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development of a group: the development over time of a species, genus, or group, as
contrasted with the development of an individual (ontogeny)

human

orangutan




Phylogeny — how?

development of a group: the development over time of a species, genus, or group, as
contrasted with the development of an individual (ontogeny)

past — morphologic data
(beak length, bones, etc.)

present — molecular data i
(DNA, protein sequences) 2t

First Notebook on Transmutation of
Species, 1837.




Molecular phylogeny

INPUT: aligned DNA sequences

Human: ATCGGTAAGTACGTGCGAA
Chimpanzee: TTCGGTAAGTAAGTGGGAT
Gorilla: TTAGGTCAGTAAGTGCGTT
Orangutan: TTGAGTCAGTAAGAGAGTT

OUTPUT: phylogenetic tree

orangutan gorilla chimpanzee human



Example of a real phylogenetic tree

Oryza  Saccharomyces

Drosophila Prorocentrum Eucarya
Tetrahymena
Homo Crthidia
Lo e Halococcus
Halobacterium
Methanococcus
S Methanobacterium
05
Desulfurococcus
Thermoproteus
Archaea
Bacteria Thermus
Streptomyces
Escherichia . Anacystis
Pseudomonas Bacillus

Universal phylogeny

deduced from comparison of SSU
and LSU rRNA sequences (2508
homologous sites) using Kimura's 2-
parameter distance and the NJ
method.

The absence of root in this tree is
expressed using a circular design.

Source: Manolo Gouy, Introduction to Molecular Phylogeny



Dictionary

Leaves = Taxa = {chimp, human, ...}
Vertices = Nodes

Edges = Branches

Tree = Tree orangutan gorilla

N
N

chimpanzee human

Unrooted/Rooted trees
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Cavender-Farris-Neyman (CFN) model
Weight of an edge = probability that 0 and 1 get flipped

orangutan gorilla chimpanzee human
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CFN model

Weight of an edge = probability that 0 and 1 get flipped

orangutan gorilla chimpanzee human

/ 1 with probability 0.15
\ 0 with probability 0.85
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CFN model

Weight of an edge = probability that 0 and 1 get flipped




CFN model

Weight of an edge = probability that 0 and 1 get flipped

orangutan gorilla chimpanzee human

0000,0001,0010,0011,0100,0101,0110,0111,...

Denote the distribution on leaves u(T,w)

T = tree topology
w = set of weights on edges



Generalization to more states
Weight of an edge = probability that 0-and-tgetflipped

transition matrix

orangutan gorilla chimpanzee human



Models: Jukes-Cantor (JC)

Rate matrix
A G C T
A -3a « o o
G o “3a « o
C « a —3a «
T Qo o Qv -3« exp( t.R)

there are 4 states




Models: Kimura's 2 parameter (K2)

Rate matrix
A G C T
A —a—-23 o 15} 15}
G v —a — 203 15} I5;
C 3 3 —a — 203 e exp( t.R)
T 3 3 « —o— 23




Models: Kimura’'s 3 parameter (K3)

Rate matrix
A G C T
A —a—pF—7x o} & Y
G o —a— [ -7 Y I¢]
C Y B —a—fB—7 «
T 15 8 e —a—f3 -7
exp(t.R)

take hydrogen bonds into account




Reconstructing the tree?

Let D be samples from u(T,w).
Can we reconstruct T (and w) ?

* parsimony
» distance based methods
 maximum likelihood methods (using MCMC)

e Invariants
o ?

Main obstacle for all methods:

too many leaf-labeled trees
(2n-3)!'=(2n-3)(2n-5)...3.1
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Maximum likelihood method
Let D be samples from u(T,w).

Likelihood of tree S is
L(S) = max,, Pr(D | S,w)

For |D|—oo then the maximum likelihood tree is T



MCMC Algorithms for max-likelihood

Combinatorial steps:

N AN
/
v V¥V A A

NNI moves (Nearest Neighbor Interchange)

Numerical steps (i.e., changing the weights)

Move with probability min{1,L(T__)/L(T )}



MCMC Algorithms for max-likelihood

Only combinatorial steps:

2N /2
SIS
v V¥V A A

NNI moves (Nearest Neighbor Interchange)

Does this Markov Chain mix rapidly?

Not known!
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Mixtures

For a tree topology T', set of weights wq,...,w, and prob-
abilities pq,...,p, where ) . p; = 1, consider the mixture
distribution:

= Z pip(T, w;)

one tree topology
multiple mixtures

Can we reconstruct the tree T?

