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Abstract. The sequential importance sampling (SIS) algorithm has
gained considerable popularity for its empirical success. One of its noted
applications is to the binary contingency tables problem, an important
problem in statistics, where the goal is to estimate the number of 0/1
matrices with prescribed row and column sums. We give a family of exam-
ples in which the SIS procedure, if run for any subexponential number of
trials, will underestimate the number of tables by an exponential factor.
This result holds for any of the usual design choices in the SIS algorithm,
namely the ordering of the columns and rows. These are apparently the
first theoretical results on the efficiency of the SIS algorithm for binary
contingency tables. Finally, we present experimental evidence that the
SIS algorithm is efficient for row and column sums that are regular. Our
work is a first step in determining rigorously the class of inputs for which
SIS is effective.

1 Introduction

Sequential importance sampling is a widely-used approach for randomly sam-
pling from complex distributions. It has been applied in a variety of fields, such
as protein folding [8], population genetics [5], and signal processing [7]. Binary
contingency tables is an application where the virtues of sequential importance
sampling have been especially highlighted; see Chen et al. [4]. This is the subject
of this note. Given a set of non-negative row sums r = (r1,...,7y) and column
sums ¢ = (c1,...,Cn), let 2 = (2, . denote the set of m x n 0/1 tables with row
sums r and column sums ¢. Our focus is on algorithms for sampling (almost)
uniformly at random from {2, or estimating |{2].
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Sequential importance sampling (SIS) has several purported advantages over
the more classical Markov chain Monte Carlo (MCMC) method, such as:

Speed: Chen et al. [4] claim that SIS is faster than MCMC algorithms. However,
we present a simple example where SIS requires exponential (in n,m) time.
In contrast, a MCMC algorithm was presented in [6}[I] which is guaranteed
to require at most time polynomial in n, m for every input.

Convergence Diagnostic: One of the difficulties in MCMC algorithms is de-
termining when the Markov chain of interest has reached the stationary
distribution, in the absence of analytical bounds on the mixing time. SIS
seemingly avoids such complications since its output is guaranteed to be an
unbiased estimator of |{2|. Unfortunately, it is unclear how many estimates
from SIS are needed before we have a guaranteed close approximation of
|£2|. In our example for which SIS requires exponential time, the estimator
appears to converge, but it converges to a quantity that is off from || by
an exponential factor.

Before formally stating our results, we detail the sequential importance sampling
approach for contingency tables, following [4]. The general importance sampling
paradigm involves sampling from an ‘easy’ distribution p over {2 that is, ideally,
close to the uniform distribution. At every round, the algorithm outputs a table
T along with p(7T). Since for any p whose support is {2 we have

E1/u(T)] = [,

we take many trials of the algorithm and output the average of 1/u(T') as our
estimate of |£2|. More precisely, let Ty, ..., T; denote the outputs from ¢ trials of
the SIS algorithm. Our final estimate is

1 1
Xe=y Z w(T) M

K2

One typically uses a heuristic to determine how many trials ¢ are needed until
the estimator has converged to the desired quantity.

The sequential importance sampling algorithm of Chen et al. [4] constructs
the table T" in a column-by-column manner. It is not clear how to order the
columns optimally, but this will not concern us as our negative results will hold
for any ordering of the columns. Suppose the procedure is assigning column

j. Let ri,....7l denote the residual row sums after taking into account the

y'm

assignments in the first j — 1 columns.
The procedure of Chen et al. chooses column j from the correct probability

distribution conditional on ¢;, 7/, ..., r,, and the number of columns remaining
(but ignoring the column sums ¢j41, . . ., ¢, ). This distribution is easy to describe
in closed form. We assign column j the vector (¢1,...,tn) € {0,1}™, where

>, ti = ¢;, with probability proportional to

n(..)"



where n’ = n — j + 1. If no valid assignment is possible for the j-th column,
then the procedure restarts from the beginning with the first column (and sets
M(}i) = 0 in () for this trial) Sampling from the above distribution over
assignments for column j can be done efficiently by dynamic programming.

We now state our negative result. This is a simple family of examples where
the SIS algorithm will grossly underestimate |f2| unless the number of trials ¢
is exponentially large. Our examples will have the form (1,1,...,1,d,) for row
sums and (1,1,...,1,d.) for column sums, where the number of rows is m + 1,
the number of columns is n + 1, and we require that m + d, = n + d..

