
Parallel Triangle Counting and k-Truss
Identification using Graph-centric Methods

Chad Voegele∗, Yi-Shan Lu∗, Sreepathi Pai† and Keshav Pingali
The University of Texas at Austin

chad@cs.utexas.edu, yishanlu@utexas.edu, sreepai@ices.utexas.edu, pingali@cs.utexas.edu

: active node

: neighborhood

n

A

B

C
D

Fig. 1: Operator formulation [10].

Abstract—We describe CPU and GPU implementations of
parallel triangle-counting and k-truss identification in the Galois
and IrGL systems. Both systems are based on a graph-centric
abstraction called the operator formulation of algorithms. De-
pending on the input graph, our implementations are two to three
orders of magnitude faster than the reference implementations
provided by the IEEE HPEC static graph challenge.

I. INTRODUCTION

This paper describes high-performance CPU and GPU im-
plementations of triangle counting and k-truss identification
in graphs. We use a graph-centric programming model called
the operator formulation of algorithms [10], which has been
implemented for CPUs in the Galois system [8] and for GPUs
in the IrGL system [9].

A. Operator formulation of algorithms

The operator formulation is a data-centric abstraction which
presents a local view and a global view of algorithms, shown
pictorially in Fig. 1.

The local view is described by an operator, which is a graph
update rule applied to an active node in the graph (some
algorithms have active edges). Each operator application,
called an activity or action, reads and writes a small region of
the graph around the active node, called the neighborhood
of that activity. Fig. 1 shows active nodes as filled dots,
and neighborhoods as clouds surrounding active nodes, for

∗Contributed equally to this paper
†Now at the University of Rochester, sree@cs.rochester.edu
‡ Research supported by NSF grants 1337281, 1406355, and 1618425, and

by DARPA contracts FA8750-16-2-0004 and FA8650-15-C-7563.

a generic algorithm. An active node becomes inactive once
the activity is completed. In general, operators can modify the
graph structure of the neighborhood by adding and removing
nodes and edges (these are called morph operators). In most
graph analytic applications, operators only update labels on
nodes and edges, without changing the graph structure. These
are called label computation operators.

The global view of a graph algorithm is captured by the
location of active nodes and the order in which activities must
appear to be performed. Topology-driven algorithms make a
number of sweeps over the graph until some convergence
criterion is met, e.g., the Bellman-Ford SSSP algorithm. Data-
driven algorithms begin with an initial set of active nodes,
and other nodes may become active on the fly when activities
are executed. They terminate when there are no more active
nodes. Dijkstra’s SSSP algorithm is a data-driven algorithm.
The second dimension of the global view of algorithms is
ordering [4]. Most graph analytic algorithms are unordered
algorithms in which activities can be performed in any order
without violating program semantics, although some orders
may be more efficient than others.

Parallelism can be exploited by processing active nodes
in parallel, subject to neighborhood and ordering constraints.
The resulting parallelism is called amorphous data-parallelism,
and it is a generalization of the standard notion of data-
parallelism [10].

B. Galois and IrGL systems

The Galois system is an implementation of this data-
centric programming model1. Application programmers write
programs in sequential C++, using certain programming pat-
terns to highlight opportunities for exploiting amorphous data-
parallelism. The Galois system provides a library of concurrent
data structures, such as parallel graph and work-list imple-
mentations, and a runtime system; the data structures and
runtime system ensure that each activity appears to execute
atomically. The Galois system has been used to implement
parallel programs for many problem domains including finite-
element simulations, n-body methods, graph analytics, intru-
sion detection in networks and FPGA tools [6]. The IrGL com-
piler translates Galois programs into CUDA code, applying a
number of GPU-specific optimizations while lowering code to
CUDA [9].

1A more detailed description of the implementation of the Galois system
can be found in our previous papers such as [8].

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

In the implementations of triangle-counting and k-truss
detection described in this paper, we assume that input graphs
are symmetric, have no self-loops and have no duplicated
edges. We represent input graphs in compressed sparse row
(CSR) format which uses two arrays – one for adjacency lists
and another to index into the adjacency list array by node.
Instead of removing edges physically, we track edge removals
in a separate boolean array. For k-truss, arrays also track node
removals and effective degree as edges are removed.

Shao et al. [14] also use a graph-centric approach for k-truss
identification in a distributed memory setting. They partition
a given graph among hosts with each host responsible for its
partition. Their focus is on how to exchange edge removals
among hosts efficiently.

C. Algorithms based on linear algebra primitives

Graph algorithms can also be formulated in terms of linear
algebra primitives [12]. The basic idea is to represent graphs
using their incidence or adjacency matrices, and formulate
algorithms using bulk-style operations like sparse matrix-
vector or matrix-matrix multiplication. For example, topology-
driven/data-driven vertex programs [6] can be formulated
using the product of a sparse-matrix and a dense/sparse vector
respectively, where the vector represents the labels of active
nodes in a given round.

Triangles can be counted in a graph by using an over-
loaded matrix-matrix multiplication on adjacency and inci-
dence matrices for the graph, as in miniTri [15]. Regular and
Hadamard matrix-matrix multiplication are also used to count
triangles [2]. A k-truss identification algorithm using regular
matrix-matrix multiplication and other matrix operations is
demonstrated in Samsi et al. [12].

While vertex programs can be formulated naturally in
terms of matrix operations, it is non-trivial to formulate more
complex graph algorithms such as triangle-counting and k-
truss detection in terms of matrix operations. In addition, our
graph-centric implementations rely on certain key optimization
such as sorting of edge-lists, early termination of operators,
and symmetry-breaking to avoid excess work, as described
in later sections. These are difficult to implement in matrix-
based formulations, leading to implementations that are orders
of magnitude slower than ours.

II. TRIANGLE COUNTING

Triangle counting can be performed by iterating over the
edges of the graph, and for each edge (u, v), checking if nodes
u and v have a common neighbor w; if so, nodes u, v, w form
a triangle. The common neighbors of nodes u and v can be
determined by intersecting the edge lists of u and v. Finding
the intersection of sets of size p and q can take time O(p∗q),
but if the sets are sorted, the intersection can be done in time
O(p+q) [13]. To avoid repeated counting of triangles, we can
increment the count only for an edge (u, v) and a common
neighbor w of u and v where u<w<v. Work can be further
reduced by symmetry breaking: triangles are counted using

only those edges (u, v) where the degree of u is lower than
the degree of v.

