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ABSTRACT
We introduce queueing network models for characterizing and mod-
eling the performance of graph programs. We show that graph
programs can be modelled as a queuing network whose behaviour
can be mapped to a queueing network of the underlying architecture.
Operational analysis of these queueing networks allows us to system-
atically analyze performance and identify performance bottlenecks.
We demonstrate the methodology by examining a breadth-first search
(BFS) implementation on both CPU and GPU.
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1 INTRODUCTION
What limits performance of parallel graph algorithms on current
processors? Folklore holds that graph algorithms are “memory-
bound” and hence would benefit from large bandwidths and short
memory latencies. However, recent research has found that imple-
mentations of these algorithms do not fully utilize off-chip memory
bandwidth [1, 6, 7, 13]. This has been variously construed to mean
that (last-level cache) locality exists in graph algorithms [1] or that
high off-chip memory latency is the bottleneck [7]. Taken together,
these conclusions are, of course, contradictory.

Analyzing the performance of programs that implement graph
algorithms (“graph programs” for short) is tricky. Like all programs,
graph program performance is an artifact of the algorithm, the im-
plementation, the hardware as well as the actual input. Unlike most
programs, however, graph program performance is significantly in-
tertwined with “deeper” properties of the input, such as the structure
of the graph.

Past studies [2, 13] have shown, for example, that graphs of road
networks possess nodes with uniform degree, have a large diameter,
and graph programs usually exhibit high locality when operating
on them. On the other hand, graphs of social networks have small
diameters (so-called small-world effect), have a power-law degree
distribution with a few nodes having orders of magnitude more edges
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than others, and cause graph programs to suffer from low locality
and poor load balance.

Since graphs can also be represented as matrices, these findings
suggest the positions of the non-zero values and the actual values
themselves in a matrix representation of a graph play an important
role in performance. This is in contrast to dense parallel matrix
multiplication, for example, where the size of the matrices and not
the values in them play a larger role in performance. As a result, the
number of factors that need to be considered to explain performance
for graph programs is significantly larger, and unconsidered factors
could lead to unsound conclusions.

Graph programs have been studied before [1, 3, 7, 11, 13, 14]
but these studies did not produce analytical performance models.
Since we intend to provide such models, our first contribution is a
set of building blocks that can be used to describe graph programs
as abstract machines. We call such abstract machines Operator
Machines and we show how we can use these building blocks to
construct an abstract machine for BFS.

Our second contribution is a suite of analytical performance mod-
els for implementations of these building blocks on actual hardware.
These model all the factors that affect performance – the algorithm,
the inputs, the actual implementation and hardware – and are based
on queuing networks to allow for sound reasoning.

Finally, we validate our analytical models by examining the per-
formance of BFS over different inputs on multiple hardware plat-
forms.

2 QUEUEING NETWORK MODELS
BACKGROUND

The performance of computer systems is often analyzed formally
through the use of queuing network models [9]. In such networks,
work is modeled as a jobs that request service at a server. Each
server may be busy, i.e. processing one or more requests, and
therefore a queue of jobs may form at a server. In general, analysis
of queueing networks attempts to discover quantities like throughput
of the system, utilization of each server and queue lengths at a server.

Operational analysis [5] uses operationally verifiable quantities
(e.g., performance counters) to analyze queuing network models. To
use operational analysis, we need to obtain at least four characteris-
tics of the system. First, we need N, the number of jobs. Second, we
need Ci, the number of jobs completing service at server i. Finally,
we need Si (ni), which is the service time per job at server i. Here,
the parameter ni represents the load, defined as the total number of
jobs in queue and receiving service at server i.

