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Compute the number of

independent sets
(hard-core gas model)

independentset _  subset S of vertices,
of a graph no two in S are neighbors
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independent set = subset S of vertices
no two in S are neighbors



# independent sets = 5598861

independent set = subset S of vertices
no two in S are neighbors



graph G — # independent sets in G
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#P-complete

#P-complete even for 3-regular graphs

(Dyer, Greenhill, 1997)



graph G — # independent sets in G

¥
approximation

randomization



We would like to know Q

Goal: random variable Y such that

P((1-c)Q <Y <(1+2)Q)>1-5

“Y gives (1+e)-estimate”




(approx) counting < sampling
Valleau,Card’72 (physical chemistry),
Babai’79 (for matchings and colorings),

Jerrum,Valiant,V.Vazirani’86
the outcome of the JVV reduction:

random variables: X X Xt
such that

1) E[X, X, ... X,] = “WANTED"

2) the X are easy to estimate
VIX]

E[X])2

=0(1)



(approx) counting < sampling
1) E[X, X, ... X,] = “WANTED"
2) the X. are easy to estimate

VIX]
E[Xi]°
Theorem (Dyer-Frieze’91)

O (t2I 82) samples (O(t/s?) from each X))

give
1+e estimator of “WANTED” with prob>3/4

= 0(1)



JVV for independent sets

GOAL.: given a graph G, estimate the
number of independent sets of G

<

# independent sets =

P )



JVV for independent sets  P(A"BI=P(AIP(BIA)

VIX]

X. € [0,1]and E[X]>> = =0(1)

E[X.]?



Self-reducibility for independent sets
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Self-reducibility for independent sets




Self-reducibility for mdependent sets



Self-reducibility for independent sets
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Self-reducibility for independent sets
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Self-reducibility for independent sets
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we have a sampler oracle:

random

SAMPLER :
rabh G — » independent
Jrab ORACLE set of G

FPRAS using O(n?) samples.




we have a sampler oracle:

random

SAMPLER :
rabh G — » independent
Jrab ORACLE set of G

FPRAS using O(n?) samples.

we have a sampler oracle:

eIz LS AMPLER set from

ORACLE " gas-model
Gibbs at 3

FPRAS using O’(n) samples.




Application — independent sets
O*( |V| ) samples suffice for counting

Cost per sample (Vigoda’01,Dyer-Greenhill’01
time =07(|V]) for graphs of degree < 4.

Total running time:
O™ (IVI?).




Other applications

matchings O*(n%m)
(using Jerrum, Sinclair’89)

spin systems:

Ising model 0*(n?) for B<P,
(using Marinelli, Olivieri’95)
k-colorings O*(n?) for k>2A

(using Jerrum’95)

total running time




<
>

<
>

e

rd = cold

& &

5

>



Hamiltonian
<4

Q2
@ QOO

SANDL




Big set=Q

Hamiltonian
H:Q - {0,...,n}

Goal: estimate |H-1(0)|

[H(0)| = E[X,] ... E[X;]



Distributions between and

B = inverse temperature
B=0 = = uniform on Q
B=ow = = uniform on H-1(0)

ug (x) oc exp(-H(x)p)

(Gibbs distributions)



Distributions between and
L (X) oc exp(-H(x)p)

 enot.
1y (0 REHED

Normalizing factor = partition function

Z(B)= 2 exp(-H(x)p)




Partition function

Z(B)= 2 exp(-H(x)B)

Xe()



we have a sampler oracle for
_ exp(-H(x)p)
Mg (X) = Z(B)

graph G SAMPLER X subset of V
B fl ORACLE LU




we have a sampler oracle for
_ exp(-H(x)p)
X) =
Mg (x) Z(B)
W~ u4




we have a sampler oracle for
_ exp(-H(x)p)
pg (X) = Z(B)
W~ pg—~ X =exp(H(W)( - o),




we have a sampler oracle for
_ exp(-H(x)p)
pg (X) = Z(B)
W~ pg—~ X =exp(H(W)(p - o),

can obtain the following ratio:

Z(a)
E[X] —Sgguﬁ(s) Xs) = = (B)




Our goal restated

Partition function

Z(B) = 2 exp(-H(x)p)

Xe()

Goal: estimate
_ Z(Ba) Z(B2)  Z(By

Z(Po) Z(B4) Z(Py.1)

Bo=0<PBy<P,<..<P=wx




Our goal restated
Z(B4) Z(Bo) Z(By)
Z(Bo) Z(B))  Z(Bs)
Cooling schedule:
Bo=0<PBy<P,r<..<P=w

How to choose the cooling schedule?

minimize length, while satisfying
VIX] Z()

=0(1) E[X] =
E[Xi]° Z(Pi1)



Parameters: and N

Z(B) = 2 exp(-H(x)p)

Xe ()
Z(0) =
H:QQ > {0,...,n}

n
Z(B)= ) ayePk
Sl a, = |H(K)|



Parameters

Z(0) = H:Q — {0,...,n}

independent sets 2V

matchings ~ V!

perfect matchings V!

m << | mMm |3

k-colorings kV



Previous cooling schedules

Z(0) = H:Q — {0,...,n}

Bo=0<PBy<P,<..<P=wx

“Safe steps”

B—pB+1/n v )
BB (11 A) - SVt
In A >

Cooling schedules of length
O(ninA)

(Bezakova,Stefankovit,
O((Inn)(InA)) Vigoda,V.Vazirani’06)




No better fixed schedule possible

Z(0) = H:Q — {0,...,n}

A schedule that works for all

Z.(P) =

(with ac[0,A-1])

has LENGTH > Q( (In n)(In A) )