Algorithm 1 Edge list Intersection

Input: U, V : sorted edge lists for nodes u and v
Output: Count of nodes appearing in U ∩ V

1: procedure INTERSECT(U , V)
2: i← 0; j ← 0
3: while i < |U | and j < |V | do
4: d← U [i]− V [j]
5: if d = 0 then
6: count++; i++; j ++
7: else if d < 0 then
8: i++
9: else if d > 0 then

10: j ++
11: end if
12: end while
13: return count
14: end procedure

In terms of the operator formulation, this approach to
triangle counting is a topology-driven algorithm in which the
active elements are edges. The operator implements edge list
intersection.

In a parallel implementation, edges are partitioned between
threads. Each thread keeps a local count of triangles for the
edges it is responsible for, and these local counts are added at
the end.

A. CPU Implementation

Our CPU implementation uses the triangle counting from
Galois Lonestar [5]. First, threads cooperatively create a work-
list that contains all edges (u, v), where u<v.

Threads then claim work from the work list, preferring work
generated by themselves. Edge list intersection terminates as
soon as one of the two edge lists reaches its end. This enables
early termination for the edge operator. In contrast, triangle
counting using matrix algebra needs to multiply matrices in
full [12], which can be inefficient.

B. GPU Implementation

GPU triangle counting implements the approach from Polak
[11] in IrGL [9]. First, a filtering step removes edges that
point from nodes of a higher degree to those of lower degree,
breaking ties by using node identifiers. The remaining edges
are the active edges. Then, an efficient segmented sort from
ModernGPU [1] is used to sort the edge lists of each node.
Finally, the edge lists of edges remaining from the first step
are intersected to determine the count of triangles.

To avoid the use of a separate work-list of edges, the
IrGL implementation sorts edges so that active edges precede
inactive edges in the edge lists of each node. The computation
is then initially parallelized over the nodes, and IrGL’s nested
parallelism optimization is used to dynamically parallelize
execution over edges at runtime.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

III. K-TRUSS COMPUTATION

Our DirectTruss algorithm works in rounds. In each round,
we compute the number of triangles that an edge e participates
in, which we term as the support of that edge e. If the support
of e is less than k−2, it cannot be part of the k-truss and is
removed from the graph. Removing e necessitates recomputing
the support of other edges that may have participated in
triangles containing e. The algorithm terminates when no
edges are removed in a round.

Unlike triangle counting, where symmetry permits only
one edge of a triangle to be processed, k-truss identification
requires that support be computed for all edges that may
be part of the same triangle. Counting the support of only
one edge would not reveal the support of the other edges
of the triangle since they could be part of other triangles.
However, although edge list intersection is used for computing
the support for an edge, k-truss does not really require the
exact count of triangles on an edge—it only needs to know
if there are at least k−2 triangles containing that edge. Thus,
intersection can be terminated as soon as this is determined.

Work can also potentially be reduced by using an obser-
vation from Cohen [3]: a k-truss is always a (k−1)-core
which is a graph where each node has at least k−1 neighbors.
Computing the (k−1)-core can eliminate a large number of
nodes and the edges connected to them from consideration,
reducing the number of edge list intersections. Computing the
k-truss on the resultant graph may be potentially faster. We
call this CoreThenTruss algorithm. To compute a (k−1)-core,
we use the DirectCore algorithm that removes all nodes v if
deg(v) < k−1 iteratively in rounds. The DirectCore algorithm
terminates when no nodes are removed in a round.

Algorithm 2 summarizes the above algorithms. Since both
DirectTruss and CoreThenTruss algorithms need edge list
intersection to compute edge support, we sort edge lists for
all nodes before actual k-truss computation. We use an array
of size |E| to track if an edge is removed.

A. CPU Implementation

We implement both DirectTruss and CoreThenTruss algo-
rithms in Galois [10]. Since CoreThenTruss algorithm is built
from DirectTruss and DirectCore algorithms, we will present
the latter two in operator formulation. The node removals in
line 16 of Algorithm 2 are skipped, because they are done
through removing all their edges by the edge operator shown
in line 9 to 13 in Algorithm 2. We report the resulting k-
truss edge by edge and keep track of involved nodes during
the process, so correctness remains unaffected. For better
performance, we consider only edges (u, v), where u<v, to
halve the work. In this case, removal of edge (u, v) will
remove both (u, v) and (v, u).

We reason about correctness of DirectTruss parallelization
as follows. Consistency is preserved: an edge (u, v), where
u<v, can only remove (u, v) and (v, u), and the barrier
between rounds ensures that edge removals in round r are
visible before round r+1 begins. Termination upon no edge
removal in a round is guaranteed: Since removed edges are

Algorithm 2 K-Truss Computation

Input: G = (V,E), an undirected graph; k, the truss number
to consider.

Output: All edges belonging to k-truss of G.
1: procedure ISEDGESUPPORTGEQK(E, e, k)
2: return |{v|(e.src, v) ∈ E ∧ (e.dst, v) ∈ E}| ≥ k
3: end procedure
4: procedure DIRECTTRUSS(G, k)
5: Wnext ← E; Wcurrent ← ∅
6: while Wcurrent 6= Wnext do
7: Wcurrent ←Wnext; Wnext ← ∅
8: for all e ∈Wcurrent do
9: if ISEDGESUPPORTGEQK(E,e,k−2) then

10: Wnext ←Wnext ∪ {e}
11: else
12: E ← E − {e}
13: end if
14: end for
15: end while
16: V ← {v|v ∈ V ∧ deg(v) > 0}
17: return G
18: end procedure
19: procedure DIRECTCORE(G, k)
20: Wnext ← V ; Wcurrent ← ∅
21: while Wcurrent 6= Wnext do
22: Wcurrent ←Wnext; Wnext ← ∅
23: for all v ∈Wcurrent do
24: if deg(v) < k then
25: V ← V − {v}
26: else
27: Wnext ←Wnext ∪ {v}
28: end if
29: end for
30: end while
31: return G
32: end procedure
33: procedure CORETHENTRUSS(G, k)
34: G′ ← DIRECTCORE(G, k−1)
35: return DIRECTTRUSS(G′,k)
36: end procedure

never added back to the graph, the remaining edges’ supports
will never increase as the rounds progress. When DirectTruss
terminates, each remaining edge has its support ≥ k−2.
Hence, DirectTruss computes a k-truss for the graph correctly.