With these characteristics and the average number of visits per
job to server i (defined as Vi =Ci/N), we can use the following result
from operational analysis [5] to determine the bottleneck device:

VBSB = max
i

ViSi (ni) (1)
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1 k e r n e l b f s ( Graph , LEVEL ) :
2 f o r a l l node in Graph . nodes :
3 i f ( node . l e v e l != LEVEL−1)
4 c o n t i nu e ;
5
6 f o r a l l e in node . edges :
7 d s t = e d g e d s t ( e )
8 i f d s t . l e v e l == INF :
9 d s t . l e v e l = LEVEL

Listing 1: Level-by-level Topology-driven BFS Pseudocode

Informally, this result formalizes the notion that a bottleneck
device is one that is fully utilized and that on average takes the
longest to service a job’s requests. By the forced flow law, this
bottleneck device determines overall throughput X0:

X0 =
1

VBSB
(2)

In the following sections, we show how to map a graph program,
like BFS, to a queueing network model called an operator machine.
We then show how to analytically characterize N, Ci and ni for an
operator machine mapped to real hardware. Combining these values
with Si obtained using microbenchmarks allows us to model the
performance of actual BFS implementations on real hardware.

3 THE OPERATOR MACHINE
The Operator Machine is a framework to build queueing network
models of graph algorithm implementations. In this section, we
illustrate how to build an operator machine for a Breadth-First Search
(BFS) implementation and model its performance.

3.1 BFS Operator Machine
Listing 1 shows the pseudocode for a parallel level-by-level Breadth-
First Search (BFS) kernel. Level-by-level BFS is an iterative algo-
rithm that proceeds in rounds. In each round, the goal is to label
unvisited nodes that are the children of nodes visited in the previous
round. Initially, only the source node is labelled with a level of
0. The algorithm terminates when all nodes are labelled. Note that
Listing 1 focuses on the code that is executed within each round and
elides the iterative control loop that calls the kernel for each round.

Listing 1 implements what is commonly known as a topology-
driven BFS [12], which visits all nodes in every BFS round. We
chose this BFS not because it is the fastest – it isn’t – but for simplic-
ity of exposition. We do note that a similar variant from the Rodinia
benchmark suite [4] is used extensively in architecture research as a
model for irregular algorithms.

The BFS code in Listing 1 can be implemented by the abstract
machine shown as a queuing network in Figure 1. To assemble this
machine, we first observe that the during each round of BFS, the
outermost loop (code line 2) iterates over all the nodes of the graph.
The ALLNODESINPUT server performs this task in the abstract
machine. Second, only nodes that were labelled in the previous
round must filter through (code line 3) and this implemented by the
first NODEFILTER server. Third, we must determine the edges of
the nodes that filter through (code line 6), a task performed by the
EDGERANGELOOKUP server. Fourth, BFS looks up the destination

IN

ANI: AllNodesInput
... in Graph.nodes

NF1: NodeFilter1
node.level==LEVEL-1

ERL: EdgeRangeLookup
... in node.edges

EDL: EdgeDestLookup
dst = edge_dst(e)

OUT

NF2: NodeFilter2
dst.level == INF

OP: Operator
dst.level = LEVEL

Figure 1: The Operator Machine for Level-by-level Topology-
driven BFS

of each edge (code line 7), which is accomplished by the EDGE-
DESTLOOKUP server. Fifth, the second NODEFILTER server checks
for unvisited nodes (code line 8) before finally applying the BFS
operator in the OPERATOR server. Because this abstract machine
exists to apply operators to graph nodes or edges, we call it an
operator machine.

There are several advantages to representing graph programs as
operator machines. Operator machines can be derived from ac-
tual implementations, as we have shown, but are a higher-level
representation than code. Since each server has well-defined be-
haviour, it is possible to substitute different implementations for the
same server. For example, EDGERANGELOOKUP could have two
implementations, one for graphs laid out in memory as CSR and
another for graphs laid out in COO. Finally, servers such as NODE-
FILTER, EDGERANGELOOKUP and EDGEDESTLOOKUP can be
reused across different graph programs, forming building blocks that
are largely independent of the actual graph program. This reuse is
not coincidental. Our operator machine is rooted in the operator for-
mulation [12] which is a framework to describe irregular algorithms
of which graph algorithms form a prominent subset.

3.2 Operational Analysis of BFS
The transformation from code to operator machine is the first step in
the analysis of a graph program. Once an operator machine has been
built, we can analyze its performance using operational methods [5].
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A [0]

B [1]

E [1] C [INF] D [INF]

F [INF]

Figure 2: Input Graph for BFS. Alphabetical labels are node
names, numbers in brackets are level values. Execution shown
for LEVEL = 2.