‘)
%’ The mutation rates differ for positions in DNA




Reconstruction from mixtures - ML

Theorem 1:
maximum likelihood: fails to for CFN, JC, K2, K3

1 3 1 3
C+Xx C+x C-x C-
X2 X?

C-x C-X C+x C+X
2 4 2 4

For every 0 < C' < 1/2, all x sufficiently small,

(1) maximum likelihood tree # true tree
(ii) 5-leaf version: MCMC torpidly mixing

Similarly for JC, K2, and K3 models



Reconstruction from mixtures - ML

Related results:
[Kolaczkowski, Thornton] Nature, 2004.
Experimental results for JC model
[Chang] Math. Biosci., 1996.
Different example for CFN model.



Reconstruction from mixtures - ML

Proof:
Difficulty: finding edge weights that maximize likelihood.

For x=0, trees are the same -- pure distribution, tree achievable on all
topologies. So know max likelihood weights for every topology.

(observed)' log u(T,w)

If observed comes from \mu(S,v) then it is optimal to take
T=S and w=v (basic property of log-likelihood)



Reconstruction from mixtures - ML

Proof:
Difficulty: finding edge weights that maximize likelihood.

For x=0, trees are the same -- pure distribution, tree achievable on all
topologies. So know max likelihood weights for every topology.

For x small, look at Taylor expansion bound max likelihood in terms of
x=0 case and functions of Jacobian and Hessian.

L"T??_:—l_ﬂq_:(lu + [AP’) e

1+ ot (%(A'E,-’)Tﬂf(if)(AU)) +x(Ap)t (f(f) + Jf('f-’)(A“))
+0 (1Al + o] [Ac?).
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Reconstruction — other algorithms?
GOAL: Determine tree topology

Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)
B) linear tests (reconstruction easy)

The dimension of the space of possible linear tests:
CFN=2,JC=2,K2=5 K3=9



Ambiguity in CFN model
For all O<a,b<1/2, there is c=c(a,b) where:

above mixture distribution on tree T is identical
to below mixture distribution on tree S

4 3 4 3
a D b
c C
b b a a
2 1 2 1

Previously: non-constructive proof of nicer
ambiguity in CFN model [Steel,Szekely,Hendy,19906]



What about JC?



What about JC?

Reconstruction of the topology from mixture possible.
. 1 . 2 . 1 .. 2 . 1 . 3
0. T, @: @: T, @. 0. T, 0.

Linear test = linear function which is

>0 for mixture from T,
<0 for mixture from T

There exists a linear test for JC model.

Follows immediately from Lake'1987 — linear invariants.



Lake's Invariants — | est

f=u(AGCC) + U(ACAC) + H(AACT) +u(ACGT)
- U(ACGC) - u(AACC) - u(ACAT) - y(AGCT)

-or u=p(T,w), =0
-or u=p(T.,,w), <O
For p=p(T,,w), >0




Linear invariants v. Tests

The set of points defined by pu(7%,w) for all valid w
defines a set describing all distributions generated by 75.

The convex hull (i.e., linear combinations in that set)
are the set of mixture distributions

Linear invariant = hyperplane containing mixtures from T,

Test = hyperplane strictly separating mixtures from T, from
mixtures from T,

pure distributions from T, —— e

N



Linear invariants v. Tests

The set of points defined by pu(7%,w) for all valid w
defines a set describing all distributions generated by 75.

The convex hull (i.e., linear combinations in that set)
are the set of mixture distributions

Linear invariant = hyperplane containing mixtures from T,

Test = hyperplane strictly separating mixtures from T, from
mixtures from T,

pure distributions from T, ——
N

mixtures from T,



Linear invariants v. Tests

The set of points defined by pu(7%,w) for all valid w
defines a set describing all distributions generated by 75.

The convex hull (i.e., linear combinations in that set)
are the set of mixture distributions

Linear invariant = hyperplane containing mixtures from T,

Test = hyperplane strictly separating mixtures from T, from

mixtures from T mixtures from T
3

mixtures from T,



Linear invariants v. Tests
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Separating hyperplanes

Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)

B) linear tests (reconstruction easy)
Separating hyperplane theorem:

o LA

ambiguous mixture separating hyperplane




Strictly separating hyperplanes 7?7

Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)

B) linear tests (reconstruction easy)
Separating hyperplane theorem ?:

o LA

ambiguous mixture strictly separating hyperplane?




Strictly separating not always possible

Separating hyperplane theorem ?:
x® <

ambiguous mixture strictly separating hyperplane?

J//// NO strictly separating hyperplane

{(xy)[x>0}uU{(0y)[y>0} {(0,0)}




When strictly separating possible?