The DirectCore algorithm also maps well to the operator
formulation. A node operator is indicated by line 24 to 28
in Algorithm 2 to track degree and node removal. Node v
removes itself by removing edges (v, n) and (n, v) for each
v’s neighbor n. The degree check for v can stop once we know
that deg(v) ≥ k when computing for k-core. This enables
early termination of the node operator.

The correctness of our DirectCore parallelization can be
argued similarly to that for DirectTruss. There are only two

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

differences. First, the node operator applied on node v checks
for deg(v) ≥ k in k-core computation. Second, if neighboring
nodes v and n both get removed in a round, they can mark
edges (v, n) and (n, v) as removed concurrently, since an edge
is removed no matter how many times it is marked.

Our implementations work as in Gauss–Seidel iterative
algorithms. If an edge is removed once the edge or one of
its endpoints deems so, the other nodes or edges may see
the edge removal in the same round. Therefore, other edge
removals may happen earlier, which speeds up the convergence
of both DirectTruss and DirectCore algorithms. Matrix-based
approaches, on the other hand, usually perform edge removals
separately [12], as in Jacobi iterative algorithms.

B. GPU Implementation

We implement the iterative CoreThenTruss algorithm on
GPU making several modifications to our approach from
triangle counting to improve performance.

First, we choose to work directly on edges, instead of on
nodes. This flattens the parallelism completely with the cost
amortized over multiple iterations. A separate array tracks the
degree of each node. This is decremented every time a node’s
edge is removed for lack of support. Another array tracks if an
edge is valid which is used to ignore edges when computing
the intersection of edge lists.

Valid edges are tracked at all times on an IrGL worklist.
Our GPU implementation begins by iteratively removing all
edges whose end points have a degree less than k−1 from
the worklist. It then computes the support of remaining edges,
removing edges that lack support immediately.

However, unlike the CPU, we interleave computing the
support of each edge with removing edges whose end points
have a degree less than k−1. Since removing edges by
examining their end points is cheaper than removing edges by
computing support, this interleaving strategy may be faster.

IV. RESULTS

We use the GraphChallenge input graphs from SNAP [7] as
well as the synthetic datasets based on Graph500. We augment
this dataset with very large “community” datasets [7]. Apart
from three road networks, all inputs are power-law graphs
(Table I). Our GPU experiments used a Pascal-based NVIDIA
GTX 1080 with 8GB of memory while our CPU experiments
used a Broadwell-EP Xeon E5-2650 v4 running at 2.2GHz
with a 30MB LLC and 192GB RAM. Our machine contains
two processors with 12 cores each, therefore we present results
for 1, 12 and 24 threads.

GPU code was compiled using NVCC 8.0. CPU code used
GCC 4.9. The serial baseline for triangle counting is mini-
Tri [15] implemented in C++. We compare to the reference
serial Julia implementation of k-truss run using Julia 0.60.2

CPU Energy statistics are gathered using the Intel RAPL
counters available through the Linux powercap interface on our
Broadwell-EP processor. The nvprof systemwide profiling

2The reference Python version produced incorrect results for k > 3

TABLE I: Datasets used in experiments. Size is in bytes.

Graph Name |V | |E| Size
amazon* 262111–410236 899792–2443408 16M-41M
as20000102 6474 12572 248K
as-caida20071105 26475 53381 1.1M
ca-AstroPh 18772 198050 3.2M
ca-CondMat 23133 93439 1.7M
ca-GrQc 5242 14484 268K
ca-HepPh 12008 118489 2.0M
ca-HepTh 9877 25973 484K
cit-HepPh 34546 420877 6.7M
cit-HepTh 27770 352285 5.6M
cit-Patents 3774768 16518947 281M
com-amazon 548552 925872 19M
com-dblp 425957 1049866 20M
com-friendster 124836180 1806067135 28G
com-lj 4036538 34681189 560M
com-orkut 3072627 117185083 1.8G
com-youtube 1157828 2987624 55M
email-Enron 36692 183831 3.1M
email-EuAll 265214 364481 7.6M
facebook combined 4039 88234 1.4M
flickrEdges 105938 2316948 37M
graph500-scale18-ef16 174147 3800348 60M
graph500-scale19-ef16 335318 7729675 121M
graph500-scale20-ef16 645820 15680861 245M
graph500-scale21-ef16 1243072 31731650 494M
graph500-scale22-ef16 2393285 64097004 997M
graph500-scale23-ef16 4606314 129250705 2.0G
graph500-scale24-ef16 8860450 260261843 4.0G
loc-brightkite edges 58228 214078 3.8M
loc-gowalla edges 196591 950327 17M
oregon1* 10670–11174 21999–23409 428K-456K
oregon2* 10900–11461 30855–32730 568K-604K
p2p-Gnutella0* 6301–10876 20777–39994 376K-712K
p2p-Gnutella2* 22687–26518 54705–65369 1.1M-1.3M
p2p-Gnutella30 36682 88328 1.7M
p2p-Gnutella31 62586 147892 2.8M
roadNet-CA 1965206 2766607 58M
roadNet-PA 1088092 1541898 32M
roadNet-TX 1379917 1921660 40M
soc-Epinions1 75879 405740 6.8M
soc-Slashdot0811 77360 469180 7.8M
soc-Slashdot0902 82168 504230 8.4M

mode is used to sample GPU power statistics which are
integrated over the entire run to obtain energy. We measure
energy for complete executions, and not just for computation.
When reporting energy for the GPU, we exclude CPU energy
for the host part of the program.

Memory usage is measured for the GPU using the
cudaMemGetInfo interface, once at the beginning of the
program and again immediately after the computation ends,
but before deallocation. Memory usage for CPU is collected
from Galois’s internal memory allocator which tracks OS
memory allocations during program runs. For miniTri, glibc’s
malloc_stats is used to report the total in use size. Julia’s
@time macro is used to track memory allocated.

Our runtimes include end-to-end calculation time after the
graph is loaded and before the results are printed. All results
were verified by comparing to the benchmark code when
possible and by checking that the output satisfied the triangle
and k-truss properties. Some results are missing because all
benchmarks were limited to a maximum of 4800 seconds or

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

because the graphs did not fit into GPU memory.
In our results, we report edge rate (edges processed per sec-

ond), edge rate per energy (edges/second/Joule), and memory
usage (bytes) for all benchmarks. Rate is calculated as number
of (undirected) edges in the graph divided by the runtime of
the computation. In all the figures, input graphs are ordered
by increasing number of edges.