To use these methods, we begin by determining the number of jobs,
N, and the average number of visits per job Vi to a server i. We
obtain Vi by computing Ci, the number of completions at a server
i, and dividing by N. The BFS OM has six servers as shown in
Figure 1.

Because we visit each node in the graph in every round, there
will be as many jobs as there are vertices in the input graph. For
the graph in Figure 2, N will be 6 for every round, with each job
corresponding to a vertex in the graph.

Each of these jobs will visit the ALLNODESINPUT server once, so
CANI is 6. All jobs will also make one visit to the first NODEFILTER

server, thus CNF1 is also 6. Visits to EDGERANGELOOKUP (ERL)
will change every round depending on the state of the graph. In the
second round (i.e. LEVEL=2) only nodes B and E will proceed to the
ERL stage, thus CERL is 2.

Since vertex E has only one edge, its job will visit EDGEDEST-
LOOKUP (EDL), the second NODEFILTER (NF2) and OPERATOR

once. Similarly, the job corresponding to vertex B will visit EDGE-
DESTLOOKUP and the second NODEFILTER thrice. These visits
make CEDL and CNF2 equal to 4. Since vertex E is already labelled,
OPERATOR will be visited only twice for B’s edges, so COP is 3.

Using Ci and N, the average visits for job are calculated as: VANI =

1, VNF1 = 1, VERL = 0.33, VEDL =VNF2 = 0.66, and VOP = 0.5.
At this point, if we knew Si, the service time for server i, the

bottleneck server B is given by (assuming full utilization of each
server and following [5]):

VBSB = max({VANISANI ,VNF1SNF1, . . . ,VOPSOP}) (3)

Assuming service time for all servers is 1 cycle, the machine will
be bottlenecked for this graph in this round by the ALLNODESINPUT

and NODEFILTER servers and the average throughput X0 will be 1
job/cycle using Equation 2 if we ignore startup and shutdown, which
we note is significant for this small graph.

The abstract BFS Operator Machine we built and analyzed in this
section is most useful for designing custom graph accelerators where
service times can be assumed to explore what-if scenarios. However,
most graph programs today run on general purpose processors. In
the following sections, we show how we can map the jobs and visits
in an operator machine to actual jobs and visits on general purpose
processors such as a CPU and a GPU.

Table 1: Results for the CPU

Input Model Error Bottleneck

RMAT 32% L3
NY 9% L1
FL 6% L1

4 CPU MAPPING OF THE BFS OM
We use a single-threaded C++ implementation of topology-driven
BFS. Operator Machine jobs map to memory instructions on the
CPU. Correspondingly, the CPU is modelled as a closed queueing
network with a three-level cache memory hierarchy – L1, L2 and
L3. The completions (Ci) map to the cache hits at each level of
the hierarchy and were obtained using PAPI. Service times for each
level of the cache were measured using microbenchmarks.

5 CPU MODEL EVALUATION
We evaluated our model for BFS running on a Xeon 2.2GHz (West-
mere) server with four 10-core processors, with each core has 32KB
of L1 instruction and data caches, 256KB of L2 cache, and can run
2 SMT threads. Each of the 4 processors have 24MB of L3 cache
shared among the 10 cores on the processor. We compiled BFS
using gcc (6.3) with -O2 optimization level.

Microbenchmarks and the Intel Memory Checker (v3.0) tool
were used to obtain service times. Latencies measured were SL1 = 4
cycles (1.33ns), SL2 = 10 cycles (4.5ns) and SL3 = 46 cycles (20.5ns).
Prefetchers are active and we currently only model a MLP of 1. We
currently do not model off-chip memory accesses as those “uncore”
counters were unavailable on the machine we were using.

We ran BFS on a scale-free RMAT graph with 4M nodes and
32M edges, as well the road networks of NY (267K nodes, 730K
edges) and FL (1M nodes, 2.7M edges).