Theorem 1. Let 5 > 0,7 € (0,1) be constants satisfying 8 # v and consider the
input instances r = (1,1,...,1,|fm]), c= (1,1,...,1, |[ym]) with m + 1 rows.
Fiz any order of columns (or rows, if sequential importance sampling constructs
tables row-by-row) and let X, be the random variable representing the estimate of
the SIS procedure after t trials of the algorithm. There exist constants s1 € (0,1)
and sg > 1 such that for every sufficiently large m and for any t < siy*,

Pr (Xt > ‘Q:nc > < 3s7".
S2

In contrast, note that there are MCMC algorithms which provably run in time
polynomial in n and m for any row/column sums. In particular, the algorithm
of Jerrum, Sinclair, and Vigoda [6] for the permanent of a non-negative matrix
yields as a corollary a polynomial time algorithm for any row/column sums. The
fastest algorithm for the permanent of a n x n matrix requires O(n7 log* n) time
[3], which implies a running time of O((nm)7 log* n) time for binary contingency
tables. More recently, Bezakovd, Bhatnagar and Vigoda [I] have presented a
related MCMC algorithm that works directly with binary contingency tables
and has an improved polynomial running time. Their algorithm runs in time
O((nm)? R?$max log®(n 4+ m)) where R = Y. 7; is the sum of the row sums
and Spax is the maximum row and column sum. We note that, in addition
to being formally asymptotically faster than any exponential time algorithm, a
polynomial time algorithm has additional theoretical significance in that it (and
its analysis) implies non-trivial insight into the the structure of the problem.
Some caveats are in order here. Firstly, the above results imply only that
MCMC outperforms SIS asymptotically in the worst case; for many inputs, SIS
may well be much more efficient. Secondly, the rigorous worst case upper bounds
on the running time of the above MCMC algorithms are still far from practical.
Chen et al. [4] showed several examples where SIS outperforms MCMC methods.
We present a more systematic experimental study of the performance of SIS,
focusing on examples where all the row and column sums are identical as well
as on the “bad” examples from Theorem [Il Our experiments suggest that SIS

! Chen et al. devised a more subtle procedure which guarantees that there will al-
ways be a suitable assignment of every column. We do not describe this interesting
modification of the procedure, as the two procedures are equivalent for the input
instances which we discuss in this paper.



is extremely fast on the balanced examples, while its performance on the bad
examples confirms our theoretical analysis.

We begin in Section Pl by presenting a few basic lemmas that are used in
the analysis of our negative example. In Section 3] we present our main example
where SIS is off by an exponential factor, thus proving Theorem [ Finally,
in Section F] we present some experimental results for SIS that support our
theoretical analysis.

2 Preliminaries

We will continue to let p(T) denote the probability that a table T € (2, . is
generated by sequential importance sampling algorithm. We let 7(7") denote the
uniform distribution over {2, which is the desired distribution.

Before beginning our main proofs we present two straightforward technical
lemmas which are used at the end of the proof of the main theorem. The first
lemma claims that if a large set of binary contingency tables gets a very small
probability under SIS, then SIS is likely to output an estimate which is not much
bigger than the size of the complement of this set, and hence very small. Let
S=02,.\S.

Lemma 1. Let p < 1/2 and let S C (2, be such that u(S) < p. Then for any
a>1, and any t, we have

Pr (X; < an(S)|2]) > 1 —2pt —1/a.
Proof. The probability that all £ SIS trials are not in S is at least
(L-p)f>e " >1—2pt,

where the first inequality follows from In(1 — z) > —2z, valid for 0 < « < 1/2,
and the second inequality is the standard e™® > 1 — x for = > 0.

Let Ty,...,T; be the t tables constructed by SIS. Then, with probability
> 1 —2pt, we have T; € S for all i. Notice that for a table T' constructed by SIS

from S, we have
1
E TeS|=|S|
(uiry 17€8) =

Let F denote the event that T; € S for all 4, 1 < i < ¢; hence,
E(X:|F)=|S]

We can use Markov’s inequality to estimate the probability that SIS returns
an answer which is more than a factor of a worse than the expected value,
conditioned on the fact that no SIS trial is from S:

Pr(X >a|S|| F) < i



Finally, removing the conditioning we get:

Pr(X < alS|) > Pr (X < alS| | F)Pr(F)

> (1—i> (1 2pt)

1
>1—2pt —
a

The second technical lemma shows that if in a row with large sum (linear in
m) there exists a large number of columns (again linear in m) for which the
SIS probability of placing a 1 at the corresponding position differs significantly
from the correct probability, then in any subexponential number of trials the
SIS estimator will very likely exponentially underestimate the correct answer.

