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Abstract. We study the computational complexity of approximately
counting the number of independent sets of a graph with maximum de-
gree ∆. More generally, for an input graph G = (V,E) and an activ-
ity λ > 0, we are interested in the quantity ZG(λ) defined as the sum
over independent sets I weighted as w(I) = λ|I|. In statistical physics,
ZG(λ) is the partition function for the hard-core model, which is an
idealized model of a gas where the particles have non-negibile size. Re-
cently, an interesting phase transition was shown to occur for the com-
plexity of approximating the partition function. Weitz showed an FPAS
for the partition function for any graph of maximum degree ∆ when ∆
is constant and λ < λc(T∆) := (∆ − 1)∆−1/(∆ − 2)∆. The quantity
λc(T∆) is the critical point for the so-called uniqueness threshold on the
infinite, regular tree of degree ∆. On the other side, Sly proved that
there does not exist efficient (randomized) approximation algorithms
for λc(T∆) < λ < λc(T∆) + ε(∆), unless NP=RP, for some function
ε(∆) > 0. We remove the upper bound in the assumptions of Sly’s result
for ∆ 6= 4, 5, that is, we show that there does not exist efficient random-
ized approximation algorithms for all λ > λc(T∆) for ∆ = 3 and ∆ ≥ 6.
Sly’s inapproximability result uses a clever reduction, combined with a
second-moment analysis of Mossel, Weitz and Wormald which prove tor-
pid mixing of the Glauber dynamics for sampling from the associated
Gibbs distribution on almost every regular graph of degree ∆ for the
same range of λ as in Sly’s result. We extend Sly’s result by improving
upon the technical work of Mossel et al., via a more detailed analysis of
independent sets in random regular graphs.

1 Introduction

For a graph G = (V,E) and activity λ > 0, the hard-core model is defined on the
set I(G) of independent sets of G where set I ∈ I(G) has weight w(I) := λ|I|.

1 Research supported in part by NSF grants CCF-0830298 and CCF-0910584.
2 Research supported in part by NSF grant CCF-0910415.



The so-called partition function for the model is defined as:

ZG(λ) :=
∑

I∈I(G)

w(I) =
∑

I∈I(G)

λ|I|.

The Gibbs distribution µ is over the set I(G) where µ(I) = w(I)/ZG(λ). The
case λ = 1 is especially interesting from a combinatorial perspective, since the
partition function is the number of independent sets in G and the Gibbs distri-
bution is uniformly distributed over the set of independent sets.

The hard-core model has received considerable attention in several fields. In
statistical physics, it is studied as an idealized model of a gas where the gas
particles have non-negligibile size so neighboring sites cannot simultaneously be
occupied [4,1]. The activity λ corresponds to the fugacity of the gas. The model
also arose in operations research in the study of communication networks [7].

We study the computational complexity of approximating the partition func-
tion. Valiant [15] proved that exactly computing the number of independent sets
of an input graph G = (V,E) is #P-complete. Greenhill [5] proved that even
when the input is restricted to graphs with maximum degree 3, it is still #P-
complete. Hence, our focus is on approximating the partition function.

Weitz [16] gave an FPAS (fully polynomial-time approximation scheme) for
the partition function of graphs with maximum degree ∆ when ∆ is constant
and λ < λc(T∆) := (∆ − 1)∆−1/(∆ − 2)∆. The activity λc(T∆) is the critical
activity for the threshold of uniqueness/non-uniqueness of the infinite-volume
Gibbs measures on the infinite ∆-regular tree [7]. Recently, Sly [11] proved that,
unless NP = RP , for every ∆ ≥ 3, there exists a function ε(∆) > 0 such
that for graphs with maximum degree ∆ there does not exist an FPRAS (fully-
polynomial time randomized approximation scheme) for the partition function
at activity λ satisfying:

λc(T∆) < λ < λc(T∆) + ε(∆). (?)

It was conjectured in Sly [11] and Mossel et al. [10] that the inapproximability
result holds for all λ > λc(T∆). We almost resolve this conjecture, that is we
prove the conjecture for all ∆ with the exception of ∆ ∈ {4, 5}.

