ring is unchanged
since that validation. This decision ensures that all ring en-
tries correspond to committed transactions, that is, failed
transactions never cause other transactions to fail. This de-
creases the incidence of ring overflow. Furthermore, since
the creation of a ring entry logically locks all locations in
the entry’s write filter, eliminating validation after issuing
an RMW operation decreases the size of the commit critical
section. This is a notable difference from TL2 and other
STMs, where a writer must validate after locking, incurring
O(R + W) overhead in its critical section.

Furthermore, since the entire write set is locked via a sin-
gle atomic operation, there is no need for contention man-
agement [25] between incomplete transactions for livelock
prevention: until a transaction is logically committed, it is
invisible to other transactions; once a transaction is visible,
it is represented by a ring entry and is logically committed.
Thus RingSTM is livelock free. Informally, a transaction
Te will abort only if an entry E is added to the ring after
To’s logical begin time, and E’s write filter has a nonzero
intersection with 7,’s read filter. The addition of E to the
ring by transaction 7. atomically transitions 7. to a state in
which it is logically committed. Since Ty, cannot be aborted
by an incomplete transaction, Ty’s abort signifies that some
transaction in the system (in this case T.) made progress.

2.4 Contention Management

Bobba et al. warn that three “pathologies” affect transac-
tional runtimes that use deferred updates [4]: commits can
be unnecessarily serialized, starvation is possible, and mul-
tiple restarts can lead to convoying. They propose a mini-
mal amount of bookkeeping to perform exponential backoff
on abort, and show that it substantially reduces convoying.

Since RingSTM only serializes the commits of transactions
with likely WAW ordering constraints, we do not expect se-
rialized commit to be a problem (Bobba et al. focus on the
case where hardware TM uses a single commit token).

To address starvation, we maintain a priority field in each
ring entry, and make use of a global priority manager. The
priority manager handles requests to raise and lower the
ring priority; writers can commit if and only if their priority
matches the current ring priority, represented by the value
of the priority field in the newest ring entry.

If a transaction T aborts repeatedly, it can request a
higher priority p’ from the global priority manager. If the
request is granted, T then commits a “dummy” transaction
(represented by an empty write filter) with the elevated pri-
ority, and assumes responsibility for restoring the lower ring
priority when it commits. As soon as the dummy transac-
tion commits, a concurrent writing transaction 7; of lower
priority is effectively scheduled behind T (it cannot com-
mit until 7" commits and lowers the ring priority), unless
it requests and receives elevated priority from the priority
manager. Since 7; cannot commit, it is incapable of chang-
ing shared memory and thus it cannot cause T" to abort.

After raising the ring priority, T' continues, and when it is
ready to commit, it does so by adding a ring entry describ-
ing its write set. This entry also restores the original ring
priority, and thus as soon as 7' commits, all lower-priority
writer transactions can attempt to commit. If 7" is a high-
priority read-only transaction, it must still commit an entry
with an empty write filter that restores the ring priority.

If some other transaction T” also receives elevated priority
from the global priority manager, many interleavings are
possible. If T"’s priority matches T’s priority, then T’ can
commit first with no complications. However, if T' commits
first and restores the old ring priority, then 7" will detect
that the ring has lost its elevated priority when it validates,
and must re-raise the priority. When 7’ commits in this
setting, it must re-lower the priority as well. If T” receives
higher priority than 7', it immediately commits a dummy
transaction with elevated priority, in which case T will be
scheduled behind 7”7, and T; will still be scheduled behind 7.
When 7" commits, it restores the ring to 1”’s priority, and
when T' commits, it restores the ring to its original priority.

The priority field of a ring entry is orthogonal to the
write filter of that entry, and thus low-priority read-only
transactions are never blocked by high-priority transactions:
First, low-priority read-only transactions will never modify
the ring, and thus are not blocked by the requirement that
new ring entries cannot lower the ring priority unless they
had previously committed a dummy transaction to raise the
priority. Secondly, read-only transactions linearize at their
final validation, which is dependent only on the write filters
of ring entries, not the priority fields.

If starvation persists (due to multiple transactions execut-
ing at a higher priority), 7' may request permission to be-
come inevitable [1,3,12,19,30]. In RingSTM, a transaction
becomes inevitable by adding a writing entry with a full
filter (all bits set) with status writing, and then waiting for
all older ring entries to set their status to complete. It then
performs all writes in-place, and at commit time, it updates
the status of its entry to writing. Inevitable transactions
forbid all concurrency and limit the use of retry-based condi-
tion synchronization, but can call most precompiled libraries
and perform I/0.

278

2.5 Privatization is Free

In its default configuration, RingSTM does not incur any
overhead to support privatization. We argue this position by
demonstrating that neither “half” of the privatization prob-
lem [28] affects RingSTM.