Lemma 2. Let a < 3 be positive constants. Consider a class of instances of the
binary contingency tables problem, parameterized by m, with m + 1 row sums,
the last of which is |Bm]. Let A; denote the set of all valid assignments of 0/1
to columns 1,...,i. Suppose that there exist constants f < g and a set I of
cardinality |am| such that one of the following statements is true:

(i) for everyi € I and any A € A;_1,

T(Am1i =1 A) < f<g<p(Ampi=114),
(i) for everyi € I and any A € A;_q,

f(Amir; =11 A) < f<g<m(Apy1i =11 A4).

Then there exists a constant by € (0,1) such that for any constant 1 < by < 1/by
and any sufficiently large m, for any t < b3*,

r,c
m

|
Pr(| X; >
r<t_ by

) < 3(b1b2)™.

In words, in b4" trials of sequential importance sampling, with probability at
least 1 —3(b1b2)™ the output is a number which is at most a b "™ fraction of the
total number of corresponding binary contingency tables.

Proof. We will analyze case (i); the other case follows from analogous arguments.
Consider indicator random variables U; representing the event that the uniform
distribution places 1 in the last row of the i-th column. Similarly, let V; be
the corresponding indicator variable for the SIS. The random variable U; is
dependent on U; for j < i and V; is dependent on Vj; for j < i. However, each
U, is stochastically dominated by U! which has value 1 with probability f, and
each V; stochastically dominates the random variable V; which takes value 1
with probability g. Moreover, the U/ and V; are respectively i.i.d.
Now we may use the Chernoff bound. Let & = [am]. Then

Pr (Z Ui/ —kf> g g fk) < e—(g—f)zk/s

el



and

Prkg—S v/>9" fk) < e~ (9= I7k/8,
Let S be the set of all tables which have less than kf+(9—f)k/2 = kg—(9—f)k/2
ones in the last row of the columns in I. Let by := e~(="@/16 ¢ (0,1). Then
e—(g=Hk/8 < b* for m > 1/a. Thus, by the first inequality, under uniform
distribution over all binary contingency tables the probability of the set S is at
least 1 — b7". However, by the second inequality, SIS constructs a table from the
set S with probability at most b7".

We are ready to use Lemma [[l with S = S and p = b}*. Since under uniform
distribution the probability of S is at least 1 — b7*, we have that S| > (1 —
b7 )82 ¢|. Let ba € (1,1/b1) be any constant and consider ¢ < b3* SIS trials. Let
a = (bybg)™™. Then, by Lemma [ with probability at least 1 — 2pt — 1/a >
1 —3(bib2)™ the SIS procedure outputs a value which is at most an ab]* = by ™
fraction of [£2, .|.

3 Proof of Main Theorem

In this section we prove Theorem [Il Before we analyze the input instances from
Theorem [Il we first consider the following simpler class of inputs.

3.1 Row Sums (1,1,...,1,d) and Column Sums (1,1,...,1)

The row sums are (1,...,1,d) and the number of rows is m + 1. The column
sums are (1,...,1) and the number of columns is n = m + d. We assume that
sequential importance sampling constructs the tables column-by-column. Note
that if SIS constructed the tables row-by-row, starting with the row with sum
d, then it would in fact output the correct number of tables exactly. However, in
the next subsection we will use this simplified case as a tool in our analysis of the
input instances (1,...,1,d,), (1,...,1,d.), for which SIS must necessarily fail
regardless of whether it works row-by-row or column-by-column, and regardless
of the order it chooses.

Lemma 3. Let § > 0, and consider an input of the form (1,...,1,|6m]),
(1,...,1) with m + 1 rows. Then there exist constants s; € (0,1) and s2 > 1,
such that for any sufficiently large m, with probability at least 1 — 3s7*, column-
wise sequential importance sampling with sy trials outputs an estimate which is
at most a s fraction of the total number of corresponding binary contingency
tables. Formally, for any t < s5,

Pr (Xt > ‘Q:nc > < 3s7t.
S2

The idea for the proof of the lemma is straightforward. By the symmetry of the
column sums, for large m and d and « € (0, 1) a uniform random table will have



about ad ones in the first an cells of the last row, with high probability. We
will show that for some « € (0,1) and d = Bm, sequential importance sampling
is very unlikely to put this many ones in the first an columns of the last row.
Therefore, since with high probability sequential importance sampling will not
construct any table from a set that is a large fraction of all legal tables, it will
likely drastically underestimate the number of tables.