Theorem 1. Unless NP=RP, there does not exist an FPRAS for the partition
function of the hard-core model for graphs of maximum degree at most ∆ at
activity λ when:

– ∆ = 3 and λ > λc(T3) = 4; or
– ∆ ≥ 6 and λ > λc(T∆); or
– ∆ = 4 and λ ∈ (λc(T4) = 1.6875, 2.01538] ∪ (4,+∞); or
– ∆ = 5 and λ ∈ (λc(T5) = 256/243, 1.45641] ∪ (1.6875, 2.01538] ∪ (4,+∞).

Sly’s work utilizes earlier work of Mossel et al. [10] which studied the Glauber
dynamics. The Glauber dynamics is a simple Markov chain (Xt) that is used
to sample from the Gibbs distribution (and hence to approximate the partition



function via now standard techniques, see [6,12]). For an input graph G = (V,E)
and activity λ > 0, the state space of the chain is I(G). From a state Xt ∈ I(G),
the transitions Xt → Xt+1 are defined by the following stochastic process:

– Choose a vertex v uniformly at random from V .

– Let

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ).

– If X ′ ∈ I(G), then set Xt+1 = X ′, otherwise set Xt+1 = Xt.

It is straightforward to verify that the Glauber dynamics is ergodic, and the
unique stationary distribution is the Gibbs distribution. The mixing time Tmix

is the minimum number of steps T from the worst initial state X0, so that the
distribution of XT is within (total) variation distance ≤ 1/4 of the stationary
distribution. The chain is said to be rapidly mixing if the mixing time is poly-
nomial in n = |V |, and it is said to be torpidly mixing if the mixing time is
exponential in n (for the purposes of this paper, that means Tmix = exp(Ω(n)).
We refer the reader to Levin et al. [8] for a more thorough introduction to the
Glauber dynamics.

Mossel et al. [10] proved that the Glauber dynamics is torpidly mixing, for all
∆ ≥ 3, for graphs with maximum degree ∆ when λ satisfies (?). This improved
upon earlier work of Dyer et al. [2] which held for larger λ, but not down to the
critical activity λc(T∆). The torpid mixing result of Mossel et al. [10] follows
immediately (via a conductance argument) from their main result that for a
random∆-regular bipartite graph, for λ satisifying (?), an independent set drawn
from the Gibbs distribution is “unbalanced” with high probability.

The proof of Mossel et al. [10] is a technically involved second moment calcu-
lation that Sly [11] calls a “technical tour de force”. Our main contribution is to
improve upon Mossel et al.’s result, most notably, extending it to all λ > λc(T∆)
for ∆ = 3. Our improved analysis comes from using a slightly different pa-
rameterization of the second moment of the partition function, which brings in
symmetry, and allows for simpler proofs.

To formally state our results for independent sets of random regular graphs,
we need to partition the set of independent sets as follows. For a bipartite graph
G = (V1 ∪ V2, E) where |V1| = |V2| = n, for δ > 0, for i ∈ {1, 2}, let Iδi = {I ∈
I(G) : |I∩Vi| > |I∩V3−i|+δn} denote the independent sets that are unbalanced
and “biased” towards Vi. Let IδB = {I ∈ I(G) : |I ∩Vi| ≤ |I ∩V3−i|+ δn} denote
the set of nearly balanced independent sets.

Let G(n,∆) denote the probability distribution over bipartite graphs with
n + n vertices formed by taking the union of ∆ random perfect matchings.
Strictly speaking, this distribution is over multi-graphs. However, for indepen-
dent sets the multiplicity of an edge does not matter so we can view G(n,∆) as
a distribution over simple graphs with maximum degree ∆. Moreover, since our
results hold asymptotically almost surely (a.a.s.) over G(n,∆), as noted in [10,
Section 2.1], by standard arguments (see the note after the proof of [9, Theo-



rem 4]), our results also hold a.a.s. for the uniform distribution over bipartite
∆-regular graphs.

