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Phylogeny

orangutan gorilla chimpanzee human

development of a group: the development over time of a species, genus, or group, as 
contrasted with the development of an individual (ontogeny)



Phylogeny – how?
development of a group: the development over time of a species, genus, or group, as 
contrasted with the development of an individual (ontogeny)

past – morphologic data 
(beak length, bones, etc.)

present – molecular data 
(DNA, protein sequences)



Molecular phylogeny
INPUT: aligned DNA sequences

OUTPUT: phylogenetic tree

Human:
Chimpanzee: 
Gorilla:
Orangutan:

ATCGGTAAGTACGTGCGAA
TTCGGTAAGTAAGTGGGAT
TTAGGTCAGTAAGTGCGTT
TTGAGTCAGTAAGAGAGTT

orangutan gorilla chimpanzee human



Universal phylogenyUniversal phylogeny

deduced from comparison of SSU deduced from comparison of SSU 
and LSU and LSU rRNA rRNA sequences (2508 sequences (2508 
homologous sites) using Kimurahomologous sites) using Kimura’’s 2s 2--
parameter distance and the NJ parameter distance and the NJ 
method. method. 

The absence of  root in this tree is The absence of  root in this tree is 
expressed using a circular design.expressed using a circular design.

BacteriaBacteria
ArchaeaArchaea

EucaryaEucarya

Source: Manolo Gouy, Introduction to Molecular Phylogeny

Example of a real phylogenetic tree



Leaves = Taxa = {chimp, human, ...}
Vertices = Nodes
Edges = Branches
Tree = Tree

Dictionary

orangutan gorilla

chimpanzee human

Unrooted/Rooted trees
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Cavender-Farris-Neyman (CFN) model

orangutan gorilla chimpanzee human
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Weight of an edge = probability that 0 and 1 get flipped
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CFN model

orangutan gorilla chimpanzee human
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Weight of an edge = probability that 0 and 1 get flipped

0

1

1 with probability 0.15

0 with probability 0.85
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CFN model
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CFN model

orangutan gorilla chimpanzee human

0.32
0.22

0.12 0.09

0.06

0.15

Weight of an edge = probability that 0 and 1 get flipped

1

1

1

1110

110…….. 001…….. 101…….. 011……..



CFN model

orangutan gorilla chimpanzee human

0.32
0.22

0.12 0.09

0.06

0.15

Weight of an edge = probability that 0 and 1 get flipped

Denote the distribution on leaves μ(T,w)
T = tree topology
w = set of weights on edges

0000,0001,0010,0011,0100,0101,0110,0111,…



Generalization to more states 

orangutan gorilla chimpanzee human

Weight of an edge = probability that 0 and 1 get flipped

A

A

A

ACGT

transition matrix

0.9 0.05 0.03 0.02

0.05 0.87 0.07 0.01

0.03 0.07 0.89 0.01

0.02 0.01 0.01 0.96

A
G
C
T

A G C T



Models: Jukes-Cantor (JC)

0.9 0.05 0.03 0.02

0.05 0.87 0.07 0.01

0.03 0.07 0.89 0.01

0.02 0.01 0.01 0.96

A
G
C
T

A G C T

there are 4 states

exp( t.R )

Rate matrix



Models: Kimura’s 2 parameter (K2)

0.9 0.05 0.03 0.02

0.05 0.87 0.07 0.01

0.03 0.07 0.89 0.01

0.02 0.01 0.01 0.96

A
G
C
T

A G C T

Rate matrix

exp( t.R )

purine/pyrimidine mutations less likely



Models: Kimura’s 3 parameter (K3)

0.9 0.05 0.03 0.02

0.05 0.87 0.07 0.01

0.03 0.07 0.89 0.01

0.02 0.01 0.01 0.96

A
G
C
T

A G C T

Rate matrix

exp( t.R )

take hydrogen bonds into account



Reconstructing the tree?
Let D be samples from μ(T,w).
Can we  reconstruct T (and w) ?

• parsimony
• distance based methods
• maximum likelihood methods (using MCMC)
• invariants
• ?

Main obstacle for all methods: 
too many leaf-labeled trees 
(2n-3)!!=(2n-3)(2n-5)…3.1 
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Maximum likelihood method

Likelihood of tree S is 
L(S) = maxw Pr(D | S,w)

Let D be samples from μ(T,w).

For |D|→∞ then the maximum likelihood tree is T



MCMC Algorithms for max-likelihood
Combinatorial steps:

Numerical steps (i.e., changing the weights)

NNI moves (Nearest Neighbor Interchange)

Move with probability min{1,L(Tnew)/L(Told)} 



MCMC Algorithms for max-likelihood
Only combinatorial steps:

NNI moves (Nearest Neighbor Interchange)

Does this Markov Chain mix rapidly?

