Density estimation in linear time (+approximating L₁-distances)

Satyaki Mahalanabis Daniel Štefankovič

University of Rochester

Density estimation

$$\begin{array}{ccc} f_1 & f_2 & f_6 \\ f_3 & f_4 & f_5 \end{array}$$

+ DATA

F = a family of densities

Density estimation - example 0.418974, 0.848565, 1.73705, 1.59579, **N**(μ,1) -1.18767, -1.05573,-1.36625F = a family of normal densities with σ =1

Measure of quality: g=TRUTH f=OUTPUT

L_1 – distance from the truth

 $|\mathbf{f}-\mathbf{g}|_1 = \int |\mathbf{f}(\mathbf{x})-\mathbf{g}(\mathbf{x})| \, d\mathbf{x}$

Why L₁?

1) small $L_1 \Rightarrow$ all events estimated with small additive error

2) scale invariant

Obstacles to "quality":

+ DATA bad data A?

weak class of densities dist₁(g,F)

Density estimation

DATA (h) assuming these are small:

with small |g-f|₁

$\underset{A \in Y(F)}{\text{dist}(g,F)}$

Why would these be small ??? dist₁(h,F) $\Delta = 2\max_{A \in Y(F)} |h(A)-g(A)|$ They will be if: 1) pick a large enough F 2) pick a small enough F so that VC-dimension of Y(F) is small 3) data are iid from h **Theorem (Haussler, Dudley, Vapnik, Chervonenkis):**

 $\begin{array}{l} \mathsf{E}[\max|h(A)-g(A)|] \leq \sqrt{\frac{\mathsf{VC}(\mathsf{Y})}{\mathsf{samples}}} \\ \mathsf{A} \in \mathsf{Y} \end{array}$

How to choose from 2 densities? Scheffé: if $\mathbf{T} \cdot \mathbf{h} > \mathbf{T} \cdot (\mathbf{f}_1 + \mathbf{f}_2)/2 \implies$ t₁ else \Rightarrow f₂ Theorem (see DL'01): $|f-g|_1 \leq 3dist_1(g,F) + 2\Delta$

Density estimation

DATA (h) assuming these are small:

with small |g-f|₁

$\underset{A \in Y(F)}{\text{dist}(g,F)}$

Density estimation algorithms Scheffé tournament: Pick the density with the most wins. Theorem (DL'01): $|f-g|_1 \le 9dist_1(g,F)+8\Delta$

 $\begin{array}{l} \mbox{Minimum distance estimate (Y'85):} \\ \mbox{Output } f_k \in \mbox{F that minimizes} \\ \mbox{max } |(f_k-h) \cdot \mbox{T}_{ij}| \\ \mbox{Theorem (DL'01):} \\ |f-g|_1 \leq 3dist_1(g,F)+2\Delta \end{array}$

85):

es

Can we do better?

Theorem (DL'01): $|f-g|_1 \le 3dist_1(g,F)+2\Delta$

Our algorithm: Efficient minimum loss-weight

repeat until one distribution left
1) pick the pair of distributions in F that are furthest apart (in L₁)
2) eliminate the loser

 $\begin{array}{l} \mbox{Theorem [MS'08]:} \\ \mbox{|f-g|}_1 \leq 3dist_1(g,F) + 2 \Delta \end{array}$

Take the most "discriminative" action.

* after preprocessing F

Tournament revelation problem INPUT:

a weighed undirected graph G (wlog all edge-weights distinct)

OUTPUT:

REPORT: heaviest edge $\{u_1, v_1\}$ in G ADVERSARY eliminates u_1 or $v_1 \mapsto G_1$ REPORT: heaviest edge $\{u_2, v_2\}$ in G_1 ADVERSARY eliminates u_2 or $v_2 \mapsto G_2$

OBJECTIVE:

minimize total time spent generating reports

report the heaviest edge

report the heaviest edge **BC**

report the heaviest edge BC eliminate B

report the heaviest edge

report the heaviest edge BC eliminate B

report the heaviest edge AD

WE DO NOT KNOW: Can get O(F) run-time with polynomial preprocessing ???

 $2^{O(F)}$ preprocessing $\Rightarrow O(F)$ run-time O(F² log F) preprocessing $\Rightarrow O(F^2)$ run-time

Efficient minimum loss-weight

repeat until one distribution left
1) pick the pair of distributions that are furthest apart (in L₁)
2) eliminate the loser

(in practice 2) is more costly)

 $2^{O(F)} \text{ preprocessing} \Rightarrow O(F) \text{ run-time}$ O(F² log F) preprocessing $\Rightarrow O(F^2) \text{ run-time}$

WE DO NOT KNOW: Can get O(F) run-time with polynomial preprocessing ???