The “deferred update” problem deals with nontransac-
tional code failing to observe delayed transactional writes
to a privatized region. Since ring entries are in logical com-
mit order, it is necessary only to ensure that all logically
older transactions than a privatizing transaction 7}, have set
their status to complete before T}, performs uninstrumented
reads to newly privatized memory. Two of the three vari-
ants of RingSTM presented in Section 3 give this guarantee
implicitly; the third can provide this guarantee by spinning
on a single global variable, as discussed in Section 3.3.

The “doomed transaction” problem requires the runtime
to prevent any transaction 7). that conflicts with T, from
observing private writes that occur after 7, commits but
before T, aborts. Since RingSTM transactions poll the ring
on every transactional read, and validate their entire read
set through filter intersections whenever the ring is modified,
there is no doomed transaction problem. 7T, will detect the
conflict on its first read after 7, commits, and will abort
immediately, without using potentially inconsistent values.

2.6 Minimal Memory Management Overhead

Many STMs rely on garbage collection or epoch-based de-
ferred reclamation, and consequently suffer from heap blow-
up when there is any concurrency [13]. TL2 avoids this
overhead by making a call to free appear to write to the
entire region being freed (achieved by modifying some meta-
data). The worst-case cost of this “sterilization” process is a
number of RMW operations proportional to the size of the
region being freed.

Sterilization in TL2 is necessary because TL2 is not privat-
ization-safe. If T) is reading a region of memory that 75
frees, and the memory manager recycles the region and passes
it to a nontransactional thread Q, then Q’s subsequent unin-
strumented writes will be visible to 71, which may fail to de-
tect that it must abort due to conflict with a committed T5.
By sterilizing metadata before freeing memory, TL2 ensures
that doomed readers of a freed region abort.

Since RingSTM transactions poll for conflicts, and val-
idate their entire read set whenever a conflict is possible,
there is no need for sterilization or any other special mech-
anism. However, as in TL2, non-faulting loads (or the ap-
propriate signal handlers) may be required if the underlying
allocator returns memory to the operating system while it is
being read by a concurrent (doomed) transaction, and mal-
loc and free instructions must be logged, with frees deferred
until commit and mallocs undone upon abort.

3. IMPLEMENTATION

In this section we present three variants of the RingSTM
algorithm. The default version (RingSTM) permits parallel
writeback and incurs no privatization overhead. The single-
writer algorithm (RingSW) restricts the runtime to a single
committing writer at a time, but offers low asymptotic vali-
dation overhead. The relaxed writeback algorithm (RingR)
relaxes the writeback mechanism relative to the default al-
gorithm, at the expense of additional overhead for privatiza-
tion. The global metadata describing transactions and ring

Listing 1 RingSTM metadata
struct RingEntry

int ts // commit timestamp
filter wf // write filter

int prio // priority

int st // writing or complete

struct Transaction

set wset // speculative writes

filter wf // addresses to write

filter rf // addresses read

int start // logical start time
RingEntry ring[] // the global ring
int ring_index // newest ring entry
int prefix_index // RingR prefix field

entries are common to all algorithms, and appear in List-
ing 1. The ring is initialized so that ring_index == 0 and
every RingEntry has ts == 0 and st == complete.

3.1 The Default RingSTM Algorithm

Pseudocode for RingSTM appears in Listing 2; for clar-
ity, the pseudocode assumes an infinite-size ring and omits
constant time ring overflow tests and modular arithmetic
for computing ring indices from timestamps. Ring rollover
is discussed in Section 3.4. The global ring data structure
stores RingEntry records, as described in Section 2.1, and
the global integer ring_index stores the timestamp of the
newest ring entry. Transaction is a private per-transaction
descriptor storing Bloom filters representing the addresses
read (rf) and written (wf), and a buffer of speculative writes
(wset). start holds the timestamp of the last writing trans-
action that completed before this transaction began.

The foundation of the default algorithm is an invariant
describing ring entries. Let L; represent the ith entry in the
ring, with larger values of 4 indicating newer entries in the
ring. We define the suffix property as:

Li.st = writing => Vi>; Li.st = writing (1)

Informally, the suffix property ensures that committing trans-
actions release the logical locks covering their write set in
the same order as the transactions logically committed (ac-
quired entries in the ring). For example, in Figure 1, entries
{44 ... 47} comprise the suffix, and entry 45 cannot set its
status to complete while entry 44 is still writing.

Equation 1 enforces ordered completion among writers,
and prevents the “delayed update” half of the privatization
problem: If T5 privatizes a region with outstanding updates
by logically earlier transaction 77, then 75 will not exit its
commit sequence until 77 completes its writeback and re-
leases its logical locks; hence T» is guaranteed to observe
Ty’s writes. When T3 and T»’s write sets do not overlap,
the corresponding physical writes can occur in any order;
suffix-based serialization only applies to the order in which
ring entries are marked complete.