All CPU metrics are reported as cpu-N with N being one of
1, 12 or 24 threads. By default, our GPU metrics (gpu) include
time for data transfer and GPU memory allocation since our
implementations currently use the blocking versions of these
APIs which may consume significant time for small graphs.
We also present results that exclude time for data transfers and
memory allocations as gpu-nomem. Metrics for the reference
implementations are reported as miniTri and julia.

A. Results for Triangle Counting

Fig. 2 shows the edge processing rate (edges/second) for
triangle counting on all our input graphs. Across all inputs,
our implementations are 19x (cpu-01) to 22081x (gpu) faster
than miniTri. Among our implementations, cpu-12 is fastest
for smaller inputs (up to p2p-gnutella04) but is outperformed
by cpu-24 for the rest of the inputs. The single-threaded cpu-
01 is only competitive for very small inputs. The GPU (gpu)
only outperforms the CPU for inputs larger than cit-HepTh,
with rates up to 8x better than the CPU.

If data transfer time is ignored, the GPU (gpu-nomem)
outperforms all the other variants on all the inputs. Since
reading the graph from disk usually takes much longer than
transferring it to GPU, techniques such asynchronous memory
transfers to the GPU should be used to hide data transfer
latency if data transfer times are significant.

For our implementations, the processing rates depend on the
number of edges in the input graph. It is relatively constant
regardless of the number of threads until the input has more
than 50K edges. At this point, the multi-threaded versions can
deliver up to 10x the rate of cpu-01. This indicates that the
amount of parallelism is limited by the input size, and explains
why cpu-12 has better processing rates than cpu-24 for small
inputs. Surprisingly, the processing rates drop sharply below
that of the small inputs for large inputs with more than 3M
edges. This is particularly noticeable in the graph500 synthetic
inputs, but is also visible in the large community inputs. Since
the performance drops across devices, it is likely to be a
characteristic of the input graph, but we do not understand
this behavior yet.

Fig. 3 presents the edge processing rate (edges/second) per
unit energy (Joule). All our implementations again deliver
3.85x to 121534900x edge processing rates for a single unit of
energy compared to miniTri. On this performance per energy
metric, our GPU implementation outperforms all our CPU
variants – it provides 10x the processing rate per unit energy
for small inputs and can be up to 100x faster for the same
energy on larger inputs.

Finally, Fig. 4 details the memory usage in bytes for
all the implementations. Our GPU implementation uses the

a
s2

0
0

0
0

1
0

2
ca

-G
rQ

c
p
2

p
-G

n
u
te

lla
0

8
o
re

g
o
n
1

_0
1

0
4

0
7

o
re

g
o
n
1

_0
1

0
3

3
1

o
re

g
o
n
1

_0
1

0
4

1
4

o
re

g
o
n
1

_0
1

0
4

2
8

o
re

g
o
n
1

_0
1

0
5

0
5

o
re

g
o
n
1

_0
1

0
5

1
2

o
re

g
o
n
1

_0
1

0
5

1
9

o
re

g
o
n
1

_0
1

0
4

2
1

o
re

g
o
n
1

_0
1

0
5

2
6

ca
-H

e
p
T
h

p
2

p
-G

n
u
te

lla
0

9
o
re

g
o
n
2

_0
1

0
4

0
7

o
re

g
o
n
2

_0
1

0
5

0
5

o
re

g
o
n
2

_0
1

0
3

3
1

o
re

g
o
n
2

_0
1

0
5

1
2

o
re

g
o
n
2

_0
1

0
4

2
8

p
2

p
-G

n
u
te

lla
0

6
o
re

g
o
n
2

_0
1

0
4

2
1

o
re

g
o
n
2

_0
1

0
4

1
4

p
2

p
-G

n
u
te

lla
0

5
o
re

g
o
n
2

_0
1

0
5

1
9

o
re

g
o
n
2

_0
1

0
5

2
6

p
2

p
-G

n
u
te

lla
0

4
a
s-

ca
id

a
2

0
0

7
1

1
0

5
p
2

p
-G

n
u
te

lla
2

5
p
2

p
-G

n
u
te

lla
2

4
fa

ce
b
o
o
k
_c

o
m

b
in

e
d

p
2

p
-G

n
u
te

lla
3

0
ca

-C
o
n
d
M

a
t

ca
-H

e
p
P
h

p
2

p
-G

n
u
te

lla
3

1
e
m

a
il-

E
n
ro

n
ca

-A
st

ro
P
h

lo
c-

b
ri

g
h
tk

it
e
_e

d
g
e
s

ci
t-

H
e
p
T
h

e
m

a
il-

E
u
A

ll
so

c-
E
p
in

io
n
s1

ci
t-

H
e
p
P
h

so
c-

S
la

sh
d
o
t0

8
1

1
rm

a
t1

6
.t

ri
so

c-
S
la

sh
d
o
t0

9
0

2
a
m

a
zo

n
0

3
0

2
co

m
-a

m
a
zo

n
lo

c-
g
o
w

a
lla

_e
d
g
e
s

co
m

-d
b
lp

ro
a
d
N

e
t-

P
A

ro
a
d
N

e
t-

T
X

fl
ic

k
rE

d
g
e
s

a
m

a
zo

n
0

3
1

2
a
m

a
zo

n
0

5
0

5
a
m

a
zo

n
0

6
0

1
ro

a
d
N

e
t-

C
A

co
m

-y
o
u
tu

b
e

g
ra

p
h
5

0
0

-s
ca

le
1

8
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
1

9
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

0
-e

f1
6

ci
t-

P
a
te

n
ts

g
ra

p
h
5

0
0

-s
ca

le
2

1
-e

f1
6

co
m

-l
j

g
ra

p
h
5

0
0

-s
ca

le
2

2
-e

f1
6

co
m

-o
rk

u
t

g
ra

p
h
5

0
0

-s
ca

le
2

3
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

4
-e

f1
6

co
m

-f
ri

e
n
d
st

e
r

Input

103

104

105

106

107

108

109

R
a
te

 (
E
d
g
e
s/

S
e
co

n
d
)

cpu-01

cpu-12

cpu-24

gpu

gpu-nomem

minitri

Fig. 2: Triangle Edge Rate (edges/s). Higher is Better.