Efficient minimum loss-weight

repeat until one distribution left
1) pick the pair of distributions that are furthest apart (in L₁)
2) eliminate the loser

Theorem: $|f-g|_1 \le 3dist_1(g,F)+2\Delta$

n

Proof: "that guy lost even more badly!" For every f' to which f loses $|\mathbf{f}-\mathbf{f}'|_1 \leq \max_{f' \text{ loses to } f''} |_1$

Proof:"that guy lost even more badly!"For every f' to which f loses $|f-f'|_1 \leq \max_{f' \mid 0} |f'_1 - f''_1|_1$ f_1 $2h \cdot T_{23} \leq f_2 \cdot T_{23} + f_3 \cdot T_{23}$ $(f_1-f_2) \cdot T_{12} \leq (f_2-f_3) \cdot T_{23}$

$$\begin{split} & 2h \cdot T_{23} \leq f_2 \cdot T_{23} + f_3 \cdot T_{23} \\ & (f_1 - f_2) \cdot T_{12} \leq (f_2 - f_3) \cdot T_{23} \\ & (f_4 - h) \cdot T_{23} \leq \Delta \\ & (f_i - f_i) \cdot (T_{ii} - T_{kl}) \geq 0 \end{split}$$

 $|\textbf{f}_1\textbf{-}\textbf{g}|_1 \leq \textbf{3}|\textbf{f}_2\textbf{-}\textbf{g}|_1\textbf{+}\textbf{2} \Delta$

Something in-between: bandwidth selection for kernel density estimates

 $K_{s}(x) = \frac{K(x/s)}{s} \qquad \text{as } s \to 0 \\ K_{s}(x) \to \text{Dirac } \delta$

Theorem (see DL'01): as $s \rightarrow 0$ with $sn \rightarrow \infty$ $|g^{*}K - h|_{1} \rightarrow 0$

Data splitting methods for kernel density estimates

How to pick the smoothing factor?

Bandwidth selection for uniform kernels E.g. $N \approx n^{1/2}$ $\mathbf{m} \approx \mathbf{n}^{5/4}$ **N** distributions each is piecewise uniform with n pieces m datapoints Goal: run the density estimation algorithm efficiently **EMLW** MD TIME n+m log n $\mathbf{g} \cdot \mathbf{T}_{ii} \geq$ N (f_k-h) · T_{ki} n+m log n N^2 **|f_i-f_i|**₁ **N**²

Bandwidth selection for uniform				
kernels			$N \approx n^{1/2}$	
N distributions each is piecewise m datapoints		Can speed this up?		pieces
Goal: run the density estimation algorithm efficiently				
	TIM		MD	EMLW
$g \cdot T_{ij} \ge \frac{(f_i + f_j) \cdot T_{ij}}{2}$	n+m lo	<mark>g</mark> n		Ν
(f _k -h)⋅ T _{kj}	n+m lo	og n	N ²	
f _i - f _j ₁	n			N ²

Approximating L₁-distances between distributions

N piecewise uniform densities (each n pieces)

WE WILL DO: $\frac{(N^2+Nn)(\log N)}{\epsilon^2}$ TRIVIAL (exact): N²n

$X \sim C(0,a), Y \sim C(0,b)$ $\Rightarrow X + Y \sim C(0,a+b)$

FACTS: X~C(0,1) \Rightarrow aX~C(0,|a|)

Cauchy distribution C(0,1) density function:

All pairs L₁-distances piece-wise linear densities

All pairs L₁-distances <u>piece-wise linear densities</u>

Problem: too many intersections!

Solution: cut into even smaller pieces!

Brownian motion $\frac{1}{(2\pi)^{1/2}} \exp(-x^{2}/2)$

Cauchy motion

0.4

0.6

0.8

1.0

0.2

0.2

-0.2

-0.4

computing integrals is easy $f: \mathbb{R} \rightarrow \mathbb{R}^d$ $\int f \, dL = Y \sim N(0,S)$

computing integrals is easy $f:R \rightarrow R^d$ $\int f dL = Y \sim C(0,s)$ for d=1 computing integrals is hard d>1

What were we doing?

$\int (f_1, f_2, f_3) \, d\mathbf{L} = (w_1)_1, (w_2)_1, (w_3)_1$

What were we doing?

 $\int (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3) \, d\mathbf{L} = (w_1)_1, (w_2)_1, (w_3)_1$ Can we efficiently compute integrals dL for piecewise linear? Can we efficiently compute integrals dL for piecewise linear?

 $\phi: \mathbf{R} \rightarrow \mathbf{R}^2$ $\phi(\mathbf{z})=(\mathbf{1},\mathbf{z})$

All pairs L₁-distances for mixtures of uniform densities in time

23

(N^2+Nn) (log N)

23

All pairs L₁-distances for piecewise linear densities in time

QUESTIONS

$$\phi: \mathbb{R} \rightarrow \mathbb{R}^{3}$$
1) $\phi(z)=(1,z,z^{2})$

$$(X,Y,Z)=\int \phi \, dL$$

$$\frac{4}{\pi((4+u^{2})^{2}+16v^{2})} + \Re\left(\frac{\pi+2i \arctan(v/\sqrt{4+u^{2}-4iv})}{2\pi(4+u^{2}-4iv)^{3/2}}\right)$$

2) higher dimensions ?