Theorem 2. For all ∆ ≥ 3 there exists ε(∆) > 0, for any λ where λc(T∆) <
λ < λc(T∆) + ε(∆), there exist a > 1 and δ > 0 such that, asymptotically almost
surely, for a graph G chosen from G(n,∆), the Gibbs distribution µ satisfies:

µ(IδB) ≤ a−n min{µ(Iδ1), µ(Iδ2)}. (1)

Therefore, the Glauber dynamics is torpidly mixing. The function ε(∆) satisfies:
for ∆ = 4, ε(4) ≥ .327887; for ∆ = 5, ε(5) ≥ .402912; for ∆ ≥ 6, ε(∆) ≥
λc(T∆)− λc(T∆+1); and for ∆ = 3, ε(3) =∞.

This proves Conjecture 2.4 of [10] for the case ∆ = 3 and extends the results
of Mossel et al. for ∆ ≥ 4.

In the following section we look at the first and second moments of the
partition function. We then state two technical lemmas (Lemma 3 and Lemma
4) from which Theorems 1, 2 easily follow using work of Sly [11] and Mossel
et al. [10]. In Section 3 we prove the technical lemmas. Some of our proofs use
Mathematica to prove inequalities involving rational functions, this is discussed
in Section 2.4.

2 Technical Overview

2.1 Phase Transition Revisited

Recall, for the infinite ∆-regular tree T∆, Kelly [7] showed that there is a phase
transition at λc(T∆) = (∆ − 1)∆−1/(∆ − 2)∆. Formally, this phase transition
can be defined in the following manner. Let T` denote the complete tree of
degree ∆ and containing ` levels. Let p` denote the marginal probability that
the root is occupied in the Gibbs distribution on T`. Note, for even ` the root
is in the maximum independent set, whereas for odd ` the root is not in the
maximum independent set. Our interest is in comparing the marginal probability
for the root in even versus odd sized trees. Hence, let p+ = lim`→∞ p2` and
p− = lim`→∞ p2`+1. One can prove these limits exist by analyzing appropriate
recurrences. The phase transition on the tree T∆ captures whether p+ equals
(or not) p−. For all λ ≤ λc(T∆), we have p+ = p−, and let p∗ := p+ = p−. On
the other side, for all λ > λc(T∆), we have p+ > p−. Mossel et al. [10] exhibited
the critical role these quantities p+ and p− play in the analysis of the Gibbs
distribution on random graphs G(n,∆).

2.2 First Moment of the Partition Function

Proceeding as in [10], roughly speaking, to prove Theorem 2 we need to prove
that there exist graphs G whose partition function is close to the expected value
(where the expectation is over a random G). To do that we use the second
moment method. We first investigate the first moment of the partition function.



For α, β > 0, let Iα,βG = {I ∈ IG | |I ∩ V1| = αn, |I ∩ V2| = βn}, that is, α
is the fraction of the vertices in V1 that are in the independent set and β is the
fraction of the vertices in V2 that are in the independent set.

Let Zα,βG =
∑
I∈Iα,βG

λ(α+β)n. The first moment of Zα,βG is

EG [Zα,βG ] = λ(α+β)n
(
n

αn

)(
n

βn

)(((1−β)n
αn

)(
n
αn

) )∆
≈ exp(nΦ1(α, β)),

where Φ1(α, β) = (α+β) ln(λ) +H(α) +H(β) +∆(1−β)H( α
1−β )−∆H(α), and

H(x) = −x lnx− (1− x) ln(1− x) is the entropy function.
For every ∆ ≥ 2, we define the region T∆ = {(α, β) |α, β > 0 and α + β +

∆(∆ − 2)αβ ≤ 1}. The following lemma shows that the local maxima of Φ1 lie
in T∆. Note that for ∆ ≥ 2, we have T∆+1 ⊂ T∆. Hence, the local maxima for
all ∆ ≥ 2 lie in T2. The first moment was analyzed in the work of Dyer et al. [2].
We use the following lemma from Mossel et al. [10] that relates the properties
of the first moment to p∗, p+ and p−.

