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Density estimation
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Density estimation - example
0 418974  0.418974, 
0.848565, 
1 73705  

+N(μ,1)
1.73705, 
1.59579, 
-1.18767, 
-1.05573, 
-1.36625

F   f il  f  lF = a family of  normal
densities with σ=1

μ



Measure of  quality:
TRUTH     g=TRUTH     

f=OUTPUT
L1 – distance from the truth

∫

Wh L ?

|f-g|1 = ∫ |f(x)-g(x)| dx

Why L1?
1) small L ⇒ all events estimated with 1) small L1 ⇒ all events estimated with 

small additive error
2) scale invariant2) scale invariant



Obstacles to “quality”:

DATADATA+F
bad data

weak class 
of  densities

Δ?
of  densities

dist1(g,F)1(g, )



What is bad data ? | h-g |1

g = TRUTH
h = DATA ( i i l d it )h = DATA (empirical density)

Δ = 2max |h(A)-g(A)|Δ = 2max |h(A)-g(A)|
A∈Y(F)

Y(F) = Yatracos class of  Ff f ( )
Aij={ x | fi(x)>fj(x) } 

f1

f2 f3

1

AA12
A13 A23



Density estimation

F

+ with small |g-f|1f
DATA (h)

assuming these are small:

di t ( F)
Δ = 2max |h(A)-g(A)|
dist1(g,F)
Δ = 2max |h(A)-g(A)|

A∈Y(F)



Why would these be small ???

di t (h F)
Δ = 2max |h(A)-g(A)|
dist1(h,F)
Δ = 2max |h(A)-g(A)|

A∈Y(F)

They will be if:
1) pick a large enough F
2) pick a small enough F

They will be if:

2) pick a small enough F
so that VC-dimension of  Y(F) is small

3) data are iid from h)

E[max|h(A) g(A)|]≤

Theorem (Haussler,Dudley, Vapnik, Chervonenkis):
VC(Y)E[max|h(A)-g(A)|]≤ ( )

samplesA∈Y



How to choose from 2 densities?

f1f1 f2



How to choose from 2 densities?

f1f1 f2

+1 +1 +1 1+1 +1 +1 -1



How to choose from 2 densities?

f1

T⋅ f1≥T⋅hf1 f2 T⋅ f2

+1 +1 +1 1+1 +1 +1 -1

TT



How to choose from 2 densities?

f1

T⋅ f1≥T⋅hf1 f2 T⋅ f2

Scheffé:Scheffé:
if  T⋅ h > T⋅ (f1+f2)/2    ⇒ f1

+1 +1 +1 1

else    ⇒ f2

Theorem (see DL’01): +1 +1 +1 -1

T
Theorem (see DL 01): 

|f-g|1 ≤ 3dist1(g,F) + 2Δ T



Density estimation

F

+ with small |g-f|1f
DATA (h)

assuming these are small:

di t ( F)
Δ = 2max |h(A)-g(A)|
dist1(g,F)
Δ = 2max |h(A)-g(A)|

A∈Y(F)



Test functions

F {f f f }

( )  (f ( ) f ( )) 

F={f1,f2,...,fN}

Tij (x) = sgn(fi(x) – fj(x)) 

∫Tij⋅(fi – fj) = ∫ (fi-fj
)sgn(f

i
-f

j
) = |fi – fj|1

T h

f if i

Tij⋅h

fi winsfj wins

Tij⋅fiTij⋅fj



Density estimation algorithms

Scheffé tournament:
Pick the density with the most wins.Pick the density with the most wins.

Theorem (DL’01):
|f | 9di t ( F) 8 n2
|f-g|1≤ 9dist1(g,F)+8Δ

Minimum distance estimate (Y’85):

n
Minimum distance estimate (Y 85):

Output fk∈ F that minimizes
 |(f h) T |max |(fk-h)⋅ Tij|

Theorem (DL’01): 
ij n3

Theorem (DL 01): 
|f-g|1≤ 3dist1(g,F)+2Δ



Density estimation algorithms

Scheffé tournament:
Pick the density with the most wins.Pick the density with the most wins.