5.1 Road Network Results
Table 1 shows the maximum relative error between the actual running
time and the time obtained from the model. We observe that our
model explains the performance of BFS on road networks reasonably
well (less than 10% error).

5.2 RMAT Results
Figure 3 shows the actual and model time per round in cycles for
RMAT graph. In early rounds, which have small amount of work, L1
is the bottleneck device, and predicts the actual time with an error
less than 20%. In the middle rounds, which have large amount of
work, the bottleneck device is L3, with a maximum error of 85%
(round #7). The model time is lower than actual time in the middle
rounds (rounds #6–9). Overall, the model correlates with actual
runtime with a coefficient r = 0.94. This shows that modelling the
memory hierarchy alone does not explain the performance of BFS
entirely. Performance counter data shows that the core pipeline
reports stalls due to many reasons. Mis-speculation due to branch
misprediction is another factor to be considered. Therefore, we need
to model the core pipeline, which we will address in future work
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Figure 3: Operational analysis of BFS on a Xeon (Westmere),
using an RMAT graph with 4M nodes, 32M edges.

6 GPU MAPPING OF THE BFS OM
We use an implementation of BFS in CUDA running on NVIDIA
GPUs to illustrate the GPU mapping of the BFS operator machine.
Our description below focuses on how to model both this parallel
implementation and the parallel GPU. We also show how to use data
from functional simulation to identify the sources of work that cause
bottlenecks.

6.1 GPU Background
A GPU is similar to a multicore CPU with each core referred to as
a streaming multiprocessor (SM)1. Programs for the GPU, referred
to as kernels, execute on the SMs using a multi-threaded single-
program multiple data (SPMD) style, i.e., the code for each thread is
the same. Programmers specify the number of threads to be executed
when kernels are launched to the GPU.

On most NVIDIA GPUs, the unit of execution on an SM is not the
thread, but a warp that comprises 32 contiguous threads which share
the same program counter and thus execute the same instruction
in lockstep. Since threads of the same warp can diverge, i.e. take
different control paths, the GPU provides two mechanisms to allow
warp divergence while maintaining lockstep execution.

Essentially, a warp executes instructions as long as one of its
constituent threads is active. Inactive threads are predicated out,
either by the compiler or by a dynamic mechanism known as the
divergence stack [8]. The former targets small regions of code, while
the latter is usually used for larger regions of code such as loops.

Up to 64 warps (i.e. 2048 threads) can be resident on an SM
depending on the GPU. Functional units on the SM are shared among
warps and up to 4 warps can issue instructions simultaneously. If
a warp stalls, for example waiting for the result of a load, the SM
switches to another warp from among the 64 warps resident on the
SM. Instructions from a warp execute in order, but some GPUs also
support issuing up to two instructions from the same warp.

1We use simplified NVIDIA terminology in this paper.

1 k e r n e l b f s ( Graph , LEVEL ) :
2 f o r ( node= t i d ; node < graph . num nodes ;
3 node+= n t h r e a d s ) {
4 i f ( l e v e l [ node ] != LEVEL−1)
5 c o n t i nu e ;
6
7 r s t a r t = g raph . r o w s t a r t [ node ] ;
8 r e n d = graph . r o w s t a r t [ node + 1 ] ;
9

10 f o r ( e = r s t a r t ; e < r e n d ; e ++) {
11 d s t = graph . e d g e d s t [ e ] ;
12 i f ( l e v e l [ d s t ] == INF )
13 l e v e l [ d s t ] = LEVEL ;
14 }
15 }

Listing 2: Simplified Topology-driven BFS in CUDA

6.2 BFS on the GPU
Listing 2 is a CUDA kernel for topology-driven BFS. The number
of threads executing the kernel, nthreads, is fixed when the ker-
nel is launched by the programmer. Each thread also receives a
unique CUDA-provided thread identifier, tid, which ranges from 0
to nthreads-1.

This code assumes the graph is stored in memory in the com-
pressed sparse row (CSR) format. Nodes are numbered from 0 to
graph.num nodes - 1. The arrays row start is indexed by node
and contains an offset into the edge dst array. Adjacent row start
values delimit the edges for a particular node, so the edge dst values
only need to contain the destination node for an edge.