Transactions determine their start time via an O(Nyy) call
to tm_begin, which computes start time by determining the
oldest entry F in the ring with incomplete writeback. By
choosing a start time immediately before this E’s comple-
tion, a new transaction is certain not to overlook pending
writeback by logically committed transactions, without hav-
ing to wait for that writeback to complete.

Listing 2 Pseudocode for RingSTM (default)

tm_begin:
1 read ring_index to TX.start
2 while ring[TX.start].st != complete ||
ring[TX.start] .ts < TX.start
3 TX.start--
4 fence(Read-Before-Read)

tm_read:

1 if addr in TX.wf && addr in TX.wset
2 return lookup(addr, TX.wset)
3 val=*addr
4 TX.rf.add(addr)
5 fence(Read-Before-Read)
6 check()

7 return val

tm_write:
1 TX.wset.add(addr, val)
2 TX.wf.add(addr)

tm_end:

1 if read-only return

2 commit_time=ring_index

3 check()

4 if ICAS(ring_index, commit_time, commit_time+1)
5 goto 2

6 ring[commit_time+1]=(writing, TX.wf, commit_time+1)
7 for i=commit_time downto TX.start+1

8 if intersect(ring[i].wf, TX.wf)

9 while ring[i].st=writing SPIN

10 fence(ReadWrite-Before-Write))

11 for (addr, val) in TX.wset

12 write val at addr

13 while ring[commit_time].st==writing SPIN

14 fence(ReadWrite-Before-Write)

15 ring[commit_time+1].st=complete

check:

1 if ring_index==TX.start return
suffix_end=ring_index
while (ring[suffix_end].ts < suffix_end) SPIN
for i=ring_index downto TX.start+1

if intersect(ring[i].wf, TX.rf)

abort ()

if ring[i].st==writing

suffix_end=i-1
TX.start=suffix_end

©WoO~NO O WN

Transactional writes are buffered in a log (TX.wset); the
address to be written is also added to a write filter TX.wf. To
read a location, the transaction checks the log, and imme-
diately returns when a buffered write is present. Otherwise,
the transaction reads directly from memory, adds the loca-
tion to its read filter (TX.rf), and then polls for conflicts via
the check function. Alternative implementations are possi-
ble that do not update rf until after calling check, thereby
avoiding aborts when a read to a new location conflicts with
a ring entry that is writing.

The check function validates a transaction against every
writer that committed after the transaction’s logical start
time. When it encounters a committed writer (7¢) that is
no longer writing, the check function resets the transac-
tion’s start time to after T.. In this manner, subsequent
reads to locations that were modified by T, will not result
in conflicts. Since each call to check can lead to as many as
Ny filter intersections (where Nyy is the number of commit-
ting writers during a transaction’s execution), the maximum

Listing 3 Pseudocode for RingSW
tm_begin:
1 read ring_index to TX.start
2 if ring[TX.start].st != complete ||
ring[TX.start] .ts < TX.start
3 TX.start--
4 fence(Read-Before-Read)

tm_read: (unchanged from default)
tm_write: (unchanged from default)

tm_end:

1 if read-only return

2 commit_time=ring_index

3 check()

4 if ICAS(ring_index, commit_time, commit_time+1)
5 goto 2

6 ring[commit_time+1]=(writing, TX.wf, commit_time+1)
7 fence(Write-Before-Write))

8 for (addr, val) in TX.wset

9 write val at addr

10 fence(Write-Before-Write)

11 ringl[commit_time+1].st=complete

check:
1 my_index=ring_index

2 if my_index==TX.start return

3 while (ring[my_index].ts < my_index) SPIN
4 for i=my_index downto TX.start+1

5 if intersect(ring[i].wf, TX.rf)

6 abort()

7 while ring[my_index].st!=complete

8 SPIN

9 fence(Read-Before-Read)

10 TX.start = my_index

validation overhead is (R+ 1) x Myy. In practice, we expect
this overhead to tend toward its lower bound of Q(Nw).

Lastly, as discussed in Section 2.3, tm_end ensures a min-
imal contention window by performing all validation before
acquiring a ring entry (and hence locking its write set). On
line 6, a Write-Before-Write fence may be needed to ensure
that the wf and st fields are written before the ts field.
The O(NMw) loop on lines 7-9 ensures that write-after-write
ordering is preserved, but otherwise writeback (lines 11-12)
can occur in parallel. Lines 13-15 preserve the suffix prop-
erty by ensuring that entries are marked complete in order.