Before we prove the lemma, let us first compare the column distributions
arising from the uniform distribution over all binary contingency tables with the
SIS distributions. We refer to the column distributions induced by the uniform
distribution over all tables as the true distributions. The true probability of 1 in
the first column and last row can be computed as the number of tables with 1 at
this position divided by the total number of tables. For this particular sequence,
the total number of tables is Z(m,d) = (%)m! = ("F)ml, since a table is
uniquely specified by the positions of ones in the last row and the permutation
matrix in the remaining rows and corresponding columns. Therefore,

Zim,d—1) (" m! d
T(Amii1 =1) = (m ) = ( i-:d ) = ’
Z(m, d) ("l T m ot d

On the other hand, by the definition of sequential importance sampling,
Pr(A;1 = 1) « r;/(n — r;), where 7; is the row sum in the i-th row. There-
fore,

Wty dim+d—1)

A, =1)= = .
p(Am1, ) nid+mn£1 d(m+d—1) +m?

Observe that if d = @m for some constant 5 > 0, then for sufficiently large m
we have

/J'(Am+1,1 = 1) > W(Am-‘,-l,l = 1)

As we will see, this will be true for a linear number of columns, which turns out
to be enough to prove that in polynomial time sequential importance sampling
exponentially underestimates the total number of binary contingency tables with
high probability.

Proof (Proof of Lemmal[3). We will find a constant « such that for every column
1 < am we will be able to derive an upper bound on the true probability and a
lower bound on the SIS probability of 1 appearing at the (m + 1,4) position.

For a partially filled table with columns 1,...,7 — 1 assigned, let d; be the
remaining sum in the last row and let m; be the number of other rows with
remaining row sum 1. Then the true probability of 1 in the i-th column and last
row can be bounded as

d; d .
W(Aerl,i =1 | A(m+1)><(i—1)) = m; +d1 < m+d—2 = f(dvmvl)v



while the probability under SIS can be bounded as

dl(mz—t—dz—l)
di(mi—&—di—l)—&—m?
(d—i)m+d—i-1)
dim+d—1) +m?

(Ami1i =1 | Apms1)x@-1)) =
=: g(d,m,1).

Observe that for fixed m,d, the function f is increasing and the function g is
decreasing in ¢, for ¢ < d.

Recall that we are considering a family of input instances parameterized by m
with d = [gm/], for a fixed 8 > 0. We will consider ¢ < am for some a € (0, 3).

Let
I(a, B) == 77}iﬂmoof(d7m,ozm) = +g_ o

()= lim_gld.m,am) = 25?115 e

ﬂQ
(I+8)(BA+p)+1)
and recall that for fixed 8, f°° is increasing in a and ¢g*° is decreasing in «, for
a < (. Let a < 3 be such that ¢>°(«, 8) — f>(a, ) = Ag/2. Such an « exists
by continuity and the fact that ¢>° (3, 3) < (5, ).

By the above, for any € > 0 and sufficiently large m, and for any i < am,
the true probability is upper-bounded by f*°(«, 3) 4+ € and the SIS probability
is lower-bounded by ¢°°(c, 8) — €. For our purposes it is enough to fix e = Ag/8.
Now we can use Lemma [ with « and (3 defined as above, f = f*®(«a, ) + ¢
and g = g*°(a, B) — € (notice that all these constants depend only on (), and
I ={1,...,|am]}. This finishes the proof of the lemma with s; = b1by and
So = b2.

3)

(4)

Ag = g>=(0,8) = [*(0,8) = >0, (5)

Note 1. Notice that every contingency table with row sums (1,1,...,1,d) and
column sums (1, 1,...,1) is binary. Thus, this instance proves that the column-
based SIS procedure for general (non-binary) contingency tables has the same
flaw as the binary SIS procedure. We expect that the negative example used for
Theorem [T] also extends to general (i. e., non-binary) contingency tables, but the
analysis becomes more cumbersome.

3.2 Proof of Theorem [I]

Recall that we are working with row sums (1,1,...,1,d,), where the number of
rows is m + 1, and column sums (1,1,...,1,d.), where the number of columns
isn+1=m+1+d, —d.. We will eventually fix d, = |fm| and d. = |ym],
but to simplify our expressions we work with d, and d. for now.