The outer for loop maps nodes of the graph to threads in a
cyclic fashion – thread tid will tackle node tid, tid + nthreads,
tid + 2 ∗ nthreads, etc. If a node was labelled in the previous it-
eration (Line 4), the code determines the extent of the edge list for
that node (lines 7–8). An inner for loop then visits each edge of
that node and marks any unvisited destination node of an edge as
visited (lines 11–13).

6.3 Jobs
From a GPU’s perspective, each dynamic instruction executed by a
warp is a job that it must complete. Jobs on the operator machine
therefore must be mapped to dynamic instructions on the GPU. To
do this, we can use the number of jobs, the visits per job on the
operator machine and the number of instructions used to implement
a server on the GPU.

For example, ALLNODESINPUT is implemented by the for line 3
of Listing 2 which performs an assignment, a comparison, an ad-
dition and a branch. The first iteration of the loop also loads the
value of graph.num nodes from memory and stores it in a register.
If we ignore all non-memory instructions for modelling purposes,
then ALLNODESINPUT is implemented by one instruction. Now
given that VANI was 1/job in the operator machine and there were
N = 5 jobs corresponding to the 5 nodes in the operator machine, the
number of dynamic instructions on the GPU is at most N×VANI×1.
This is an upper bound and not an exact count due to the warp-based
execution on the GPU.

This is best illustrated by Figure 4 which shows how visits to
servers on the operator machine are mapped to GPU instructions.
This is a dynamic instruction trace for warp 0 obtained by running
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A B C D E ··...
0 1 2 3 4 30 31

0 4 8 12 16 ··...

· 4 · · 16 ··...
· 8 · · 20 ··...

ANI: node<graph.num_nodes

NF1: level[node]

ERL: row_start[node]
     row_start[node+1]

· 8 · · 20 ··... EDL: edge_dst[e]

· 12 · · · ··... EDL: edge_dst[e]

· 16 · · · ··... EDL: edge_dst[e]

· 8 · · · ··... OP: level[dst] = LEVEL

· 12 · · · ··... OP: level[dst] = LEVEL

· 16 · · 20 ··... NF2: level[dst] == INF

· 8 · · · ··... NF2: level[dst] == INF

· 12 · · · ··... NF2: level[dst] == INF

Thread

0 2 5 5 5 6row_start

0 1 ∞ ∞ 1level

1 4 4 2 3edge_dst 5

6

∞

· · · · 20 ··... OP: level[dst] = LEVEL

Figure 4: Dynamic memory instruction trace of warp 0 mapped
to jobs. Numbers in trace represent memory offsets into arrays
containing 32-bit elements. Disabled threads are marked as [·].
Array contents shown are before execution.

the code in Listing 2 on the graph in Figure 2. Each instruction is la-
belled with the server it implements and all non-memory instructions
have been elided.

This trace shows that there is only one job for ALLNODESINPUT,
i.e. NANI = 1 since in the CUDA implementation all nodes were
mapped to threads such that all 5 nodes ended up in same warp. In
general, NANI = d|V |/32e, where V is the set of nodes in the graph.
The number of NF1 jobs corresponding to the NODEFILTER is the
same as NANI .

Since not every node passes through the filter, the number of
EDGERANGELOOKUP jobs must be determined by counting warps
that have at least one node for which EDGERANGELOOKUP is
executed. In our example, two nodes B and E pass through the filter,
but since they are in the same warp, the number of EDGERANGE-
LOOKUP jobs is 2 (note that IERL = 2).

Warp divergence and reconvergence further complicate the count-
ing process. The inner for loop in lines 10–13 implements the
EDGEDESTLOOKUP, NODEFILTER and OPERATOR servers. Since
each of these servers can be implemented using a single instruction,
each iteration of the loop results in at least one EDGEDESTLOOKUP

and NODEFILTER job. In our example, both B and E belong to the
same warp but node B has degree 3, while node E has degree 1. Due
to the lockstep execution of the warp, the total number of EDL jobs
is 3 (not 4) since the iterations for the edges of B and E execute in
the same warp. Similarly, the number of NF2 jobs is also 3. In this
case, the total number of jobs resulting from the loop is given by the
maximum iteration count of active threads in the warp.