a
s2

0
0

0
0

1
0

2
ca

-G
rQ

c
p
2

p
-G

n
u
te

lla
0

8
o
re

g
o
n
1

_0
1

0
4

0
7

o
re

g
o
n
1

_0
1

0
3

3
1

o
re

g
o
n
1

_0
1

0
4

1
4

o
re

g
o
n
1

_0
1

0
4

2
8

o
re

g
o
n
1

_0
1

0
5

0
5

o
re

g
o
n
1

_0
1

0
5

1
2

o
re

g
o
n
1

_0
1

0
5

1
9

o
re

g
o
n
1

_0
1

0
4

2
1

o
re

g
o
n
1

_0
1

0
5

2
6

ca
-H

e
p
T
h

p
2

p
-G

n
u
te

lla
0

9
o
re

g
o
n
2

_0
1

0
4

0
7

o
re

g
o
n
2

_0
1

0
5

0
5

o
re

g
o
n
2

_0
1

0
3

3
1

o
re

g
o
n
2

_0
1

0
5

1
2

o
re

g
o
n
2

_0
1

0
4

2
8

p
2

p
-G

n
u
te

lla
0

6
o
re

g
o
n
2

_0
1

0
4

2
1

o
re

g
o
n
2

_0
1

0
4

1
4

p
2

p
-G

n
u
te

lla
0

5
o
re

g
o
n
2

_0
1

0
5

1
9

o
re

g
o
n
2

_0
1

0
5

2
6

p
2

p
-G

n
u
te

lla
0

4
a
s-

ca
id

a
2

0
0

7
1

1
0

5
p
2

p
-G

n
u
te

lla
2

5
p
2

p
-G

n
u
te

lla
2

4
fa

ce
b
o
o
k
_c

o
m

b
in

e
d

p
2

p
-G

n
u
te

lla
3

0
ca

-C
o
n
d
M

a
t

ca
-H

e
p
P
h

p
2

p
-G

n
u
te

lla
3

1
e
m

a
il-

E
n
ro

n
ca

-A
st

ro
P
h

lo
c-

b
ri

g
h
tk

it
e
_e

d
g
e
s

ci
t-

H
e
p
T
h

e
m

a
il-

E
u
A

ll
so

c-
E
p
in

io
n
s1

ci
t-

H
e
p
P
h

so
c-

S
la

sh
d
o
t0

8
1

1
rm

a
t1

6
.t

ri
so

c-
S
la

sh
d
o
t0

9
0

2
a
m

a
zo

n
0

3
0

2
co

m
-a

m
a
zo

n
lo

c-
g
o
w

a
lla

_e
d
g
e
s

co
m

-d
b
lp

ro
a
d
N

e
t-

P
A

ro
a
d
N

e
t-

T
X

fl
ic

k
rE

d
g
e
s

a
m

a
zo

n
0

3
1

2
a
m

a
zo

n
0

5
0

5
a
m

a
zo

n
0

6
0

1
ro

a
d
N

e
t-

C
A

co
m

-y
o
u
tu

b
e

g
ra

p
h
5

0
0

-s
ca

le
1

8
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
1

9
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

0
-e

f1
6

ci
t-

P
a
te

n
ts

g
ra

p
h
5

0
0

-s
ca

le
2

1
-e

f1
6

co
m

-l
j

g
ra

p
h
5

0
0

-s
ca

le
2

2
-e

f1
6

co
m

-o
rk

u
t

g
ra

p
h
5

0
0

-s
ca

le
2

3
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

4
-e

f1
6

co
m

-f
ri

e
n
d
st

e
r

Input

10-2

10-1

100

101

102

103

104

105

106

107

108

R
a
te

 p
e
r

E
n
e
rg

y
 (

(E
d
g
e
s/

S
e
co

n
d
)/

Jo
u
le

)

cpu-01

cpu-12

cpu-24

gpu

gpu-nomem

minitri

Fig. 3: Triangle Rate per Unit Energy (edges/s/J). Higher is
Better.