Lemma 1 (Lemma 3.2 and Proposition 4.1 of Mossel et al. [10]). The
following holds:

1. the stationary point (α, β) of Φ1 over T2 is the solution to β = φ(α) and
α = φ(β), where

φ(x) = (1− x)

(
1−

(
x

λ(1− x)

)1/∆
)
, (2)

and the solutions are exactly (p+, p−), (p−, p+), and (p∗, p∗) when λ >
λc(T∆), and the unique solution is (p∗, p∗) when λ ≤ λc(T∆);

2. when λ ≤ λc(T∆), (p∗, p∗) is the unique maximum of Φ1 over T2, and when
λ > λc(T∆), (p+, p−) and (p−, p+) are the maxima of Φ1 over T2, and
(p∗, p∗) is not a local maximum;

3. all local maxima of Φ1 satisfy α+ β +∆(∆− 2)αβ ≤ 1;
4. p+, p−, p∗ satisfy p− < p∗ < p+ and when λ→ λc(T∆) from above, we have

p∗, p−, p+ → 1/∆.

2.3 Second Moment of the Partition Function

The second moment of Zα,βG is EG [(Zα,βG )2] ≈ exp(n · maxγ,δ,ε Φ2(α, β, γ, δ, ε)),
where

Φ2(α, β, γ, δ, ε) = 2(α+ β) ln(λ) +H(α) +H1(γ, α) +H1(α− γ, 1− α)

+H(β) +H1(δ, β) +H1(β − δ, 1− β) +∆
(
H1(γ, 1− 2β + δ)−H(γ)

+H1(ε, 1− 2β + δ − γ) +H1(α− γ − ε, β − δ)−H1(α− γ, 1− γ)

+H1(α− γ, 1− β − γ − ε)−H1(α− γ, 1− α)
)
,

(3)



where H(x) = −x ln(x) − (1 − x) ln(1 − x) and H1(x, y) = −x(ln(x) − ln(y)) +
(x− y)(ln(y − x)− ln(y)).

To make Φ2 well defined, the variables have to satisfy (α, β) ∈ T2 and

γ, δ, ε ≥ 0, α− γ − ε ≥ 0, β − δ ≥ 0, 1− 2β + δ − γ − ε ≥ 0,

1− α− β − ε ≥ 0, β − δ + ε+ γ − α ≥ 0.
(4)

Define γ∗ = α2, δ∗ = β2, ε∗ = α(1−α−β). The following technical condition
about the second moment was proposed in [11]. If we prove the condition holds
then due to work of Mossel et al. [10] Theorem 2 will follow, and further, due to
work of Sly [11] then Theorem 1 will follow.

Condition 1 (Condition 1.23 of Sly [11]) Fix λ > 0 and let p+ and p− be
the corresponding probabilities. There exists a constant χ > 0 such that when
|p+ − α| < χ and |p− − β| < χ then gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) achieves its
unique maximum in the region (4) at the point (γ∗, δ∗, ε∗).

Two known regions of λ for which Condition 1 holds are the following: 1)
∆ ≥ 3, and λc(T∆) < λ < λc(T∆) + ε(∆) for some ε(∆) > 0, ([10, Lemma 6.10,
Lemma 5.1]); 2) ∆ = 6 and λ = 1, ([11, Section 5]).

In this paper, we show that Condition 1 holds for a broad range of λ, and this
is how we prove Theorems 1, and 2. Before stating the range when Condition 1
holds we need to define the following quantity. Let λ1/2(T∆) be the smallest
value of λ such that φ(φ(1/2)) = 1/2. Equivalently λ1/2(T∆) is the minimum
solution of (

1 + (1/λ)1/∆
)1−1/∆ (

1− (1/λ)1/∆
)1/∆

= 1. (5)

Lemma 2. Condition 1 holds for 1) ∆ = 3 and λ > λc(T∆); and 2) ∆ > 3 and
λ ∈ (λc(T∆), λ1/2(T∆)].

Proof. When ∆ and λ are such that p+ ≤ 1/2 then the following lemma implies
Condition 1 (the precise condition on λ to have p+ ≤ 1/2 is λ ∈ (λc(T∆), λ1/2(T∆)]
where λ1/2(T∆) is defined by (5)).

Lemma 3. Let ∆ ≥ 3 and let (α, β) ∈ T∆, α, β > 0, and α, β ≤ 1/2. Then
gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) achieves its unique maximum in the region (4) at
the point (γ∗, δ∗, ε∗).