Finally, conditional execution within the loop must also be taken
into account when counting GPU jobs. Although B applies the
operator to two edges and E to one edge, they do not do so in
parallel even when they are in the same warp due to the order in
which they enumerate the edges – thread 4 evaluates edge (E,F ) at
the same time as thread 3 looks at edge (B,E ). Thus, the number of
OP jobs is 3 (and not 2).

Now the total number of GPU jobs, NG is simply the sum of all
the previous calculations, i.e. 1+1+2+3+3+3 = 13. Thus, using
the number of visits to each server on the operator machine, we can
obtain the number of jobs on the GPU when warp-based execution
is correctly taken into account.

In practice, we can obtain GPU job counts by using instrument-
ing the code, through hardware performance counters for number
of load (global load) and store (global store) instructions, or
through functional simulation. In this work, we use both functional
simulation and GPU counters to obtain counts of GPU jobs, and
verify the former against the latter.

6.4 Visits
Since we have only considered memory instructions as jobs, the
GPU is modelled by the closed queuing network model shown in
Figure 5. A job can issue requests to the L2 cache or to row buffers
in DRAM. For our model, we are interested primarily in VL2H , VRBH
and VRBM which count the hits in L2, hits in the row buffer and
misses in row buffer respectively per job. We first describe how
these quantities may be obtained operationally using counters on
the GPU. Later we show that many of these quantities can also be
approximated using offline simulation based on address traces.

The GPU exposes counters for total L2 transactions and total
DRAM transactions. In some GPUs, DRAM accesses result in addi-
tional DRAM transactions to access ECC data, which is reflected in
the total DRAM transactions but also available separately. Although
GPUs do not expose them, they also contain counters to count the
number of bank activations which measure the number of row buffer
misses. These counters are listed in Table 2 and dividing them by
the number of GPU jobs, NG, obtained in the previous section yields
the corresponding visits per job.

Functional simulation can also be used to obtain these counter
values. The total number of L2 transactions can also be obtained by
first counting the number of distinct 32-byte cache lines per warp
for a load instruction. Summing up over all warps yields the number
of L2 cache read transactions.

Since timing information is unavailable, accurate determination
of L2 misses, DRAM transactions, DRAM hits and misses through
functional simulation is impossible. Nevertheless, we find that sim-
ulating address traces through a fully associative cache with LRU
replacement leads to reasonable approximations. Cache lines that
miss in L2 may also miss in the DRAM row buffers. Again, we
simulate accesses to row buffers by using a smaller fully-associative
cache which uses 256-byte DRAM blocks to determine if a cache
line hits or misses in the row buffer.

These simulators are necessary since the behaviour of many OM
servers cannot be statically predicted. For example, the NF1 server
implementation indexes the level array by node. Since adjacent
threads lookup adjacent nodes, they access adjacent elements of a
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L2 Cache
l2_read_transactions

Row Buffer Misses
Bank Activates

Row Buffer Hits
dram_read_transactions

- Bank Activates

L2 Hits

X0

Figure 5: Closed Queuing Network Model of the GPU Memory
Subsystem

Table 2: Counters and Derived Quantities. Values are for Fig-
ure 4.

Quantity Desc. Counter/Equation Val.

CL2 L2 cache read
transactions

l2 read transac-
tions

13

CDRAM DRAM read
transactions

dram read transac-
tions

4

CECC ECC transac-
tions

ecc read transac-
tions

0

CRBM Row buffer
misses

Undocumented 4

CL2M L2 misses CDRAM−CECC 4
CL2H L2 hits CL2−CL2M 9
CRBH Row buffer hits CDRAM−CRBM 0

cache line or adjacent cache lines. So the total number of cache lines
spanned by the warp is 4, except when the warp is not fully occupied.
Accesses to the level array cannot be statically classified as L2 hits
or misses since it is also referenced in NF2 and OP.