Theorem (DL’01):
|f | 9di t ( F) 8 n2
|f-g|1≤ 9dist1(g,F)+8Δ

Minimum distance estimate (Y’85):

n
Minimum distance estimate (Y 85):

Output fk∈ F that minimizes
 |(f h) T |

Can we do better?
max |(fk-h)⋅ Tij|

Theorem (DL’01): 
ij n3

Theorem (DL 01): 
|f-g|1≤ 3dist1(g,F)+2Δ



Our algorithm: 
Efficient minimum loss weightEfficient minimum loss-weight

repeat until one distribution left repeat until one distribution left 
1) pick the pair of  distributions in F

that are furthest apart (in L )that are furthest apart (in L1)
2) eliminate the loser

Theorem [MS’08]: 
|f-g|1≤ 3dist1(g,F)+2Δ n *

|f g|1≤ 3dist1(g,F) 2Δ n

Take the most “discriminative” actionTake the most discriminative  action.
* after preprocessing F



Tournament revelation problem
INPUT  INPUT: 

a weighed undirected graph G
(wlog all edge-weights distinct)  

OUTPUT: OUTPUT: 
REPORT: heaviest edge {u1,v1} in G
ADVERSARY eliminates u1 or v1 a G11 1 1

REPORT: heaviest edge {u2,v2} in G1
ADVERSARY eliminates u2 or v2 a G2

.....

OBJECTIVE:OBJECTIVE:
minimize total time spent generating reports 



Tournament revelation problem
A report the heaviest edge

23 4

B

1
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CD



Tournament revelation problem
A report the heaviest edge

BC23 4

B

BC

1

5 6
CD



Tournament revelation problem
A report the heaviest edge

BC23 BC
eliminate B

1 CD report the heaviest edge



Tournament revelation problem
A report the heaviest edge

BC23 BC
eliminate B

1 CD report the heaviest edge

ADAD



Tournament revelation problem

report the heaviest edge

BCBC
eliminate B

1 CD report the heaviest edge

ADAD
eliminate Aeliminate A

report the heaviest edge

CD



Tournament revelation problem
A BCB C

23 4

B
AD BD

A D DB

1

5 6
CD

D

DC AC AD AB

2O(F) preprocessing ⇒ O(F) run-time
O(F2 log F) preprocessing ⇒ O(F2) run-timeO(F log F) preprocessing ⇒ O(F ) run time

WE DO NOT KNOW: 
Can get O(F) run-time with 
polynomial preprocessing  ???



Efficient minimum loss-weight

repeat until one distribution left 
1) pick the pair of  distributions that are 1) pick the pair of  distributions that are 

furthest apart (in L1)
2) eliminate the loser2) eliminate the loser

(in practice 2) is more costly)
2O(F) preprocessing ⇒ O(F) run-time
O(F2 log F) preprocessing ⇒ O(F2) run-timeO(F log F) preprocessing ⇒ O(F ) run time

WE DO NOT KNOW: 
Can get O(F) run-time with 
polynomial preprocessing  ???



Efficient minimum loss-weight

repeat until one distribution left 
1) pick the pair of  distributions that are 1) pick the pair of  distributions that are 

furthest apart (in L1)
2) eliminate the loser2) eliminate the loser

Theorem: 
n|f-g|1≤ 3dist1(g,F)+2Δ n

P f “th t  l t   b dl !”Proof:
For every f’ to which f  loses

“that guy lost even more badly!”

|f-f’|1 ≤ max |f’-f’’|1f’ loses to f’’



Proof:
For every f’ to which f  loses

“that guy lost even more badly!”

For every f  to which f  loses

|f-f’|1 ≤ max |f’-f’’|1f’ loses to f’’f  loses to f

f1
2h⋅T23 ≤ f2⋅T23 + f3⋅T23f1 23 2 23 3 23

(f1-f2)⋅T12 ≤ (f2-f3)⋅ T23

(f4-h)⋅T23 ≤ Δ

(fi-fj)⋅(Tij-Tkl)≥ 0

BEST=f2
f3

bad loss

|f1-g|1 ≤ 3|f2-g|1+2ΔBEST f23 | 1 g|1 | 2 g|1



Application:
kernel density estimateskernel density estimates

(Akaike’54,Parzen’62,Rosenblatt’56)

K = kernel

h = density kernel used to smooth empirical gp g
(x1,x2,...,xn i.i.d. samples from h)