a
s2

0
0

0
0

1
0

2
ca

-G
rQ

c
p
2

p
-G

n
u
te

lla
0

8
o
re

g
o
n
1

_0
1

0
4

0
7

o
re

g
o
n
1

_0
1

0
3

3
1

o
re

g
o
n
1

_0
1

0
4

1
4

o
re

g
o
n
1

_0
1

0
4

2
8

o
re

g
o
n
1

_0
1

0
5

0
5

o
re

g
o
n
1

_0
1

0
5

1
2

o
re

g
o
n
1

_0
1

0
5

1
9

o
re

g
o
n
1

_0
1

0
4

2
1

o
re

g
o
n
1

_0
1

0
5

2
6

ca
-H

e
p
T
h

p
2

p
-G

n
u
te

lla
0

9
o
re

g
o
n
2

_0
1

0
4

0
7

o
re

g
o
n
2

_0
1

0
5

0
5

o
re

g
o
n
2

_0
1

0
3

3
1

o
re

g
o
n
2

_0
1

0
5

1
2

o
re

g
o
n
2

_0
1

0
4

2
8

p
2

p
-G

n
u
te

lla
0

6
o
re

g
o
n
2

_0
1

0
4

2
1

o
re

g
o
n
2

_0
1

0
4

1
4

p
2

p
-G

n
u
te

lla
0

5
o
re

g
o
n
2

_0
1

0
5

1
9

o
re

g
o
n
2

_0
1

0
5

2
6

p
2

p
-G

n
u
te

lla
0

4
a
s-

ca
id

a
2

0
0

7
1

1
0

5
p
2

p
-G

n
u
te

lla
2

5
p
2

p
-G

n
u
te

lla
2

4
fa

ce
b
o
o
k
_c

o
m

b
in

e
d

p
2

p
-G

n
u
te

lla
3

0
ca

-C
o
n
d
M

a
t

ca
-H

e
p
P
h

p
2

p
-G

n
u
te

lla
3

1
e
m

a
il-

E
n
ro

n
ca

-A
st

ro
P
h

lo
c-

b
ri

g
h
tk

it
e
_e

d
g
e
s

ci
t-

H
e
p
T
h

e
m

a
il-

E
u
A

ll
so

c-
E
p
in

io
n
s1

ci
t-

H
e
p
P
h

so
c-

S
la

sh
d
o
t0

8
1

1
rm

a
t1

6
.t

ri
so

c-
S
la

sh
d
o
t0

9
0

2
a
m

a
zo

n
0

3
0

2
co

m
-a

m
a
zo

n
lo

c-
g
o
w

a
lla

_e
d
g
e
s

co
m

-d
b
lp

ro
a
d
N

e
t-

P
A

ro
a
d
N

e
t-

T
X

fl
ic

k
rE

d
g
e
s

a
m

a
zo

n
0

3
1

2
a
m

a
zo

n
0

5
0

5
a
m

a
zo

n
0

6
0

1
ro

a
d
N

e
t-

C
A

co
m

-y
o
u
tu

b
e

g
ra

p
h
5

0
0

-s
ca

le
1

8
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
1

9
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

0
-e

f1
6

ci
t-

P
a
te

n
ts

g
ra

p
h
5

0
0

-s
ca

le
2

1
-e

f1
6

co
m

-l
j

g
ra

p
h
5

0
0

-s
ca

le
2

2
-e

f1
6

co
m

-o
rk

u
t

g
ra

p
h
5

0
0

-s
ca

le
2

3
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

4
-e

f1
6

co
m

-f
ri

e
n
d
st

e
r

Input

106

107

108

109

1010

1011

1012

M
e
m

o
ry

 U
sa

g
e
 (

B
y
te

s)

cpu-01

cpu-12

cpu-24

gpu

gpu-nomem

minitri

Fig. 4: Triangle Memory (Bytes). Lower is Better.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

least memory among all our implementations. All our CPU
implementations suffer a constant memory overhead per thread
for small graphs, thus cpu-24 consumes twice the memory of
cpu-12. Depending on the device, input graph size becomes
the dominant factor for memory consumption around the p2p-
gnutella30 input. Unlike other implementations that only count
triangles, miniTri needs to store the actual triangles in its result
matrix [15]. Since the number of triangles is much larger than
edges for the largest inputs, miniTri uses the most memory for
the largest inputs.

B. Results for K-Truss Computation
Fig. 5 shows the edge processing rate (edges/second). In

general, our implementations are at least 66x faster than julia
and can be up to 34811x faster. K-truss in julia slows down
for graphs with more than 150K edges.

Like for triangles, the CPU DirectTruss implementations
start out at around 1M edges/second. This increases to 20M
edges/second for the larger inputs before rates reduce sharply
for the largest inputs with more than 3M edges. The perfor-
mance of the GPU implementations closely matches the better
of cpu-12 or cpu-24 for most of the graphs, but is slower than
the CPU for the graph500 synthetic graphs. Again, if data
transfer times did not matter, the gpu-nomem implementation
would outperform the CPU implementations.

The CPU CoreThenTruss implementation is 2x faster than
DirectTruss for graphs larger than com-youtube but 2x slower
for all other graphs, so it is not presented.

Fig. 6 presents the edge processing rate (edges/second) per
unit energy (Joule). Our CPU implementation deliver 14257x
(geomean) the processing rate for the same amount of energy
compared to julia while our GPU implementations deliver
203798x (geomean). Our GPU implementation is also 10x
faster than our CPU implementation for the same amount of
energy for graphs of up to 3M edges except for Graph500
graphs, where the poor performance also leads to a poor rate
per energy.

Fig. 7 shows memory usage in bytes. The julia imple-
mentation consumes memory rapaciously, utilizing tens to
hundreds of gigabytes even when then are only four graphs
that are larger than a gigabyte (see Table I). Julia is a
managed language and its garbage collector is unable to
efficiently utilize memory. In contrast, all our implementations
use manual memory management. Memory usage for GPU k-
truss is significantly higher than that for GPU triangles since it
uses additional auxiliary structures to track active edges, node
degrees, mirror edges, etc. The GPU consumes more memory
than the CPU for inputs having more than 2M edges.

V. CONCLUSION

Our use of graph-centric methods for triangle counting and
k-truss identification permits several optimizations that are
difficult when using matrix algebra techniques. Our implemen-
tations, both on the CPU and GPU, therefore deliver multiple
orders of magnitude improvement across all metrics – rate,
rate per energy and memory usage – when compared to the
reference GraphChallenge code.