As noted in Section 2.5, this Ring algorithm is privatization-
safe. To protect doomed transactions, every transaction
polls for conflicts before using the value of any transactional
read, ensuring that transactions abort before using incon-
sistent values. By ensuring that writer transactions depart
the tm_end function in the order that they logically commit,
there is no risk of committing and then reading stale values
due to delayed writeback by an older transaction.

3.2 The Single Writer Algorithm (RingSW)

For workloads with high proportions of read-only transac-
tions, the value of parallel writeback can be outweighed by
the R factor in the worst-case overhead of validation. The
single-writer variant of the RingSTM algorithm (RingSW)
reduces validation overhead to exactly Ny filter intersec-
tions, but forbids concurrent writeback. In effect, RingSW is
an optimized version of the default algorithm when the suf-
fix is bounded to a length of at most one. Listing 3 presents
pseudocode for RingSW.

280

The principal differences between the default algorithm
and RingSW are that tm_begin has constant overhead, and
that tm_end both skips write-after-write ordering and ig-
nores the suffix property, since it is implicit in the single-
writer protocol. All enforcement of the single-writer pro-
tocol is performed in the check function, via lines 7-9. In
addition to blocking (which should not dominate as long as
R >> Nw), enforcement of the single-writer protocol intro-
duces an additional R read-before-read memory fences on
processors with relaxed memory models, to order the spin
on line 8 before the next call to tm_read.

As a specialized implementation of the default algorithm
for suffix lengths no greater than 1, RingSW has no priva-
tization overhead. The main differences deal with serializa-
tion and complexity: RingSW forbids concurrent writeback
by nonconflicting transactions, but has O(1) overhead in
tm_begin, exactly Ny validation overhead, and only O(W)
overhead in tm_end. In contrast, the default algorithm has
a worst-case O(Nyy) overhead in tm_begin and tm_end.

3.3 Relaxed Commit Order (RingR)

While the suffix property specified in Equation 1 per-
mits concurrent commit, it enforces ordered departure from
tm_end for writing transactions. In this section we present
the relaxed commit order algorithm (RingR), which permits
disjoint writers to complete write-back in any order and im-
mediately execute new transactions. In return for this re-
laxation, RingR transactions are not privatization-safe.

In the default Ring algorithm, the suffix property implies
a prefix property as well. If L; represents the ith entry in
the ring, then:

(2)

Informally, the prefix property states that regardless of the
state of the newest entries in the ring, the set of “oldest”
entries in the ring have all completed writeback. In the de-
fault algorithm, the suffix and prefix are adjacent, and their
union includes all ring entries. In RingR, we preserve the
prefix property but not the suffix property. Since there can
be multiple ring entries that satisfy the prefix property, we
safely approximate the prefix with the prefix_index global
variable. At times, prefix_index may not store the largest
value of ¢ for which Equation 2 holds, but it will always
describe a correct prefix of the ring.

Pseudocode for RingR appears in Listing 4. The principal
difference is in the maintenance of the prefix_index vari-
able. As in the default, successful calls to check advance the
logical start time of the transaction; however, we now use
this start time to assist in maintaining the prefix_index.
Since the logical start time is based on the oldest committed
transaction for which writeback is incomplete, the transac-
tion that committed immediately before a transaction’s log-
ical start time is a valid value of ¢ for Equation 2.

Since there are many correct values for the prefix_index,
we maintain its value through regular stores (as opposed
to atomic instructions). Occasionally this will result in the
prefix moving “backward”, but does not compromise correct-
ness. Furthermore, even though readers may be aware of a
more precise value of prefix_index, only successful writers
maintain the variable. This ensures that read-only transac-
tions never modify global metadata. Use of prefix_index
is straightforward: in tm_begin, the transaction reads pre-
fix_index and then advances its start time as far as possi-

i+ Li.st = complete = Vyp<;Ly.st = complete

Listing 4 Pseudocode for RingR
tm_begin:
1 read prefix_index to TX.start
2 while ring[TX.start+1].st == complete &&
ring[TX.start+1] .ts > TX.start
3 TX.start++
4 fence(Read-Before-Read)

tm_read: (unchanged from default)
tm_write: (unchanged from default)
check: (unchanged from default)

tm_end:
1 if read-only return

commit_time=ring_index

check()

if !CAS(ring_index, commit_time, commit_time+1)
goto 2

ring[commit_time+1]=(writing, TX.wf, commit_time+1)

for i=commit_time downto TX.start
if intersect(ring[i].wf, TX.wf)
while ring[i].st = writing SPIN

fence (ReadWrite-Before-Write)

for (addr, val) in TX.wset

write val at addr

fence(Write-Before-Write)

if prefix_index<TX.start
prefix_index=TX.start

fence(Write-Before-Write)

ring[commit_time+1].st=complete

W ~NOO WN

©

11
12
13
14
15
16
17

ble. For a bounded ring, the overhead of this loop is linear
in ring size; in practice, we expect the prefix_index to be
close to optimal, introducing little common-case overhead.