Accesses to graph.edge dst and level[dst] in the inner loop
(i.e. from EDL, NF2 and OP) are very different from node-indexed
accesses in NF1. For these edge-destination-induced memory ac-
cesses, we cannot even determine the number of cache lines without
functional simulation. For example, if each node had a degree of
1, then accesses to graph.edge dst from within the same warp
would exhibit the same behaviour as accesses to level[node] –
they would be to adjacent memory locations. If, however, each node
had a degree of 8 or more, then accesses to graph.edge dst from
threads within the same warp would all access different cache lines.

It is again difficult to determine the number of cache lines stat-
ically for level[dst] as dst can be almost any node in random
graphs. Only by simulating the loop can the number of cache lines
per warp for accesses to graph.edge dst and level[dst] be ob-
tained. The resulting addresses are fed to our cache simulator to
estimate the number of hits and misses for both L2 and DRAM.
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Figure 6: Memory Service Times versus load for L2 hits, row
buffer hits (RBH) and row buffer misses (RBM)

In contrast, the reads of graph.row start in ERL are the only
reference to graph.row start, so we can conclude statically that
the first read in any iteration will miss in the L2 cache. The second
read, row start[node + 1], will nearly always hit in the cache
since thread x is merely reading the same element that thread x+1
did in the first read of row start. This temporal reuse is enabled
because GPUs stall on use of a memory value, not on issue of the
load, so both loads will be in flight together. Finally, since the
accesses to row start are to adjacent cache lines, DRAM accesses
for it will mostly be row buffer hits.

For the example in Figure 4, all the arrays fit in one cache line
each, so only the first access to each array will miss. We will assume
all these misses will also be DRAM row buffer misses. Therefore,
if nthreads is 32, there will be 4 misses from ANI, NF1, ERL and
the first instance of EDL and all remaining accesses will be hits. We
compute VL2H = 0.62, VRBH = 0 and VRBM = 0.31.

For performance analysis, we only need overall counts to de-
termine VL2H , VRBH , and VRBM . It is technically not necessary to
examine contributions from individual operator machine servers.
However, as our analysis in this section shows, different operator
machine servers can exhibit very different memory access behaviour
even when accessing the same data region (e.g., level array reads in
NF1 and NF2). For implementations, the operator machine therefore
provides a logical framework by which contributions can be differ-
entiated to gain better insight into the behaviour of implementations
of graph algorithms.

6.5 Service Times
To complete our model, we need to know the time for a L2 hit
(SL2H ), a row buffer hit (SRBH ) and a row buffer miss (SRBM) on the
GPU. These can be obtained using microbenchmarks accounting
for the fact that multiple requests can be serviced in parallel on real
hardware. Figure 6 shows that increasing memory-level parallelism
(MLP) leads to decreasing service times as more requests are pro-
cessed in parallel. Thus, SL2H , the service time for a L2 hit is not a
constant, but is a function SL2H (m) where m is the MLP at L2.
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To determine the MLP, we first determine n, the average load,
which is the number of jobs in queue or receiving service. On the
GPU, this is the average number of warps active per cycle, which can
be measured using the achieved occupancy counter. The MLP is
then simply the product of load and the number of visits per job. For
example, the number of requests in flight at L2 is mL2H =VL2H ×n.

Load can also be estimated using functional simulation. Each job
on the GPU is executed by a physical warp. The number of physical
warps is limited by the GPU and is 960 on the Tesla K40c used in
this study. Assuming each job completes in 1 unit of time, the total
time is Wmax which is the maximum number of jobs executed by
any physical warp. By Little’s law, therefore, the estimated load is
nest = NG/Wmax.

Using n (or nest ), we can compute mL2H , mRBH , and mRBM and
use these values to obtain the average service time. At this point, we
can recast equation 3 as:

VBSB = max({VL2HSL2H (mL2H ),VRBHSRBH (mRBH ),

VRBMSRBM (mRBM )})
(4)

Our example graph is too small and its runtime is swamped by
noise, but we will evaluate our model in the remaining sections on
larger graph inputs.