The theorem claims that the SIS procedure fails for an arbitrary order of
columns with high probability. We first analyze the case when the SIS procedure
starts with columns of sum 1; we shall address the issue of arbitrary column



order later. As before, under the assumption that the first column has sum 1, we
compute the probabilities of 1 being in the last row for uniform random tables
and for SIS respectively. For the true probability, the total number of tables can
be computed as (z) (CZ) (m —d.)! + (dil) (drn_l)(m —d. + 1)!, since a table is
uniquely determined by the positions of ones in the d. column and d, row and

a permutation matrix on the remaining rows and columns. Thus we have

() () m = do)t+ () () (m = de + 1)
(@) (@) (m = d)t + (1) (1) (m — de + 1)!
dy(n —d,+1)+d.d(d. — 1)

W(A(mﬂ),l) =

= =t 1) +nded, | T2(medrdo);
o dr-(n—1)
A — n—d, _ T - —. o dy).
Hlmr.) oem o de(n—1) +m(n —d,) g2(m, d, d)

Let d, = |#m] and d. = |ym| for some constants 5 > 0,y € (0,1) (notice that
this choice guarantees that n > d,. and m > d.., as required). Then, as m tends
to infinity, fo approaches

O =L
and go approaches
95°(B,7) = s

BA+B—v)+1—7

Notice that f§°(5,v) = g5°(5,~) if and only if 8 = «. Suppose that f$°(5,v) <
9°(B,7) (the opposite case follows analogous arguments and uses the second
part of Lemma ). As in the proof of Lemma [Bl we can define « such that if
the importance sampling does not choose the column with sum d, in its first
am choices, then in any subexponential number of trials it will exponentially
underestimate the total number of tables with high probability. Formally, we
derive an upper bound on the true probability of 1 being in the last row of
the i-th column, and a lower bound on the SIS probability of the same event
(both conditioned on the fact that the d. column is not among the first ¢ columns
assigned). Let dgl) be the current residual sum in the last row, m; be the number
of rows with sum 1, and n; the remaining number of columns with sum 1. Notice
that n, =n—i4+1, m>m; >m —i+ 1, and d, zd@ >d, — i+ 1. Then

AP~ dY 4 1)+ ded? (d - 1)
i —dY + 1) + nyded?

dp(n—dyp + 1) + ded?
(n—i)(n —i—d) + (n — i)de(dy — 0)
=: f3(m,d,,d.,1);

T(Amt1),i | Ammt1)x(i-1))

<



d&z) (nl — 1)
d (n; — 1) +m(n; — d)

(dr —i)(n—1i) .
- drn+m(n—dr) - g3(m7d7‘ad672)'

M(A m+1), \A(m+1)x(z 1))

As before, notice that if we fix m, d,.,d. > 0 satisfying d. < m and d,, < n, then
f3 is an increasing function and g5 is a decreasing function in 4, for ¢ < min{n —
d,,d,}. Recall that n —d,, = m —d.. Suppose that i < am < min{m —d., d,} for
some « which we specify shortly. Thus, the upper bound on f3 in this range of ¢
is fs(m,d,,d., am) and the lower bound on g3 is g3(m, d., d.,am). If d, = | Sm ]
and d. = |ym], then the upper bound on fs converges to

ﬂ2

f37(en Byy) o= B fo(mdpydesam) =) g g )

and the lower bound on g3 converges to

(B-a)1+B-7—a)

ggo(a’ﬂ?’}/) = Tr%i_rgloogk?t(m?dT‘adC?am) = ,6(]. +ﬁ—’7) + 1 _’7

Let

Aﬂy’)’ = g??o(ovﬂ77) - f??o(oaﬂa’}/) = g?(ﬂ?V) - fgo(ﬂf)/) > 0.
We set « to satisfy g3° (e, 8,7) — f5°(o, B,7) > Dp,y/2 and a < min{l — ~, 8}.
Now we can conclude this part of the proof identically to the last paragraph of
the proof of Lemma

It remains to deal with the case when sequential importance sampling picks
the d. column within the first [am] columns. Suppose d. appears as the k-th
column. In this case we focus on the subtable consisting of the last n + 1 — k
columns with sum 1, m’ rows with sum 1, and one row with sum d’, an instance
of the form (1,1,...,1,d"),(1,...,1). We will use arguments similar to the proof
of Lemma [3]

First we express d’ as a function of m’. We have the bounds (1—a)m < m/ <m
and d — am < d < d where d = [fm]| > fm — 1. Let d = @'m’. Thus,
B—a—-1/m< 3 <B/(1-a).