Not known!
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Mixtures

one tree topology
multiple mixtures 

Can we reconstruct the tree T?

The mutation rates differ for positions in DNA



Reconstruction from mixtures - ML

maximum likelihood: fails to for CFN, JC, K2, K3
Theorem 1:

For all  0<C<1/2, all x sufficiently small:
(i) maximum likelihood tree ≠ true tree
(ii) 5-leaf version: MCMC torpidly mixing

Similarly for JC, K2, and K3 models



Reconstruction from mixtures - ML
Related results:

[Kolaczkowski,Thornton]  Nature, 2004.
Experimental results for JC model

[Chang]  Math. Biosci., 1996.  
Different example for CFN model.



Reconstruction from mixtures - ML

Proof:
Difficulty: finding edge weights that maximize likelihood.

For x=0, trees are the same -- pure distribution, tree achievable on all 
topologies. So know max likelihood weights for every topology.

(observed)T log μ(T,w) 

If observed comes from \mu(S,v) then it is optimal to take 
T=S and w=v (basic property of log-likelihood)



Reconstruction from mixtures - ML

Proof:
Difficulty: finding edge weights that maximize likelihood.

For x=0, trees are the same -- pure distribution, tree achievable on all 
topologies. So know max likelihood weights for every topology.

For x small, look at Taylor expansion bound max likelihood in terms of 
x=0 case and functions of Jacobian and Hessian.

=



Outline
Introduction (phylogeny, molecular phylogeny)

Mathematical models (CFN, JC, K2, K3)

Maximum likelihood (ML) methods

Our setting: mixtures of distributions
ML, MCMC for ML fails for mixtures 

Duality theorem: tests/ambiguous mixtures

Proofs (strictly separating hyperplanes,
non-constructive ambiguous mixtures)



Reconstruction – other algorithms?
GOAL:    Determine tree topology

Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)

B) linear tests (reconstruction easy)

The dimension of the space of possible linear tests:
CFN = 2, JC = 2, K2 = 5, K3 = 9 



For all  0<a,b<1/2, there is c=c(a,b) where:
above mixture distribution on tree T is identical 
to below mixture distribution on tree S.

Ambiguity in CFN model

Previously:  non-constructive proof of nicer 
ambiguity in CFN model [Steel,Szekely,Hendy,1996]  



What about JC?



What about JC?
Reconstruction of the topology from mixture possible.

Linear test =  linear function which is 
>0 for mixture from T2 
<0 for mixture from T3

There exists a linear test for JC model.

Follows immediately from Lake’1987 – linear invariants.



Lake’s invariants → Test

f=μ(AGCC) + μ(ACAC) + μ(AACT) +μ(ACGT) 
- μ(ACGC) - μ(AACC) - μ(ACAT) - μ(AGCT)

For μ=μ(T1,w), f=0
For μ=μ(T2,w), f<0
For μ=μ(T3,w), f>0



Linear invariants v. Tests

Linear invariant = hyperplane containing mixtures from T1

Test = hyperplane strictly separating mixtures from T2 from 
mixtures from T3

pure distributions from T2
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Linear invariants v. Tests

Linear invariant = hyperplane containing mixtures from T1

Test = hyperplane strictly separating mixtures from T2 from 
mixtures from T3

mixtures from T2

mixtures from T3

test



Separating hyperplanes
Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)

B) linear tests (reconstruction easy)

ambiguous mixture separating hyperplane

Separating hyperplane theorem:



Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)

B) linear tests (reconstruction easy)

ambiguous mixture strictly separating hyperplane?

Separating hyperplane theorem ?:

Strictly separating hyperplanes ???



ambiguous mixture strictly separating hyperplane?

Separating hyperplane theorem ?:

{ (x,y) | x>0 } ∪ { (0,y) | y>0 }

NO strictly separating hyperplane

{(0,0)}

Strictly separating not always possible



When strictly separating possible?

{ (x,y) | x>0 } ∪ { (0,y) | y>0 }

NO strictly separating hyperplane

{(0,0)}
(x,y2 – xz)       x≥0, y>0

standard phylogeny models satisfy the assumption

Lemma: 
Sets which are convex hulls of images of open sets under a 
multi-linear  polynomial map have a strictly separating hyperplane.
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Proof
Lemma: 
For sets which are convex hulls of images of open sets under a 
multi-linear  polynomial map – strictly separating hyperplane.