For all λ ∈ (λc(T∆), λ1/2(T∆)] we have p+ ≤ 1/2, this follows from the
fact that p+ is continuous in λ (it also follows in a more obvious way from the
fact that p+ increasing, but that fact requires a short proof), and p+ = 1/∆
for λ = λc(T∆)). Thus for λ ∈ (λc(T∆), λ1/2(T∆)] we have that Condition 1
is satisfied; this follows from Lemma 3 and the fact that (α, β) = (p+, p−) is
contained in the interior of T∆ (this follows from Lemma 1).

For ∆ = 3 the following lemma establishes Condition 1 in the case comple-
mentary to Lemma 3, more precisely, it establishes the condition for ∆ = 3 and
λ such that p+ ≥ 1/2.

3 The numbering in this paper for results from Sly’s work [11] refer to the arXiv

version of his paper.



Lemma 4. Fix ∆ = 3 and λ > λc(T∆). Let p+ and p− be the corresponding
probabilities. Assume that 1/2 ≤ p+ < 1. There exists a constant χ > 0 such
that when |p+ − α| < χ and |p− − β| < χ then gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε)
achieves its unique maximum in the region (4) at the point (γ∗, δ∗, ε∗).

Assume ∆ = 3 and λ > λc(T∆). Let p+ and p− be the corresponding prob-
abilities. If p+ ≤ 1/2 then Condition 1 follows from Lemma 3 and the fact
that (α, β) = (p+, p−) is contained in the interior of T∆ (this follows from
Lemma 1). If p+ ≥ 1/2 then Condition 1 follows from Lemma 4 and the fact
that (α, β) = (p+, p−) is contained in the interior of T∆. ut

We defer the proofs of Lemmas 3 and 4 to Section 3.

As a corollary of Lemma 2 we get that Condition 1 holds for the range of λ
specified in Theorem 2.

Corollary 1. Condition 1 holds for:

1. For ∆ = 3 and λ > λc(T3).

2. For ∆ ≥ 6 and λc(T∆) < λ ≤ λ1/2(T∆) and λ1/2(T∆) > λc(T∆−1).

3. For ∆ = 5 and λc(T5) < λ ≤ λc(T5) + .402912.

4. For ∆ = 4, λc(T4) < λ ≤ λc(T4) + .327887.

Theorem 2 follows from Corollary 1 via the second-moment method. That
proof closely follows the work of Mossel et al. [10], and hence we omit the details
here and refer the interested reader to the full version of this paper [3]. For
Theorem 1 for the case of ∆ = 3, we use Theorem 2 (or closely related results)
combined with the reduction of Sly [11]. That proof closely follows the work of
Sly [11], so once again we refer the interested reader to the full version [3]. To
extend the inapproximability result for ∆ = 3 to ∆ ≥ 6 we use the following
simple combinatorial result.

Lemma 5. Let G be a graph of maximum degree ∆ and let k > 1 be an integer.
Consider the graph H obtained from G be replacing each vertex by k copies of that
vertex and each edge by the complete bipartite graph between the corresponding
copies. Then, ZG((1 + λ)k − 1) = ZH(λ).

2.4 On the Use of Computational Assistance

We are going to use Mathematica to prove inequalities involving rational func-
tions in regions bounded by rational functions. Such inequalities are known to be
decidable by Tarski’s quantifier elimination [14], the particular version of Collins
algebraic decomposition (CAD) used by Mathematica’s Resolve command is de-
scribed in [13].



3 Analysis of the second moment function

In this section, we will prove Lemmas 3 and 4. The proofs of the lemmas intro-
duced in this section are deferred to the full version of the paper [3].

The derivatives of Φ2 with respect to γ, δ, ε are

exp

(
∂Φ2

∂γ

)
=

(1− 2β + δ − γ − ε)∆(α− γ − ε)∆(1− 2α+ γ)∆−1

(1− β − γ − ε)∆(β − α+ γ − δ + ε)∆(α− γ)∆−2γ
, (6)

exp

(
∂Φ2

∂δ

)
=

(β − α− δ + γ + ε)∆(1− 2β + δ)∆−1

(1− 2β + δ − γ − ε)∆(β − δ)∆−2δ
, (7)

exp

(
∂Φ2

∂ε

)
=

(1− 2β + δ − γ − ε)∆(α− γ − ε)∆(1− α− β − ε)∆

ε∆(β − α− δ + γ + ε)∆(1− β − γ − ε)∆
. (8)

We first argue that the maximum of gα,β cannot occur on the boundary of
the region defined by (4).