7 GPU EVALUATION
We evaluate our model on a Tesla K40c GPU with BFS running
on the RMAT22 graph that has 4M nodes and 32M edges. This
synthetic random graph has a power-law distribution and is similar
in structure to the graphs used in the Graph500 challenge. We turn
ECC off since we currently cannot characterize the additional ECC
DRAM transactions generated by the K40c’s L2 cache.

7.1 Model Fit
Figure 7 shows the runtime obtained from our model using charac-
teristics obtained from functional simulation (Simulation) as well
from counters (Counters). In general, our model explains the perfor-
mance of BFS on RMAT22 quite well. Correlation coefficients are
r = 0.95 for simulation and r = 0.98 for counters. Percentage max-
imum error is +46% (round #4) for simulation and −38% (round
#2) for counters. For simulation, the largest source of error is our
estimation nest which generally underestimates the load, leading to
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Figure 8: Visits per job (counters)
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Figure 9: Jobs executed per round (functional simulation)

service time overestimates and runtimes that overshoot measured
runtimes as in round #4. When this fixed by using measured load,
the next source of error are the service times. Finally, we note that
we do not model writes, so OP is never shown in our results. At their
maximum, writes form 15% of DRAM transactions in round #5.

7.2 Visits Per Job
Using visits per job data (Figure 8) and the number of jobs per round
(Figure 9), we can analyze the runtime performance of BFS on
RMAT22. Note that the average number of visits per job (i.e. cache
lines) never exceeds 4. Topology-driven BFS can address more than
4 cache lines up to a maximum of 32 cache lines only in in EDL and
NF2. Only rounds #3–8 execute these jobs in any sufficient number,
but Figure 8 shows that these rounds actually refer to less than 4
cache lines per job.

Although topology-driven BFS assigns nodes to every thread, not
all nodes are active in each round. The round with the most work,
round #5, has 1.5M nodes active (33%), so every third thread is idle!
Further, since edges of each node are processed serially, there are
very few active warps that in turn contain only a few active threads.

Bottleneck analysis shows that row buffer hits are the primary bot-
tleneck in the initial and final rounds. In the middle rounds, however,
row buffer misses dominate. From our cache simulation, we can
trace these misses to the servers that generated them (Figure 10). The
majority can be attributed primarily to NF2 which reads level[dst]
and secondarily to EDL which obtains the value of dst from the
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graph structure. In contrast, NF1, which reads level[node], is the
major contributor to row buffer hits (not shown). A mere change in
index changes the behaviour dramatically.

7.3 Implications
Prima facie, our results imply that topology-driven BFS can be faster
if DRAM row buffer misses are sped up. However, this is only
justified if the DRAM subsystem is fully loaded.

Memory bandwidth on the Tesla K40c is 288GB/s. To achieve
this bandwidth at an assumed DRAM latency of 600 cycles, we need
243KB (around 7800 cache lines) in flight every cycle. Figure 11
shows that this level of memory-level parallelism is never achieved
by topology-driven BFS in any round.

Because their MLP is so low, topology-driven BFS implementa-
tions (such as the BFS in Rodinia) never stress the memory system
and should not be used to motivate or evaluate hardware improve-
ments. Instead, data-driven versions of BFS [2, 10] that always
assign useful work to each thread should be used. These implemen-
tations can fully load the GPU for the rounds with enough work on
the RMAT22 input used in this work.

8 CONCLUSION
The Operator Machine provides a framework for modelling and
interpreting the performance of graph programs. By mapping the
operator machine for topology-driven BFS to the GPU, we have
identified DRAM row buffer misses as the bottleneck in the rounds

with most work, with row buffer hits dominating in other rounds.
Further, we have shown that topology-driven implementations of
BFS on the GPU have low MLP and are unable to fully load the
memory subsystem. We have also shown that BFS on the CPU
can be similarly modelled. Our queuing model for caches however
needs to be extended to other parts of the processor pipeline to fully
explain the performance of BFS on modern CPUs. In the future,
we hope to model other graph programs using more sophisticated
implementations on both CPUs and GPUs.
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