a
s2

0
0

0
0

1
0

2
ca

-G
rQ

c
p
2

p
-G

n
u
te

lla
0

8
o
re

g
o
n
1

_0
1

0
4

0
7

o
re

g
o
n
1

_0
1

0
3

3
1

o
re

g
o
n
1

_0
1

0
4

1
4

o
re

g
o
n
1

_0
1

0
4

2
8

o
re

g
o
n
1

_0
1

0
5

0
5

o
re

g
o
n
1

_0
1

0
5

1
2

o
re

g
o
n
1

_0
1

0
5

1
9

o
re

g
o
n
1

_0
1

0
4

2
1

o
re

g
o
n
1

_0
1

0
5

2
6

ca
-H

e
p
T
h

p
2

p
-G

n
u
te

lla
0

9
o
re

g
o
n
2

_0
1

0
4

0
7

o
re

g
o
n
2

_0
1

0
5

0
5

o
re

g
o
n
2

_0
1

0
3

3
1

o
re

g
o
n
2

_0
1

0
5

1
2

o
re

g
o
n
2

_0
1

0
4

2
8

p
2

p
-G

n
u
te

lla
0

6
o
re

g
o
n
2

_0
1

0
4

2
1

o
re

g
o
n
2

_0
1

0
4

1
4

p
2

p
-G

n
u
te

lla
0

5
o
re

g
o
n
2

_0
1

0
5

1
9

o
re

g
o
n
2

_0
1

0
5

2
6

p
2

p
-G

n
u
te

lla
0

4
a
s-

ca
id

a
2

0
0

7
1

1
0

5
p
2

p
-G

n
u
te

lla
2

5
p
2

p
-G

n
u
te

lla
2

4
fa

ce
b
o
o
k
_c

o
m

b
in

e
d

p
2

p
-G

n
u
te

lla
3

0
ca

-C
o
n
d
M

a
t

ca
-H

e
p
P
h

p
2

p
-G

n
u
te

lla
3

1
e
m

a
il-

E
n
ro

n
ca

-A
st

ro
P
h

lo
c-

b
ri

g
h
tk

it
e
_e

d
g
e
s

ci
t-

H
e
p
T
h

e
m

a
il-

E
u
A

ll
so

c-
E
p
in

io
n
s1

ci
t-

H
e
p
P
h

so
c-

S
la

sh
d
o
t0

8
1

1
so

c-
S
la

sh
d
o
t0

9
0

2
a
m

a
zo

n
0

3
0

2
co

m
-a

m
a
zo

n
lo

c-
g
o
w

a
lla

_e
d
g
e
s

co
m

-d
b
lp

ro
a
d
N

e
t-

P
A

ro
a
d
N

e
t-

T
X

fl
ic

k
rE

d
g
e
s

a
m

a
zo

n
0

3
1

2
a
m

a
zo

n
0

5
0

5
a
m

a
zo

n
0

6
0

1
ro

a
d
N

e
t-

C
A

co
m

-y
o
u
tu

b
e

g
ra

p
h
5

0
0

-s
ca

le
1

8
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
1

9
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

0
-e

f1
6

ci
t-

P
a
te

n
ts

g
ra

p
h
5

0
0

-s
ca

le
2

1
-e

f1
6

co
m

-l
j

g
ra

p
h
5

0
0

-s
ca

le
2

2
-e

f1
6

co
m

-o
rk

u
t

g
ra

p
h
5

0
0

-s
ca

le
2

3
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

4
-e

f1
6

co
m

-f
ri

e
n
d
st

e
r

Input

102

103

104

105

106

107

108

109

R
a
te

 (
E
d
g
e
s/

S
e
co

n
d
)

cpu-01

cpu-12

cpu-24

gpu

gpu-na

julia

Fig. 5: K-Truss Edge Rate (edges/s). Higher is better.

a
s2

0
0

0
0

1
0

2
ca

-G
rQ

c
p
2

p
-G

n
u
te

lla
0

8
o
re

g
o
n
1

_0
1

0
4

0
7

o
re

g
o
n
1

_0
1

0
3

3
1

o
re

g
o
n
1

_0
1

0
4

1
4

o
re

g
o
n
1

_0
1

0
4

2
8

o
re

g
o
n
1

_0
1

0
5

0
5

o
re

g
o
n
1

_0
1

0
5

1
2

o
re

g
o
n
1

_0
1

0
5

1
9

o
re

g
o
n
1

_0
1

0
4

2
1

o
re

g
o
n
1

_0
1

0
5

2
6

ca
-H

e
p
T
h

p
2

p
-G

n
u
te

lla
0

9
o
re

g
o
n
2

_0
1

0
4

0
7

o
re

g
o
n
2

_0
1

0
5

0
5

o
re

g
o
n
2

_0
1

0
3

3
1

o
re

g
o
n
2

_0
1

0
5

1
2

o
re

g
o
n
2

_0
1

0
4

2
8

p
2

p
-G

n
u
te

lla
0

6
o
re

g
o
n
2

_0
1

0
4

2
1

o
re

g
o
n
2

_0
1

0
4

1
4

p
2

p
-G

n
u
te

lla
0

5
o
re

g
o
n
2

_0
1

0
5

1
9

o
re

g
o
n
2

_0
1

0
5

2
6

p
2

p
-G

n
u
te

lla
0

4
a
s-

ca
id

a
2

0
0

7
1

1
0

5
p
2

p
-G

n
u
te

lla
2

5
p
2

p
-G

n
u
te

lla
2

4
fa

ce
b
o
o
k
_c

o
m

b
in

e
d

p
2

p
-G

n
u
te

lla
3

0
ca

-C
o
n
d
M

a
t

ca
-H

e
p
P
h

p
2

p
-G

n
u
te

lla
3

1
e
m

a
il-

E
n
ro

n
ca

-A
st

ro
P
h

lo
c-

b
ri

g
h
tk

it
e
_e

d
g
e
s

ci
t-

H
e
p
T
h

e
m

a
il-

E
u
A

ll
so

c-
E
p
in

io
n
s1

ci
t-

H
e
p
P
h

so
c-

S
la

sh
d
o
t0

8
1

1
so

c-
S
la

sh
d
o
t0

9
0

2
a
m

a
zo

n
0

3
0

2
co

m
-a

m
a
zo

n
lo

c-
g
o
w

a
lla

_e
d
g
e
s

co
m

-d
b
lp

ro
a
d
N

e
t-

P
A

ro
a
d
N

e
t-

T
X

fl
ic

k
rE

d
g
e
s

a
m

a
zo

n
0

3
1

2
a
m

a
zo

n
0

5
0

5
a
m

a
zo

n
0

6
0

1
ro

a
d
N

e
t-

C
A

co
m

-y
o
u
tu

b
e

g
ra

p
h
5

0
0

-s
ca

le
1

8
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
1

9
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

0
-e

f1
6

ci
t-

P
a
te

n
ts

g
ra

p
h
5

0
0

-s
ca

le
2

1
-e

f1
6

co
m

-l
j

g
ra

p
h
5

0
0

-s
ca

le
2

2
-e

f1
6

co
m

-o
rk

u
t

g
ra

p
h
5

0
0

-s
ca

le
2

3
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

4
-e

f1
6

co
m

-f
ri

e
n
d
st

e
r

Input

10-3

10-2

10-1

100

101

102

103

104

105

106

107

R
a
te

 p
e
r

E
n
e
rg

y
 (

(E
d
g
e
s/

S
e
co

n
d
)/

Jo
u
le

)

cpu-01

cpu-12

cpu-24

gpu

gpu-nomem

julia

Fig. 6: K-Truss Rate per Unit Energy (edges/s/J). Higher is
better.