∑1
n

∑ K(y-xi)
1
n

i=1
h * K

as n→∞

g * K 

=



n
What K should we choose?

g * K 

∑ K(y-xi)
1

n i=1

n

h * K
as n→∞

g  K 

i=1

Dirac δ would be goodDirac δ is not good Dirac δ would be goodDirac δ is not good

Something in-between: bandwidth selection
for kernel density estimatesfor kernel density estimates

Ks(x)=
K(x/s)

s
as s→ 0  

K ( ) Di  δs Ks(x)→ Dirac δ

Th  (  DL’01)   0 ith Theorem (see DL’01): as s→ 0 with sn→∞
|g*K – h|1 → 0



Data splitting methods for
kernel density estimateskernel density estimates

How to pick the smoothing factor ?

∑ K
1 y-xi(     )

How to pick the smoothing factor ?
n

∑ K
ns

y i(     )s
i=1

x1,...,xn-m fs = ∑ K1
(n-m)s

y-xi(     )s
i 1

n-m

x1,x2,...,xn

( )
i=1

xn-m+1,...,xn choose s using
density estimation



Kernels we will use:

∑ K
1
ns

y-xi(     )s

piecewise uniform

piecewise linear



Bandwidth selection for uniform
kernels E g    N n1/2kernels
N distributions

E.g.   N ≈ n1/2

m ≈ n5/4

N distributions
each is piecewise uniform with n pieces
m datapoints m datapoints 

Goal: run the density estimation algorithm efficiently
EMLWMDTIME

g⋅Tij ≥
(fi+fj)⋅Tij

EMLWMD

N

TIME

n+m log ng Tij ≥
2

(fk-h)⋅ Tkj N2

N

n+m log n

n+m log n

|fi-fj|1

( k ) kj

N2n

n m log n



Bandwidth selection for uniform
kernels E g    N n1/2kernels
N distributions

E.g.   N ≈ n1/2

m ≈ n5/4Can speed N distributions
each is piecewise uniform with n pieces
m datapoints 

this up?

m datapoints 
Goal: run the density estimation algorithm efficiently

EMLWMDTIME

g⋅Tij ≥
(fi+fj)⋅Tij

EMLWMD

N

TIME

n+m log ng Tij ≥
2

(fk-h)⋅ Tkj N2

N

n+m log n

n+m log n

|fi-fj|1

( k ) kj

N2n

n m log n



Bandwidth selection for uniform
kernels E g    N n1/2kernels
N distributions

E.g.   N ≈ n1/2

m ≈ n5/4Can speed N distributions
each is piecewise uniform with n pieces
m datapoints 

this up?

absolute error badm datapoints 
Goal: run the density estimation algorithm efficiently

EMLWMDTIME

absolute error bad
relative error good

g⋅Tij ≥
(fi+fj)⋅Tij

EMLWMD

N

TIME

n+m log ng Tij ≥
2

(fk-h)⋅ Tkj N2

N

n+m log n

n+m log n

|fi-fj|1

( k ) kj

N2n

n m log n



Approximating L1-distances 
between distributionsbetween distributions

N piecewise uniform densities  (each n pieces) 

2
WE WILL DO:

(N2+Nn) (log N)
ε2

TRIVIAL (exact): N2n



Dimension reduction for L2

|S|Johnson-Lindenstrauss Lemma (’82)

 L Lt t  O( 2 l  ) 

|S|=n

φ: L2 → Lt
2 t = O(ε-2 ln n) 

(∀ x,y ∈ S) 

d( ) ≤ d(φ( ) φ( )) ≤ (1+ )d( )  d(x,y) ≤ d(φ(x),φ(y)) ≤ (1+ε)d(x,y)  

N(0 t-1/2)N(0,t 1/2)



Dimension reduction for L1

|S|Cauchy Random Projection (Indyk’00)

 L Lt t  O( 2 l  ) 

|S|=n

φ: L1 → Lt
1 t = O(ε-2 ln n) 

(∀ x,y ∈ S) 

d( ) ≤ t(φ( ) φ( )) ≤ (1+ )d( )  d(x,y) ≤ est(φ(x),φ(y)) ≤ (1+ε)d(x,y)  

N(0,t-1/2)C(0,1/t)

(Charikar, Brinkman’03 : cannot replace est by d)



Cauchy distribution C(0,1)
d it  f ti    1density function:   1

π (1+x2)( )