Lemma 6. For every ∆ ≥ 3 and (α, β) ∈ T∆, gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε)
attains its maximum in the interior of (4).

Fix ∆,α, β, γ, δ and view Φ2 as a function of ε. We follow [10] who solved
∂Φ2

∂ε = 0 (which is equivalent to (8) = 1) for ε, and showed that there is a unique
solution in the interior of (4):

ε̂ := ε̂(α, β, γ, δ) =
1

2
(1 + α− β − 2γ −

√
D), (9)

where D = (1+α−β−2γ)2−4(α−γ)(1−2β−γ+δ) = (α+β−1)2+4(α−γ)(β−δ).
Note that ε̂ is a maximum of Φ2, since

∂Φ2

∂2ε
= − ∆

1− 2β + δ − γ − ε
− ∆

α− γ − ε
− ∆

ε
− ∆

β − δ − α+ γ + ε

− ∆

1− α− β − ε
+

∆

1− β − γ − ε
< 0.

Define

η̂ := η̂(α, β, γ, δ) =
1

2
(1− α+ β − 2δ −

√
D), (10)

and note that

α− γ − ε̂ = β − δ − η̂ =
1

2
(−(1− α− β) +

√
D),

(α− γ − ε̂)(1− α− β − ε̂− η̂) = ε̂η̂.
(11)

The new parameter η̂ (not used in [10]) is symmetric with ε̂ (the constrains and
formulas we have are invariant under a symmetry that swaps α, γ, ε̂ with β, δ, η̂)
and allows for simpler arguments (using the symmetry).

Equation (9) allows us to eliminate variable ε. Let

f(γ, δ) := gα,β(γ, δ, ε̂) = Φ2(α, β, γ, δ, ε̂).



To prove that (γ∗, δ∗, ε∗) is the unique global maximum of gα,β in the interior
of the region defined by (4), it suffices to prove that (γ∗, δ∗) is the unique global
maximum of f for (γ, δ) in the interior of the following region (which contains
the (γ, δ)-projection of the region defined by (4)):

0 ≤ γ ≤ α, 0 ≤ δ ≤ β,
0 ≤ 1− 2β + δ − γ, 0 ≤ 1− 2α+ γ − δ.

(12)

Each inequality in (12) is implied by the inequalities in (4) (the only non-trivial
case is the last inequality which is the sum of 1−α− β− ε ≥ 0 and β− δ+ ε+
γ − α ≥ 0).

The first derivatives of f with respect to γ, δ are

∂f

∂γ
(γ, δ) = ∆ lnW11 + lnW12, (13)

∂f

∂δ
(γ, δ) = ∆ lnW21 + lnW22, (14)

where

W11=
(α− γ − ε̂)ε̂(1− 2α+ γ)

η̂(α− γ)2
=

ε̂(1− 2α+ γ)

(1− α− β − ε̂)(α− γ)
, W12=

(α− γ)2

(1− 2α+ γ)γ
,

W21=
(β − δ − η̂)η̂(1− 2β + δ)

ε̂(β − δ)2
=

η̂(1− 2β + δ)

(1− α− β − η̂)(β − δ)
, W22=

(β − δ)2

(1− 2β + δ)δ
.

(The equalities in the definition of W11 and the definition of W21 follow from (10)
and (11).)

To determine whether (13) and (14) are zero it will be useful to understand
conditions that make W11,W12,W21,W22 greater or equal to 1. The following
lemma gives such conditions.

Lemma 7. For every (α, β) ∈ T2, and (γ, δ) in the interior of (12),

W11 ≥ 1 ⇐⇒ (1− α)2δ + β2(2α− 1− γ) ≥ 0, W12 ≥ 1 ⇐⇒ γ ≤ α2,

W21 ≥ 1 ⇐⇒ (1− β)2γ + α2(2β − 1− δ) ≥ 0, W22 ≥ 1 ⇐⇒ δ ≤ β2.