a
s2

0
0

0
0

1
0

2
ca

-G
rQ

c
p
2

p
-G

n
u
te

lla
0

8
o
re

g
o
n
1

_0
1

0
4

0
7

o
re

g
o
n
1

_0
1

0
3

3
1

o
re

g
o
n
1

_0
1

0
4

1
4

o
re

g
o
n
1

_0
1

0
4

2
8

o
re

g
o
n
1

_0
1

0
5

0
5

o
re

g
o
n
1

_0
1

0
5

1
2

o
re

g
o
n
1

_0
1

0
5

1
9

o
re

g
o
n
1

_0
1

0
4

2
1

o
re

g
o
n
1

_0
1

0
5

2
6

ca
-H

e
p
T
h

p
2

p
-G

n
u
te

lla
0

9
o
re

g
o
n
2

_0
1

0
4

0
7

o
re

g
o
n
2

_0
1

0
5

0
5

o
re

g
o
n
2

_0
1

0
3

3
1

o
re

g
o
n
2

_0
1

0
5

1
2

o
re

g
o
n
2

_0
1

0
4

2
8

p
2

p
-G

n
u
te

lla
0

6
o
re

g
o
n
2

_0
1

0
4

2
1

o
re

g
o
n
2

_0
1

0
4

1
4

p
2

p
-G

n
u
te

lla
0

5
o
re

g
o
n
2

_0
1

0
5

1
9

o
re

g
o
n
2

_0
1

0
5

2
6

p
2

p
-G

n
u
te

lla
0

4
a
s-

ca
id

a
2

0
0

7
1

1
0

5
p
2

p
-G

n
u
te

lla
2

5
p
2

p
-G

n
u
te

lla
2

4
fa

ce
b
o
o
k
_c

o
m

b
in

e
d

p
2

p
-G

n
u
te

lla
3

0
ca

-C
o
n
d
M

a
t

ca
-H

e
p
P
h

p
2

p
-G

n
u
te

lla
3

1
e
m

a
il-

E
n
ro

n
ca

-A
st

ro
P
h

lo
c-

b
ri

g
h
tk

it
e
_e

d
g
e
s

ci
t-

H
e
p
T
h

e
m

a
il-

E
u
A

ll
so

c-
E
p
in

io
n
s1

ci
t-

H
e
p
P
h

so
c-

S
la

sh
d
o
t0

8
1

1
so

c-
S
la

sh
d
o
t0

9
0

2
a
m

a
zo

n
0

3
0

2
co

m
-a

m
a
zo

n
lo

c-
g
o
w

a
lla

_e
d
g
e
s

co
m

-d
b
lp

ro
a
d
N

e
t-

P
A

ro
a
d
N

e
t-

T
X

fl
ic

k
rE

d
g
e
s

a
m

a
zo

n
0

3
1

2
a
m

a
zo

n
0

5
0

5
a
m

a
zo

n
0

6
0

1
ro

a
d
N

e
t-

C
A

co
m

-y
o
u
tu

b
e

g
ra

p
h
5

0
0

-s
ca

le
1

8
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
1

9
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

0
-e

f1
6

ci
t-

P
a
te

n
ts

g
ra

p
h
5

0
0

-s
ca

le
2

1
-e

f1
6

co
m

-l
j

g
ra

p
h
5

0
0

-s
ca

le
2

2
-e

f1
6

co
m

-o
rk

u
t

g
ra

p
h
5

0
0

-s
ca

le
2

3
-e

f1
6

g
ra

p
h
5

0
0

-s
ca

le
2

4
-e

f1
6

co
m

-f
ri

e
n
d
st

e
r

Input

106

107

108

109

1010

1011

1012

M
e
m

o
ry

 U
sa

g
e
 (

B
y
te

s)

cpu-01

cpu-12

cpu-24

gpu

gpu-nomem

julia

Fig. 7: K-Truss Memory (Bytes). Lower is better.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

REFERENCES

[1] Sean Baxter. Moderngpu 1.0. https://github.com/
moderngpu/moderngpu, 2015.

[2] Paul Burkhardt. Graphing trillions of triangles. Informa-
tion Visualization, 16(3):157–166, 2016. doi: 10.1177/
1473871616666393.

[3] Jonathan Cohen. Trusses: Cohesive subgraphs for social
network analysis. In National Security Agency Technical
Report, 2008.

[4] Muhammad Amber Hassaan, Martin Burtscher, and Ke-
shav Pingali. Ordered vs unordered: a comparison of
parallelism and work-efficiency in irregular algorithms.
In Proceedings of the 16th ACM symposium on Prin-
ciples and practice of parallel programming, PPoPP
’11, pages 3–12, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0119-0. doi: http://doi.acm.org/10.
1145/1941553.1941557. URL http://iss.ices.utexas.edu/
Publications/Papers/ppopp016s-hassaan.pdf.

[5] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and
Keshav Pingali. Lonestar: A suite of parallel irregular
programs. In ISPASS ’09: IEEE International Sympo-
sium on Performance Analysis of Systems and Software,
2009. URL http://iss.ices.utexas.edu/Publications/Papers/
ispass2009.pdf.

[6] Andrew Lenharth, Donald Nguyen, and Keshav Pingali.
Parallel graph analytics. Commun. ACM, 59(5):78–87,
April 2016. ISSN 0001-0782. doi: 10.1145/2901919.
URL http://doi.acm.org/10.1145/2901919.

[7] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[8] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In

Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 456–
471, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-2388-8. doi: 10.1145/2517349.2522739. URL
http://doi.acm.org/10.1145/2517349.2522739.

[9] Sreepathi Pai and Keshav Pingali. A compiler for
throughput optimization of graph algorithms on gpus. In
OOPSLA 2016, pages 1–19, 2016. doi: 10.1145/2983990.
2984015.

[10] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin
Burtscher, Muhammad Amber Hassaan, Rashid Kaleem,
Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui.
The tao of parallelism in algorithms. In PLDI 2011,
pages 12–25, 2011. doi: 10.1145/1993498.1993501.

[11] Adam Polak. Counting triangles in large graphs on GPU.
In IPDPS Workshops 2016, pages 740–746, 2016. doi:
10.1109/IPDPSW.2016.108.

[12] Siddharth Samsi, Vijay Gadepally, Michael Hurley,
Michael Jones, Edward Kao, Sanjeev Mohindra, Paul
Monticciolo, Albert Reuther, Steven Smith, William
Song, Diane Staheli, and Jeremy Kepner. Static graph
challenge: Subgraph isomorphism. In IEEE HPEC, 2017.

[13] Thomas Schank. Algorithmic Aspects of Triangle-Based
Network Analysis. PhD thesis, Universität Karlsruhe,
2007.

[14] Yingxia Shao, Lei Chen, and Bin Cui. Efficient cohesive
subgraphs detection in parallel. In SIGMOD 2014, pages
613–624, 2014. doi: 10.1145/2588555.2593665.

[15] Michael M. Wolf, Jonathan W. Berry, and Dylan T. Stark.
A task-based linear algebra building blocks approach for
scalable graph analytics. In HPEC 2015, pages 1–6,
2015. doi: 10.1109/HPEC.2015.7322450.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