P1(x1,…,xm),…,Pn(x1,…,xm),       x=(x1,…,xm) ∈ O
Proof:

WLOG linearly independent 



Proof
Lemma: 
For sets which are convex hulls of images of open sets under a 
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Proof:

Have s1,…,sn such that 
s1 P1(x) + … + sn Pn(x) ≥ 0 for all x ∈ O



Proof
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multi-linear  polynomial map – strictly separating hyperplane.
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Proof:

Have s1,…,sn such that 
s1 P1(x) + … + sn Pn(x) ≥ 0 for all x ∈ O

Goal: show 
s1 P1(x) + … + sn Pn(x) > 0 for all x ∈ O



Proof
Lemma: 
For sets which are convex hulls of images of open sets under a 
multi-linear  polynomial map – strictly separating hyperplane.

P1(x1,…,xm),…,Pn(x1,…,xm),       x=(x1,…,xm) ∈ O
Proof:

Have s1,…,sn such that 
s1 P1(x) + … + sn Pn(x) ≥ 0 for all x ∈ O

Goal: show 
s1 P1(x) + … + sn Pn(x) > 0 for all x ∈ O

Suppose: s1 P1(a) + … + sn Pn(a) = 0 for some a ∈ O
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Let R(x)=s1 P1(x) + … + sn P(x)     - non-zero polynomial 



Proof
Lemma: 
For sets which are convex hulls of images of open sets under a 
multi-linear  polynomial map – strictly separating hyperplane.

P1(x1,…,xm),…,Pn(x1,…,xm),       x=(x1,…,xm) ∈ O
Proof:

linearly independent
s1 P1(x) + … + sn Pn(x) ≥ 0 for all x ∈ O
s1 P1(0) + … + sn Pn(0) = 0
Let R(x)=s1 P1(x) + … + sn P(x)     - non-zero polynomial 

R(0)=0 ⇒ no constant monomial



Proof
Lemma: 
For sets which are convex hulls of images of open sets under a 
multi-linear  polynomial map – strictly separating hyperplane.

P1(x1,…,xm),…,Pn(x1,…,xm),       x=(x1,…,xm) ∈ O
Proof:

linearly independent
s1 P1(x) + … + sn Pn(x) ≥ 0 for all x ∈ O
s1 P1(0) + … + sn Pn(0) = 0
Let R(x)=s1 P1(x) + … + sn P(x)     - non-zero polynomial 

R(0,…,0,xi,0…,0) ≥ 0  ⇒ no monomial xi



Proof
Lemma: 
For sets which are convex hulls of images of open sets under a 
multi-linear  polynomial map – strictly separating hyperplane.

P1(x1,…,xm),…,Pn(x1,…,xm),       x=(x1,…,xm) ∈ O
Proof:

linearly independent
s1 P1(x) + … + sn Pn(x) ≥ 0 for all x ∈ O
s1 P1(0) + … + sn Pn(0) = 0
Let R(x)=s1 P1(x) + … + sn P(x)     - non-zero polynomial 

R(0,…,0,xi,0…,0) ≥ 0  ⇒ no monomial xi
….⇒ no monomials at all, a contradiction
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Duality application:
non-constructive proof of mixtures

Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)

B) linear tests (reconstruction easy)

For K3 model the space of possible tests has dimension 9
T = σ1 T1 + … + σ9 T9

Goal: show that there exists no test



Duality application:
non-constructive proof of mixtures

transition matrix P = exp(x.R)

rate matrix

entries in P = generalized polynomials
∑ poly(α,β,γ,x) exp(lin(α,β,γ,x))

LEM: The set of roots of a non-zero generalized polynomial
has measure 0. 



Non-constructive proof of mixtures
transition matrix P(x) = exp(x.R)

T1,…,T9 are generalized polynomials in α,β,γ,x

Wronskian det Wx(T1,…,T9) is a generalized polynomial α,β,γ,x

det Wx(T1,…,T9)≠ 0 

P(x)

P(2x)

P(3x)

P(4x) P(0)

Test should be 0 by continuity.

Wx(T1,…T9) [σ1,…σ9]=0
⇒      NO TEST !



Non-constructive proof of mixtures

LEM: The set of roots of a non-zero generalized polynomial
has measure 0. 

The last obstacle: Wronskian W(T1,…,T9) is non-zero

Horrendous generalized 
polynomials, even for
e.g., α=1,β=2,γ=4 

plug-in complex numbers
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M a semigroup of doubly stochasic matrices (with 
multiplication). Under what conditions on M can 
you reconstruct the tree topology?

Open questions

* x x x

x * x x

x x * x

x x x *

* x y y

x * y y

y y * x

y y x *

* x y z

x * z y

y z * x

z y x *

* x

x *

0<x<1/4
yes

0<y·x<1/4

yes

0<x<1/2
no

0<z·y·x<1/2

no



Idealized setting: For data generated from a pure 
distribution (i.e., a single tree, no mixture):

Are MCMC algorithms rapidly or torpidly mixing?

How many characters (samples) needed until
maximum likelihood tree is true tree?

Open questions
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