Since writers can exit tm_end in any order, RingR ad-
mits a deferred update problem. To make the algorithm
privatization-safe, we can ensure that a committed priva-
tizer T}, does not access shared data nontransactionally un-
til prefiz_index > T,s commit_time. Once the prefix-
_index advances to T},’s commit time, 7}, is guaranteed that
there are no deferred updates to the privatized region. Since
transactions still poll for conflicts, RingR does not introduce
a doomed transaction problem.

3.4 Ring Rollover

To support a bounded ring, only a small number of constant-

overhead instructions are needed. First, all ring indices must
be computed via modular arithmetic, and whenever the ex-
pected timestamp of an entry is greater than the value ex-
pected by a transaction (either during check or tm_end),
that transaction must abort. Secondly, when check is called,
a rollover test must be issued before returning, to ensure
that, after all validation is complete, the oldest entry vali-
dated has not been overwritten (accomplished with a test on
its timestamp field). This test detects when a validation is
interrupted by a context switch, and conservatively aborts
if ring rollover occurs while the transaction is swapped out.
Lastly, the order in which ring entries are updated matters.
During initialization, updates to a new ring entry’s times-
tamp must follow the setting of the write filter and the sta-
tus (write-after-write ordering). Calls to check from tm_end
must block until the newest ring entry’s timestamp is set.
RingSW requires no further changes. In the default
RingSTM algorithm, threads must ensure that there is al-
ways at least one ring entry whose status is writeback com-

281

plete. When the number of active transactions is less than
the number of ring entries, this requirement is implicitly sat-
isfied. Otherwise, a test is required in tm_end before acquir-
ing a new ring entry. This test is required in RingR, which
must also ensure that the prefix_head always points to a
live entry in the ring. This can be achieved either through
the use of an atomic RMW instruction, or by adding an
additional test to the use of prefix_head in tm_begin.

3.5 Summary

In each of the RingSTM implementations, only one RMW
operation is required, regardless of write set size. In the com-
mon case, all algorithms should incur overhead linear only
in Ny, the number of concurrent writers. Privatization is
either free, or can be achieved by waiting for a single global
variable to satisfy a simple predicate. Read-only transac-
tions commit without issuing writes, and read-only work-
loads can avoid all validation, although they must issue R
tests of the ring_index variable.

4. EVALUATION

We implemented the RingSTM, RingSW, and RingR algo-
rithms as a C library, compatible with 32-bit C and C++ ap-
plications on the POWER, SPARC, and x86 architectures.
In this section we focus on the results on an 8-core (32-
thread), 1.0 GHz Sun T1000 (Niagara) chip multiprocessor
running Solaris 10; we believe the Niagara is representative
of a strong emerging trend in processor design. All bench-
marks are written in C++ and compiled with g++ version
4.1.1 using —O3 optimizations. Each data point is the me-
dian of five trials, each of which was run for five seconds.

4.1 Runtime Systems Evaluated

We parameterized each of the RingSTM algorithms by fil-
ter size, using small (32-bit), medium (1024-bit), and large
(8192-bit) filters. The medium and large filters are opti-
mized through the addition of a 32-bit summary filter; filter
intersections are computed on the summary filters first, with
the larger filters used only when the summary intersection
is nonzero. In all runtimes, the ring stores 1024 entries.

We compare the resulting nine RingSTM systems against
a local implementation of the published TL2 algorithm [6],
which represents the state of the art. Our implementa-
tion of TL2 uses an array of 1M ownership records, and
resolves conflicts using a simple, blocking contention man-
agement policy (abort on conflict). Our implementation of
TL2 shares as much code as possible with RingSTM, to pre-
vent implementation artifacts from affecting results.

4.2 Scalability

In Figure 2, we evaluate the scalability of RingSTM on
a concurrent red-black tree. The benchmark used random
20-bit values, with 50% lookup transactions and the remain-
ing transactions evenly split between inserts and removals.
The tree was pre-populated with 2° unique elements. Not
surprisingly, we find that all RingSTM variants scale well,
and that performance is on par with our TL2 implementa-
tion until about 14 threads, at which point ring contention
(competing to acquire ring entries) dampens the rate of scal-
ing; we discuss this property further in Section 4.4.