// NO strictly separating hyperplane

{(xy)[x>0}U{(0y)[y>0} {(0,0)}
(X,y? —xz) x>0,y>0

Lemma:
Sets which are convex hulls of images of open sets under a
multi-linear polynomial map have a strictly separating hyperplane.

standard phylogeny models satisfy the assumption



Outline

Introduction (phylogeny, molecular phylogeny)
Mathematical models (CFN, JC, K2, K3)
Maximum likelihood (ML) methods

Our setting: mixtures of distributions
ML, MCMC for ML fails for mixtures

Duality theorem: tests/ambiguous mixtures

Proofs (strictly separating hyperplanes,
non-constructive ambiguous mixtures)



Proof

Lemma:
For sets which are convex hulls of images of open sets under a
multi-linear polynomial map — strictly separating hyperplane.

Proof:
P1(X11- - -!Xm)v - -aPn(X’la- - -aXm)’ X=(X1" ) "Xm) = O

WLOG linearly independent
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Proof
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Proof:
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Proof

Lemma:
For sets which are convex hulls of images of open sets under a
multi-linear polynomial map — strictly separating hyperplane.

Proof:
P1(X1a- - -!Xm)v - -aPn(X’la- - -aXm)’ X=(X1" ) "Xm) = O

Have s,,...,S, such that
S1 I51(x5 F .. +s P (x)>0forallxeO
Goal: show

siP(x)+...+s,P,(x)>0forallxe O

Suppose: s, P(a)+ ... +s, P, (a)=0forsomeacO
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Proof
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Proof

Lemma:
For sets which are convex hulls of images of open sets under a
multi-linear polynomial map — strictly separating hyperplane.

Proof:
P1(X1a- - -!Xm)v - -aPn(X’la- - -aXm)’ X=(X1" ) "Xm) = O

hneaﬂylndependent
s{P,(X)+...+s P (x)>0forallxeO

s, P(0)+...+s,P.,(0)=0
Let R(x)=s4 P,(X ) +...+s,P(X) -non-zero polynomial

R(O,...,0,x,0...,0) > 0 = no monomial x;



Proof

Lemma:
For sets which are convex hulls of images of open sets under a
multi-linear polynomial map — strictly separating hyperplane.

Proof:
P1(X1a- - -!Xm)v - -aPn(X’la- - -aXm)’ X=(X1" ) "Xm) = O

linearly independent
siP(x)+...+s,P,(x)>0forallxe O

s, P(0)+...+s,P.,(0)=0
Let R(x)=s4 P4(x) + ... + s, P(x) - non-zero polynomial

R(O,...,0,x,0...,0) > 0 = no monomial x;
.... = no monomials at all, a contradiction
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Duality application:
non-constructive proof of mixtures

Duality theorem: Every model has either:

A) ambiguous mixture distributions on 4 leaf trees
(reconstruction impossible)
B) linear tests (reconstruction easy)

For K3 model the space of possible tests has dimension 9
T=0c,T,+...+0g5 Ty

Goal: show that there exists no test



Duality application:
non-constructive proof of mixtures

rate matrix
A G C T
A —a—-0F-—7v ! B vy
G —a— -7 Y
C ¥ 15, —a—[3—7x v
T 3 ¥ « —a—f3—7

\

transition matrix P = exp(x.R)

entries in P = generalized polynomials
2. poly(a,B,y,x) exp(lin(aB,y,X))

LEM: The set of roots of a non-zero generalized polynomial
has measure 0.



Non-constructive proof of mixtures

transition matrix P(x) = exp(x.R)

Test should be 0 by continuity.

T,,...,Tg are generalized polynomials in «,[3,y,x

Wronskian det W (T,,...,Tg) is a generalized polynomial «,[3,y,x

=NO TEST!
W, (T4,...Tg) [04,...09]=0



Non-constructive proof of mixtures

The last obstacle: Wronskian W(T1,...,T9) is non-zero

Horrendous generalized
polynomials, even for

e.g., o=1,=2,v=4

plug-in complex numbers

LEM: The set of roots of a non-zero generalized polynomial
has measure 0.
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Open questions

M a semigroup of doubly stochasic matrices (with
multiplication). Under what conditions on M can

you reconstruct the tree topology?

.... 0<x<1/4 0<x<1/2 *

No X

0<zy-x<1/2

no

X
* N <<

N < X

< N
X

* X < N



Open questions

ldealized setting: For data generated from a pure
distribution (i.e., a single tree, no mixture):

Are MCMC algorithms rapidly or torpidly mixing?

How many characters (samples) needed until
maximum likelihood tree Is true tree?
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