Odd Crossing Number is NOT Crossing Number

Michael Pelsmajer IIT (Chicago) Marcus Schaefer DePaul University (Chicago) Daniel Štefankovič University of Rochester

cr(G) = minimum number of crossings in a **planar** drawing of G

$cr(K_5) = ?$

cr(G) = minimum number of crossings in a **planar** drawing of G

$cr(K_5) = 1$

Rectilinear crossing number

rcr(G) = minimum number of crossings in a **planar straight-line** drawing of G

Rectilinear crossing number

rcr(G) = minimum number of crossings in a **planar straight-line** drawing of G

 $rcr(K_5) = 1$

Rectilinear crossing number

rcr(G) = minimum number of crossings in a **planar straight-line** drawing of G

$cr(G)=0 \Leftrightarrow rcr(G)=0$

THEOREM [SR34,W36,F48,S51]: Every planar graph has a straight-line planar drawing.

Steinitz, Rademacher 1934 Wagner 1936 Fary 1948 Stein 1951

Are they equal?

$cr(G)=0 \Leftrightarrow rcr(G)=0$ $cr(G)=1 \Leftrightarrow rcr(G)=1$ $cr(G)=2 \Leftrightarrow rcr(G)=2$ $cr(G)=3 \Leftrightarrow rcr(G)=3$

r(G) = rcr(G)

$cr(G) \neq rcr(G)$

THEOREM [Guy' 69]:

$cr(K_8) = 18$ $rcr(K_8) = 19$

$cr(G) \neq rcr(G)$

THEOREM [Guy' 69]:

$cr(K_8) = 18$ $rcr(K_8) = 19$

THEOREM [Bienstock,Dean '93]: $(\forall k)(\exists G)$

cr(G) = 4rcr(G) = k

cr(G) = minimum number of crossings in a **planar** drawing of G

rcr(G) = minimum number of crossings
in a planar straight-line
drawing of G

Odd crossing number

ocr(G) = minimum number of pairs of edges crossing odd number of times

Odd crossing number

ocr(G) = minimum number of pairs of edges crossing odd number of times

Odd crossing number

ocr(G) = minimum number of pairs of edges crossing odd number of times

$ocr(K_5) = ?$

Proof (Tutte'70): $ocr(K_5)=1$

INVARIANT:

How many pairs of non-adjacent edges intersect (mod 2) ?

Proof (Tutte'70): ocr(K_5)=1

How many pairs of non-adjacent idges intersect (mod 2)?

steps which change isotopy:

How many pairs of non-adjacent idges intersect (mod 2)?

steps which change isotopy:

How many pairs of non-adjacent idges intersect (mod 2)?

How many pairs of non-adjacent idges intersect (mod 2)?

Hanani'34,Tutte'70: $ocr(G)=0 \Leftrightarrow cr(G)=0$

If G has drawing in which all pairs of edges cross even # times \Rightarrow graph is planar!

Are they equal?

$ocr(G)=0 \Leftrightarrow cr(G)=0$

QUESTION [Pach-Tóth'00]:

Are they equal?

 $ocr(G)=0 \Leftrightarrow cr(G)=0$

Pach-Tóth'00:

Main result

THEOREM [Pelsmajer,Schaefer,Š '05]

$ocr(G) \neq cr(G)$

How to prove it?

THEOREM [Pelsmajer,Schaefer,Š '05]

$ocr(G) \neq cr(G)$

- 1. Find G.
- 2. Draw G to witness small ocr(G).
- 3. Prove cr(G)>ocr(G).

How to prove it?

THEOREM [Pelsmajer,Schaefer,Š '05]

$ocr(G) \neq cr(G)$

- 1. Find G.
- 2. Draw G to witness small ocr(G).
- Prove cr(G)>ocr(G).

Obstacle: cr(G)>x is co-NP-hard!

Crossing numbers for "maps"

Crossing numbers for "maps"

Crossing numbers for "maps"

number of "Dehn twists"

How to compute # intersections ?