Finding the right match of filter size to workload is impor-
tant: at high thread levels, the 32-bit filters are too small, re-
sulting in decreased scalability due to increased aborts from

1.8e+06

1.6e+06 - 1
1.4e+06 - 1
©
S 1.2e+06 | 1
o
3
@ 1e+06 1
c
S
T 800000 - 1
©
1]
C
[600000]
= e RS
400000 TL2 —— RingR-1024 -~ =g
y RingSTM-32 -—6--- RﬂlngFé\?\;gg
o RingSTM-1024 - ingSW-32 -
200000 | RNSSTMB1o2 e Ringawd0s4 o 1
RingR-32 -—&-- RingSW-8192 —+—
ob TR TEUEOL
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Threads
Figure 2: Red-black tree storing 20-bit integers;

50% of transactions are read-only.

1e+08 T T

1 Threads m—
2 Threads =~=<x
1e+07 4 Threads E
8 Threads
16 Threads ===
1e+06 E

100000

10000

Commits / Abort

1000

100

Ring (s)

Ring (m‘)

Ring (1)

TL2

Figure 3: Commit/Abort ratio for the red-black tree
of Figure 2, with RingSTM using 32, 1024, and 8192-
bit filters.

false positives. After 8 threads, even the 1024-bit filters
cause false positives. Figure 3 contrasts the overhead of
false conflicts with the cost of maintaining larger filters for
the same RBTree workload. Each bar represents the num-
ber of commits per aborted transaction, using a TL2-like
algorithm as an approximation of the true commit/abort
ratio. For smaller filter sizes, the lower ratio indicates that
there are significantly more aborts; when total throughput
remains on par with TL2 despite the depressed ratio, it is a
consequence of the lower overhead of maintaining smaller fil-
ters. At 16 threads, even 8192-bit filters introduce too many
false conflicts, resulting in a cross-over between RingSTM-
8192 and TL2 in Figure 2.

Lastly, we observe that for high thread levels,
RingSW performance is slightly lower than RingSTM, and
that RingR performs best, though by only a small margin.
These characteristics are directly related to write-back. At
high thread levels, multiple writers are likely to reach their
commit point simultaneously. In RingSW, one of these writ-
ers must block before acquiring a ring entry, limiting par-
allelism. Likewise, in RingSTM, a writer may delay after
writeback in order to preserve the suffix property.

282

80000 ——————————+———————+—
OO
b ., '_ \“»\. 4
25000 Q"‘O . e,_;g}\.
8.,
o .
S 20000
o
Q
2
1)
S 15000 -
3
©
2]
c
g 10000
s
L TL2
5000 RingSTM-32 -
RingSTM-1024 -
0 L RingSTM-8192 ¢

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Threads

Figure 4: RandomGraph benchmark with 50% node
inserts and 50% node removals.

The slightly better scalability of RingR relative to
RingSTM can be attributed to the cost of privatization safety.
For our workloads, which write fewer than 50 different lo-
cations, the improvement afforded by RingR remains below
5% in all experiments presented in this paper. Given the
negligible privatization overhead for our workloads, we omit
further discussion of RingR. Since the three ring variants are
equally affected by filter size, with RingSTM scaling better
than RingSW whenever there are multiple concurrent writ-
ers, we also omit further discussion of RingSW. The behav-
ior of RingSTM is characteristic of all three algorithms, and
since it does not require overhead for privatization, we feel
that its performance is most interesting.

4.3 Commit Overhead

To highlight the impact of O(R) validation overhead, we
consider the RandomGraph benchmark from the RSTM
suite [16,18]. The benchmark maintains a graph, where
nodes are stored in a list and each node maintains its neigh-
bors in an adjacency list. Transactions add or remove nodes
with equal probability, with new nodes receiving four ran-
dom neighbors. The benchmark does not admit parallelism,
but its large read sets (potentially hundreds of elements)
and moderately large write sets (tens of elements) tax STM
systems that rely on ownership records. In Figure 4, we ob-
serve that RingSTM performs between 33% and 50% faster
than TL2, since TL2 incurs O(R) overhead at commit time.

4.4 Bottlenecks

We lastly consider the impact of a single global ring on
scalability. Figure 5 shows a hash table benchmark. The
hash table stores 8-bit integers in 256 buckets with chain-
ing, and insert, lookup, and remove operations are equally
likely. The data structure should scale almost linearly, but
transactions are short enough that global shared variables
(the TL2 timestamp and the ring) become bottlenecks.