FACTS:

X∼C(0 1) 

FACTS:

X C(0,1) 
⇒ aX∼C(0,|a|)

X∼C(0 a)  Y∼C(0 b)X∼C(0,a), Y∼C(0,b)
⇒ X+Y∼C(0,a+b)



Cauchy random projection for L1
(Indyk’00)

A B

(Indyk’00)

A B
D

X1 X2 X3 X4 X5 X6 X7 X8 X9

X C(0 )X1∼C(0,z)
A(X2+X3) + B(X5+X6+X7+X8)

z

A(X2 X3)  B(X5 X6 X7 X8)

z



Cauchy random projection for L1
(Indyk’00)

A B

(Indyk’00)

A B
D

X1 X2 X3 X4 X5 X6 X7 X8 X9

X C(0 )X1∼C(0,z)
A(X2+X3) + B(X5+X6+X7+X8)

z D(X1+X2+...+X8+X9)
A(X2 X3)  B(X5 X6 X7 X8)

z
∼ Cauchy(0,|�-�|1)



All pairs L1-distances
piece wise linear densities piece-wise linear densities 



All pairs L1-distances
piece wise linear densities piece-wise linear densities 

R=(3/4)X1 + (1/4)X2 B=(3/4)X2 + (1/4)X1

R-B∼C(0,1/2)

X X C(0 1/2)X1                 X2            ∼ C(0,1/2)



All pairs L1-distances
piece wise linear densitiespiece-wise linear densities

Problem: too many intersections!

Solution: cut into even smaller pieces!

Stochastic measures are useful.



Brownian motion
1.0

exp(-x^2/2)
1

(2 )1/2

0.5

(2π)1/2
0.2 0.4 0.6 0.8 1.0

Cauchy motion

-0.5

0.4 y

1

(1 )2

0.2

π (1+x)2
0.2 0.4 0.6 0.8 1.0

-0.2

-0.4



Brownian motion
1.0

exp(-x^2/2)
1

(2 )1/2

0.5

(2π)1/2
0.2 0.4 0.6 0.8 1.0

-0.5

ti  i t l  i  computing integrals is easy
f:R→Rd

∫ f  dL = Y ∼ N(0,S) 
f:R→R



0 2

0.4

Cauchy motion

0.2 0.4 0.6 0.8 1.0

0.2
y

1

(1+ )2

-0.4

-0.2
π (1+x)2

ti  i t l  i  computing integrals is easy
f:R→Rd

∫ f  dL = Y ∼ C(0,s)  for d=1 
f:R→R

computing integrals is hard d>1
* obtaining explicit expression for the density

*



X1 X2 X3 X4 X5 X6 X7 X8 X9

What were we doing?

∫ (f1,f2,f3) dL = (w1)1,(w2)1,(w3)1∫ ( 1, 2, 3) ( 1)1,( 2)1,( 3)1



X1 X2 X3 X4 X5 X6 X7 X8 X9

What were we doing?

∫ (f1,f2,f3) dL = (w1)1,(w2)1,(w3)1∫ ( 1, 2, 3) ( 1)1,( 2)1,( 3)1

Can we efficiently compute y p
integrals dL for piecewise linear?



Can we efficiently compute 
integrals dL for piecewise linear?integrals dL for piecewise linear?

φ R R2φ: R→ R2

φ(z)=(1,z)φ(z) (1,z)

(X Y) ∫ φ dL(X,Y)=∫ φ dL



φ: R→ R2

φ( ) (1 )φ(z)=(1,z)

(X,Y)=∫ φ dL

(2(X Y) 2Y) has density at
u+v,u-v

(2(X-Y),2Y) has density at
2



All pairs L1-distances for  mixtures of  
uniform densities in timeuniform densities in time

O((N^2+Nn) (log N)
2 )O( ε2 )

All pairs L1-distances for  piecewise All pairs 1 distances for  piecewise 
linear densities in time

O((N^2+Nn) (log N))O((N^2+Nn) (log N)
ε2 )



φ R R3

QUESTIONS
φ: R→ R3

φ(z)=(1,z,z2)  ?1) φ(z) (1,z,z )  
(X,Y,Z)=∫ φ dL

?1)

2) higher dimensions ?2) higher dimensions ?