How to compute # intersections ?

the number of twists of arc i

the number of twists of arc i

min $\sum_{i < j} |\mathbf{x}_i - \mathbf{x}_j + (\pi_i > \pi_j)|$ x_i∈Z ____ OPT

 $x_i \in R \longrightarrow OPT^*$

Crossing number min $\sum_{i < j} |\mathbf{x}_i - \mathbf{x}_j + (\pi_i > \pi_j)|$ x_i∈Z → OPT $x_i \in R \longrightarrow OPT^*$ Lemma: $OPT^* = OPT.$

Crossing number min $\sum_{i < j} |\mathbf{x}_i - \mathbf{x}_j + (\pi_i > \pi_j)|$ Lemma: $OPT^* = OPT.$ **Obstacle:** cr(G) × is co-NP-hard!

min $\sum_{i < j} |\mathbf{x}_i - \mathbf{x}_j + (\pi_i > \pi_j)|$ $y_{ij} \ge x_i - x_j + (\pi_i > \pi_j)$ $y_{ii} \ge -x_i + x_i - (\pi_i > \pi_i)$

Obstacle: cr(G) × is co-NP-hard!

$$\begin{split} \min \sum_{i < j} y_{ij} \\ y_{ij} \geq x_i - x_j + (\pi_i > \pi_j) \\ y_{ij} \geq -x_i + x_j - (\pi_i > \pi_j) \end{split}$$

Obstacle: cr(G) > x is co-NP-hard!

Dual linear program max $\sum_{i < j} Q_{ij}(\pi_i > \pi_j)$ $Q^{T} = -Q$ Q1 = 0-1 $\leq Q_{ij} \leq 1$

Q is an $n \times n$ matrix

EXAMPLE:

Odd crossing number ?

Crossing number ? max $\sum_{i < i} Q_{ii}(\pi_i > \pi_i)$ $Q^{T} = -Q$ Q1 = 0-1 $\leq Q_{ii} \leq$ 1 $\pi = (2, 1, 4, 3)$ b(d-a) * 0 ac 0 ab a(c-b) -ac

bd

0

b(a-d) -ab 0

*

a(b-c) -bd

 $ocr/cr = \sqrt{3/2} \sim 0.87$

 $ocr/cr = \sqrt{3/2} \sim 0.87$

for graphs?

 $ocr/cr = \sqrt{3}/2 \sim 0.86$

Crossing number for graphs

Is cr = O(ocr) on annulus?

Is cr = O(ocr) on annulus?

Theorem:

On annulus $cr \leq 3ocr$

On annulus $cr \leq 3ocr$

BAD triple

GOOD triple

$n.CR \le 3\#BAD$

BAD triple

Pay: #of bad
triples {p,i,j}

Average over p.

$\#BAD \leq n.OCR$

BAD triple

random i,j,k X=#odd pairs

$\frac{\#BAD}{bin(n,3)} \leq E[X] \leq \frac{30CR}{bin(n,2)}$

$\#BAD \le n.OCR$ $n.CR \le 3\#BAD$

BAD triple

$CR \leq 3OCR$

(on annulus)

Crossing number for graphs

There exists graph with ocr/cr $\leq \sqrt{3/2+\epsilon}$.

Experimental evidence: ocr/cr $\ge \sqrt{3}/2$ on annulus and pair of pants Bold (wrong) conjecture: For any graph ocr/cr $\ge \sqrt{3}/2$

Questions

crossing number of maps with d vertices in poly-time? (true for $d \le 2$)

Bold (wrong) conjecture: For any graph $ocr/cr \ge \sqrt{3/2}$

(map = graph + rotation system)

Open questions - classic Guy's conjecture: $cr(K_n) = \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$

Zarankiewicz's conjecture: $cr(K_{m,n}) = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor$

Better approx algorithm for cr.

Crossing number for graphs

pair crossing number (pcr)
number of pairs of crossing edges

algebraic crossing number (acr) Σ algebraic crossing number of edges