As expected, there is a point at which coherence traffic on
the global TL2 timestamp dominates, and the benchmark
ceases to scale. Ring contention also becomes a bottleneck,
with worse effect than in TL2 for several reasons. First,
an update to the ring causes multiple cache misses in con-
current threads (the ring entry and the ring_index reside
in separate lines, and write filters often reside in multiple

6e+06 — T T T T T T T T T T T T

5e+06

4e+06

3e+06

2e+06

Transactions/second

1e+06 [1'g

e RingSTM-32 —-6-—
° RiNgSTM-1024 -
0 L RingSTM-8192 -
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Threads

Figure 5: Hash table benchmark with 8 bit keys and
33% lookups.

lines). Secondly, the writer must update the ring entry af-
ter completing writeback; if concurrent transactions have
already polled for conflicts, then the writer will take a write
miss. Third, initializing a ring entry takes several cycles;
during initialization, the ring is effectively locked. Lastly, as
in TL2, attempts to increment a single global integer inher-
ently serialize otherwise nonconflicting transactions.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented RingSTM, a software transac-
tional memory algorithm that avoids the use of per-location
metadata, instead using a global ring of Bloom filters that
can each be evaluated in O(1) time via a simple intersection.
In its default configuration, RingSTM has no privatization
problem, requires a single RMW operation per transaction,
is inherently livelock-free, and has constant space overhead
to maintain its read set. RingSTM offers an attractive al-
ternative to TL2, the current state of the art STM, for a
number of workload characteristics. When privatization is
frequent, or existing privatization mechanisms are too ex-
pensive even for limited use, RingSTM provides low-cost
privatization. When transactions are used for thread-level
speculation [32], RingSTM offers a shorter commit sequence
than orec-based algorithms. In workloads with high ratios
of read-only transactions, or workloads with large read and
write sets, we expect RingSTM to offer lower latency due to
decreased metadata manipulation.

RingSTM is sensitive to its ring and filter sizes. As fu-
ture work, we plan to develop a variant that adapts these
parameters, as well as a “profiling mode”; in which addi-
tional bookkeeping permits the programmer to distinguish
between real conflicts and conflicts due to filter imprecision;
the programmer can then statically change the filter size or
hash functions. We also plan to investigate techniques to
dynamically recompile code to use an orec-based runtime
(such as TL2) or RingSTM, to give the best performance
to workloads that strongly favor one approach. We are also
investigating nonblocking implementations, suitable for use
in operating system code.

Lastly, we have begun to look at hardware optimizations
for RingSTM. Our hope is to identify primitives that are
not specific to STM, but that can alleviate the cost of shared

283

memory communication, further accelerating RingSTM with-
out committing hardware manufacturers to a fixed TM de-
sign. Additionally, we believe that the fixed-size metadata
requirements of RingSTM will help keep RingSTM-specific
hardware simple.

Acknowledgements

We would like to thank Michael Scott and Calin Cagcaval for
encouraging this research and providing feedback on numer-
ous drafts and revisions. We also thank the SPAA reviewers
for their advice and insights.

6. REFERENCES
[1] L. Baugh and C. Zilles. An Analysis of I/O and

Syscalls in Critical Sections and Their Implications for
Transactional Memory. In Proceedings of the 2nd
ACM SIGPLAN Workshop on Transactional
Computing, Portland, OR, Aug. 2007.

B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM,
13(7):422-426, 1970.

C. Blundell, J. Devietti, E. C. Lewis, and M. Martin.
Making the Fast Case Common and the Uncommon
Case Simple in Unbounded Transactional Memory. In
Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, June 2007.
J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill,
M. M. Swift, and D. A. Wood. Performance
Pathologies in Hardware Transactional Memory. In
Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, June 2007.
L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk
Disambiguation of Speculative Threads in
Multiprocessors. In Proceedings of the 33rd
International Symposium on Computer Architecture,
pages 227-238, Boston, MA, June 2006.

D. Dice, O. Shalev, and N. Shavit. Transactional
Locking II. In Proceedings of the 20th International
Symposium on Distributed Computing, Stockholm,
Sweden, Sept. 2006.

R. Ennals. Software Transactional Memory Should
Not Be Lock Free. Technical Report IRC-TR-06-052,
Intel Research Cambridge, 2006.

K. Fraser. Practical Lock-Freedom. Technical Report
UCAM-CL-TR-579, Cambridge University Computer
Laboratory, Feb. 2004.

R. Guerraoui, M. Herlihy, and B. Pochon.
Polymorphic Contention Management in SXM. In
Proceedings of the 19th International Symposium on
Distributed Computing, Cracow, Poland, Sept. 2005.
T. Harris, M. Plesko, A. Shinar, and D. Tarditi.
Optimizing Memory Transactions. In Proceedings of
the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, Ottawa, ON,
Canada, June 2006.

M. P. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software Transactional Memory for
Dynamic-sized Data Structures. In Proceedings of the
22nd ACM Symposium on Principles of Distributed
Computing, Boston, MA, July 2003.

O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E.
Ramadan, and E. Witchel. Solving Difficult HTM

3]

[4]

[5]

(6]

[18]

[19]

[20]

[21]

[23]

[25]

Problems Without Difficult Hardware. In Proceedings
of the 2nd ACM SIGPLAN Workshop on
Transactional Computing, Portland, OR, Aug. 2007.
R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and

B. Hertzberg. A Scalable Transactional Memory
Allocator. In Proceedings of the 2006 International
Symposium on Memory Management, Ottawa, ON,
Canada, June 2006.