For every ∆ ≥ 3, and (α, β) ∈ T∆, we have (γ∗, δ∗) is a stationary point of
f (this follows from the fact that for γ = α2 and δ = β2 the inequalities on
the right-hand sides in Lemma 7 become equalities, and from (13), (14) we have
that the derivatives of f vanish). By considering the sign of (13) and (14) and
Lemma 7, we have the stationary points of f (and hence of gα,β) can only be in

0 < γ ≤ α2, 0 < δ ≤ β2, (15)

(1− α)2δ + β2(2α− 1− γ) ≤ 0, (1− β)2γ + α2(2β − 1− δ) ≤ 0, (16)

or

α2 ≤ γ < α, β2 ≤ δ < β, (17)

(1− α)2δ + β2(2α− 1− γ) ≥ 0, (1− β)2γ + α2(2β − 1− δ) ≥ 0. (18)



We are going to prove that (γ∗, δ∗) is the unique maximum of f for every
∆ ≥ 3, (α, β) ∈ T∆, α, β > 0 and α, β ≤ 1/2, by showing that the Hessian
matrix of f is always negative definite in the region defined by the union of (15)
and (17) (and hence the function f is strictly concave).

Let

R1 = 1−α−β
1−α−β−ε̂−η̂ , R2 =

√
D

1−2α+γ , R3 = 2(α−γ−ε̂)
α−γ ,

R4 =
√
D
γ , R5 = 2(1−β−γ−ε̂)

α−γ , R6 =
√
D

1−2β+δ ,

R7 = 2(α−γ−ε̂)
β−δ , R8 =

√
D
δ , R9 = 2(1−β−γ−ε̂)

β−δ .

Inspecting the Ri we obtain the following observation.

Observation 3 R1, . . . , R9 are positive when (α, β) ∈ T2 and (γ, δ) in the inte-
rior of (12).

Let

M =

(
∂f
∂2γ (γ, δ) ∂f

∂γ∂δ (γ, δ)
∂f
∂δ∂γ (γ, δ) ∂f

∂2δ (γ, δ)

)
.

In terms of R1, . . . , R9 we have ∂f
∂γ∂δ (γ, δ) = ∂f

∂δ∂γ (γ, δ) = ∆R1√
D

,

∂f

∂2γ
(γ, δ) =

1√
D

[
(−R1 +R2 +R3)∆−R2 −R3 −R4 −R5

]
, (19)

∂f

∂2δ
(γ, δ) =

1√
D

[
(−R1 +R6 +R7)∆−R6 −R7 −R8 −R9

]
. (20)

From the positivity of R1 (when (α, β) ∈ T2 and (γ, δ) in the interior of (12))
we immediately obtain the following observation.

Observation 4 For every (α, β) ∈ T2, and (γ, δ) in the interior of (12) we have
∂f
∂γ∂δ (γ, δ) = ∂f

∂δ∂γ (γ, δ) > 0.

We prove the following technical inequality on the Ri.

Lemma 8. For every (α, β) ∈ T2, and (γ, δ) in the interior of (12) we have
R1 > R2 +R3 and R1 > R6 +R7.

Plugging Lemma 8 into (19) and (20) we obtain:

Corollary 2. For every (α, β) ∈ T2, and (γ, δ) in the interior of (12) we have
∂f
∂2γ (γ, δ) < 0 and ∂f

∂2δ (γ, δ) < 0.

To show that M is negative definite it is enough to show that the determinant
of M is positive (Corollary 2 implies that the sum of the eigenvalues of M is
negative and if the determinant is positive we can conclude that both eigenvalues



are negative). We have

det(M) =
∂f

∂2γ
(γ, δ) · ∂f

∂2δ
(γ, δ)− ∂f

∂γ∂δ
(γ, δ) · ∂f

∂δ∂γ
(γ, δ)

=
1

D

{
(∆− 1)2

[
(−R1 +R2 +R3)(−R1 +R6 +R7)−R2

1

]
+(∆− 1)

[
(−R1 +R2 +R3)(−R1 −R8 −R9) +

+ (−R1 +R6 +R7)(−R1 −R4 −R5)− 2R2
1

]
+
[
(−R1 −R8 −R9)(−R1 −R4 −R5)−R2

1

]}
. (21)

By proving technical inequalities onR1, . . . , R9 we will establish the positivity
of detM in the following two cases.