Now we find o such that for any i < a’m’ we will be able to derive an upper
bound on the true probability and a lower bound on the SIS probability of 1
appearing at position (m’+1,4) of the (n+ 1 — k) x m’ subtable, no matter how
the first k£ columns were assigned. In order to do this, we might need to decrease
a — recall that we are free to do so as long as « is a constant independent of
m. By the derivation in the proof of Lemma [ (see expressions (3) and ), as
m’ (and thus also m) tends to infinity, the upper bound on the true probability
approaches

co( 1 Al _ g
[, p) = n@lgnoo1+ﬁ’—a
B B

< B 1-a — 11—« _
_mglool+ﬁ OZ—I—O/ 1+ﬁ_a_a/ f4(aﬁ7 )



and the lower bound on the SIS probability approaches

cof I Al . (ﬂ/_a/)(l‘Fﬂ/—Oé/)
o B-a—-1—-a1+B—-a—- 1 —a)
> lim mﬁ 3 m
mmee 11—« (]‘ + lfa) + 1
B-—a—-a)1+p—-a—d)
Fa+,°)+1

-«
(G —a—a)1+0-a—a) .
2 Ié; 1 I 1 =294 (a?ﬂa Oé/),
17a(17a + lfa) + (1—a)?

where the last inequality holds as long as a < 1. Notice that for fixed a, 3
satisfying o < min{1, 8}, the function f§° is increasing and ¢3° is decreasing in
o/, for o/ < 8 — «. Similarly, for fixed o, 8 satisfying o < 3, the function f{°
is increasing and ¢3° is decreasing in «, for a < min{1, 3 — o’}. Therefore, if we
take & = o/ < min{1, 3/2}, we will have the bounds

[ @, By) < fi%(e,Ba)  and  g%(x, B,y) = g5 (a, B, @)

for any z,y < «. Recall that Ag = ¢>(0,8) — f*(0,8) = ¢3°(0,5,0) —
££2(0,5,0) > 0. If we choose a so that g3°(«, 8,a) — f°(a, 8,0) > Ng/2,
then in similar fashion to the last paragraph of the proof of Lemma [3, we may
conclude that the SIS procedure likely fails. More precisely, let € := Ag/8 and let
fi=f(a, B,a)+€ and g := g5° (e, B, @) — € be the upper bound (for sufficiently
large m) on the true probability and the lower bound on the SIS probability of 1
appearing at the position (m+1,4) for i € I := {k+1,...,k+|a’m’]}. Therefore
Lemma [2] with parameters o(1 — ), 3, I of size |I| = [a/'m/| > |a(1 —a)m], f,
and ¢ implies the statement of the theorem.

Finally, if the SIS procedure constructs the tables row-by-row instead of
column-by-column, symmetrical arguments hold. This completes the proof of
Theorem [I1 O

4 Experiments

We performed several experimental tests which show sequential importance sam-
pling to be a promising approach for certain classes of input instances. We discuss
the experiments in more detail and present supporting figures in the full version
of this paper [2].

Our first set of experiments tested the SIS technique on regular input se-
quences, i.e., r; = ¢; for all 7, j. It appears the approach is very efficient for these
input sequences. We considered input sequences which were 5, 10, |5logn| and
|n/2]-regular, and n x n matrices with n = 10,15,20,...,100. The required
number of SIS trials until the algorithm converged resembled a linear function
of n.



In contrast, we examined the evolution of SIS on the negative example from
Theorem [l In our simulations we used the more delicate sampling mentioned in
footnote [I, which guarantees that the assignment in every column is valid, i.e.,
such an assignment can always be extended to a valid table (or, equivalently,
the random variable X; is always strictly positive). We ran the SIS algorithm
under three different settings: first, we constructed the tables column-by-column
where the columns were ordered in decreasing order of their sums, as suggested
in the paper of Chen et al. []; second, we ordered the columns in increasing
order of their sums; and third, we constructed the tables row-by-row where the
rows were ordered in decreasing order of their sums.

The experiments confirmed the poor performance described in Theorem [l
For m = 300, 8 = .6 and v = .7, even the best of the three estimators differed
from the true value by about a factor of 40, while some estimates were off by
more than a factor of 1000.
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