J. R. Larus and R. Rajwar. Transactional Memory.
Synthesis Lectures on Computer Architecture. Morgan
& Claypool, 2007.

V. J. Marathe, W. N. Scherer III, and M. L. Scott.
Adaptive Software Transactional Memory. In
Proceedings of the 19th International Symposium on
Distributed Computing, Cracow, Poland, Sept. 2005.
V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott.
Lowering the Overhead of Nonblocking Software
Transactional Memory. In Proceedings of the 1st ACM
Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, June 2006.

C. C. Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and

K. Olukotun. An Effective Hybrid Transactional
Memory System with Strong Isolation Guarantees. In
Proceedings of the 34th International Symposium on
Computer Architecture, pages 69-80, San Diego, CA,
June 2007.

U. of Rochester. Rochester Software Transactional
Memory. http://www.cs.rochester.edu/research/
synchronization/rstm/.

M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM:
A Dynamic Binary-Rewriting Approach to Software
Transactional Memory. In Proceedings of the 16th
International Conference on Parallel Architecture and
Compilation Techniques, Brasov, Romania, Sept. 2007.
R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
Transactional Memory. In Proceedings of the 32nd
International Symposium on Computer Architecture,
Madison, WI, June 2005.

T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot
Algorithm with Eager Validation. In Proceedings of
the 20th International Symposium on Distributed
Computing, Stockholm, Sweden, Sept. 2006.

T. Riegel, C. Fetzer, and P. Felber. Time-Based
Transactional Memory with Scalable Time Bases. In
Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures, San
Diego, California, June 2007.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. McRT-STM: A High
Performance Software Transactional Memory System
For A Multi-Core Runtime. In Proceedings of the 11th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 187-197, New
York, NY, Mar. 2006.

B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson.
Architectural Support for Software Transactional
Memory. In Proceedings of the 39th IEEE/ACM
International Symposium on Microarchitecture, pages
185-196, Orlando, FL, Dec. 2006.

W. N. Scherer IIT and M. L. Scott. Advanced

284

(28]

(30]

(31]

(32]

(33]

(34]

Contention Management for Dynamic Software
Transactional Memory. In Proceedings of the 24th
ACM Symposium on Principles of Distributed
Computing, pages 240-248, Las Vegas, NV, July 2005.
N. Shavit and D. Touitou. Software Transactional
Memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, pages
204-213, Ottawa, ON, Canada, Aug. 1995.

A. Shriraman, M. F. Spear, H. Hossain, S. Dwarkadas,
and M. L. Scott. An Integrated Hardware-Software
Approach to Flexible Transactional Memory. In
Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, June 2007.
M. F. Spear, V. J. Marathe, L. Dalessandro, and

M. L. Scott. Privatization Techniques for Software
Transactional Memory. Technical Report TR 915,
Department of Computer Science, University of
Rochester, Feb. 2007.

M. F. Spear, V. J. Marathe, W. N. Scherer III, and
M. L. Scott. Conflict Detection and Validation
Strategies for Software Transactional Memory. In
Proceedings of the 20th International Symposium on
Distributed Computing, Stockholm, Sweden, Sept.
2006.

M. F. Spear, M. M. Michael, and M. L. Scott.
Inevitability Mechanisms for Software Transactional
Memory. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Transactional Computing, Salt Lake
City, UT, Feb. 2008.

M. F. Spear, A. Shriraman, L. Dalessandro,

S. Dwarkadas, and M. L. Scott. Nonblocking
Transactions Without Indirection Using
Alert-on-Update. In Proceedings of the 19th ACM
Symposium on Parallelism in Algorithms and
Architectures, San Diego, CA, June 2007.

C. von Praun, L. Ceze, and C. Cascaval. Implicit
Parallelism with Ordered Transactions. In Proceedings
of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, San Jose, CA,
Mar. 2007.

C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code Generation and Optimization for
Transactional Memory Constructs in an Unmanaged
Language. In Proceedings of the 2007 International
Symposium on Code Generation and Optimization,
San Jose, CA, Mar. 2007.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore,

H. Volos, M. D. Hill, and M. M. S. D. A. Wood.
LogTM-SE: Decoupling Hardware Transactional
Memory from Caches. In Proceedings of the 13th
International Symposium on High-Performance
Computer Architecture, Phoenix, AZ, Feb. 2007.

C. Zilles and R. Rajwar. Transactional memory and
the birthday paradox (brief announcement). In
Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures, San
Diego, CA, June 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