Lemma 9. det(M) > 0 for every ∆ ≥ 3, (α, β) ∈ T∆, α, β > 0, (γ, δ) in the
interior of (12) and (γ, δ) in (15).

Lemma 10. det(M) > 0 for every ∆ ≥ 3, (α, β) ∈ T∆, α, β ≤ 1/2, α, β > 0,
(γ, δ) in the interior of (12) and (γ, δ) in (17).

Assuming the lemmas, the proof of Lemma 3 is immediate.

Proof of Lemma 3. Lemma 9 and Lemma 10 imply that f has a unique maximum
at (γ∗, δ∗) for every ∆ ≥ 3, (α, β) ∈ T∆, α, β > 0, α, β ≤ 1/2, (γ, δ) in the interior
of (12). This follows from the fact that det(M) > 0 implies that the Hessian of f
is negative definite in the region of interest, i.e., where gα,β could possibly have
stationary points, which in turn implies that f is strictly concave in the region
and hence has a unique maximum. By the definition of f , it follows that gα,β
has a unique maximum at (γ∗, δ∗, ε∗). ut

When ∆ = 3, by (2), we have the solution of β = φ(α) and α = φ(β) satisfies
α2 − 2α+ αβ + 1− 2β + β2 = 0. We define T ′3 to be the set of pairs (α, β) such
that α2 − 2α + αβ + 1 − 2β + β2 = 0, 1/2 ≤ α < 1 and 0 < β ≤ (3 −

√
5)/4.

Our goal is to show that det(M) > 0 for every (α, β) ∈ T ′3 , (γ, δ) in the interior
of (12) and (γ, δ) in (17).

We can rewrite det(M) using the formula in (21) as

det(M) =
1

D

[
3R1(U1 + U2) + U1U2

]
=
U1

D

[
3R1(1 + U2/U1) + U2

]
, (22)

where U1 = R8 +R9 − 2R6 − 2R7 and U2 = R4 +R5 − 2R2 − 2R3.

By proving technical inequalities on U1, U2, R1, . . . , R9 we will establish the
positivity of detM in the interior of (12).

Lemma 11. det(M) > 0 for every (α, β) ∈ T ′3 , (γ, δ) in the interior of (12)
and (γ, δ) in (17).



Proof of Lemma 4. By Lemma 11, gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) achieves its
unique maximum in the region (4) at (γ∗, δ∗, ε∗), for every (α, β) ∈ T ′3 . We next
show that gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) also achieves its unique maximum in
the region (4) at (γ∗, δ∗, ε∗) in a small neighborhood of T ′3 . First note that Φ2

is continuous. By Lemma 6, we have for sufficiently small χ > 0, the maximum
of gα,β cannot be obtained on the boundary of the region (4). Note that the
derivatives of Φ2 are continuous. It follows that for sufficiently small χ > 0, all
stationary points of gα,β have to be close to the point (γ∗, δ∗, ε∗). We can choose
χ such that det(M) > 0 in the neighborhood of the point (γ∗, δ∗, ε∗), which
implies that gα,β has a unique stationary point and it is a maximum. ut
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12. D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive Simulated Annealing: A
Near-optimal Connection between Sampling and Counting. Journal of the ACM,
56(3):1-36, 2009.

13. A. W. Strzebonski. Cylindrical algebraic decomposition using validated numerics.
J. Symb. Comput., 41(9):1021–1038, 2006.

14. A. Tarski. A Decision Method for Elementary Algebra and Geometry. RAND
Corporation, Santa Monica, Calif., 1948.

15. L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J.
Computing, 8(3):410-421, 1979.

16. D. Weitz. Counting independent sets up to the tree threshold. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing (STOC), 140–149,
2006.

http://arxiv.org/abs/1105.5131
http://arxiv.org/abs/1005.5584

	Improved Inapproximability Results for Counting Independent Sets in the Hard-Core Model 