1+a (1+ae.ﬁn )



Parameters

Z(0)=A H:QQ > {0,...,n}

Our main result:

can get adaptive schedule
of length O” ( (In A)'2)

Previously:

non-adaptive schedules
of length Q°(In A)




Related work

can get adaptive schedule
of length O™ ( (In A)1/2)

Lovasz-Vempala
Volume of convex bodies in O'(n%)
schedule of length O(n1/2)

(non-adaptive cooling schedule)




Existential part

Lemma:

for every partition function there exists
a cooling schedule of length O ((In A)'?)

nere oS

can get aqgaptive schedule
of length O™ ( (In A)12)




Express SCV using partition function
Z(o)
Z(p)

W~ g X =exp(H(W)(p - o),

(goingfrom B toa) E[X]=

EX?) _ 2(20-B)Z() _
E[X)? ()




EX _ Z(2u-P) Z(B) _
E[X]2 Z(01)2 )

f(y)=In Z(y)




f is decreasing

f)=inZ@) e

f(0)<In A

either forf
changes a lot

Let K:=Af

L
A(In [f’]) >
(In 7)) =—2




f:[a,b] > R, convex, decreasing
can be “approximated” using

\ / '(a)
7(b) 1(@)-1(b)

segments




Technicality: getting to 20-3




Technicality: getting to 2a-f3




Technicality: getting to 2a-f3




Technicality: getting to 2a-f3




Existential —» Algorithmic

can get aagaptive schedule
of length O™ ( (In A)1/2)

|

can get adaptive schedule
of length O™ ( (In A)12)




Algorithmic construction

Our main result:
using a sampler oracle for

1y () - PEHED

we can construct a cooling schedule of length

<38 (In A)"2(In In A)(In n)

Total number of oracle calls

<107 (In A) (In In A+In n)? In (1/5)




Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] yA(v)

B, < <B E[X] =
1= E[X]2 =52 Z(p)




Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] yA(v)

B, < <B E[X] =
1= E[X]2 ~ o2 Z(p)

X is “easy to estimate”



Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] yA(v)

B, < <B E[X] =
1= E[X]2 =52 Z(p)

we make progress (assuming B,>1)



Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] yA(v)

B, < <B E[X] =
1= E[X]2 =52 Z(p)

|

need to construct a “feeler” for this




Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] Z(o)
B, < < B, E[X] =
E[X]? Z(B)
S Z(B) Z(2B-a)
2(a) 2Z(a)

need to construct a “feeler” for this



Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] Z(o)
B, < < B, E[X] =
E[X]? Z(B)
S Z(B) Z(2B-a)
2(a) 2Z(a)

need to construct a “feeler” for this



Rough estimator for 2
Z(o)

n
Z(B) = Zak ehk
k=0

a, ebk
For W ~ i, we have P(H(W)=k) =

Z(B)




Rough estimator for 2

Z(o)
If H(X)=kK likely at both o, B = rough
n estimator
Z(B)= ) ayePk
k=0
a, ePk
For W ~ i, we have P(H(W)=k) =
Z(P)
a, ek

For U ~pu_ we have P(H(U)=k) =
Z(a)



Rough estimator for 2
Z(o)

a, ebk
Z(p)
a, e-ak
Z(a)

For W ~ i, we have P(H(W)=k) =

For U~ we have P(H(U)=k) =

PHU)=k) . Z()

P(H(W)=k) © 2(0)




Rough estimator for 2

Z(o)
n
Z(P) = Zak ek
k=0
For W ~ u; we have Zakeﬁk

P(H(W)e[c,d]) = ()



Rough estimator for 2

Z(a)
If |a-B|- |d-c| < 1 then

1.20) _ PHV)<le,d]) gowp)
e 7o) = P(A(W)<[c,d])

We also need P(H(U) < [c,d])
P(H(W) € [c,d])
to be large.




Split {0,1,...,n}into h <4(In n){In A
intervals

[01,[11,[2]....,[c,c(1+1\In A)],...

for any inverse temperature 3 there
exists a interval with P(H(W)< I) > 1/8h

We say that | is HEAVY for



Algorithm

repeat

find an interval | which is heavy for
the current inverse temperature 3

see how far | is heavy (until some §%)

Z(B) Z(2p-a)

use the interval | for the feeler
Z(a)  Z(a)

either
* make progress, or
* eliminate the interval |



Algorithm

repeat

find an interval | which is heavy for
the current inverse temperature 3

see how far | is heavy (until some §%)

Z(B) Z(2p-a)

use the interval | for the feeler
Z(a)  Z(a)

either
* make progress, or
* eliminate the interval |
* or make a “long move”



if we have sampler oracles for

then we can get adaptive schedule
of length t=0" ( (In A)"2)

independent sets  O7(n?)
(using Vigoda’01, Dyer-Greenhill’01)

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems:

Ising model O’(n?) for B<P¢
(using Marinelli, Olivieri’95)
k-colorings O"(n?) for k>2A

(using Jerrum’95)




input : A black-box sampler for X ~ pg for any 3 = 0, starting inverse temperature .
output: A cooling schedule for 2.

Bad — {
print
if 7y < In A then
I —FIND-HEAVY (4, Bad)
w «— the width of T
L — min{F + 1/w,In A}; (where 1/0 = o0}
5" «— binary search on 3* £ [5, L] with precision 1/(2n), using predicate
Is-HEAVY( 3%, 1)
3« binary search on 7 € [Jg, (5* + Fp)/2] with precision 1/(4n),
using predicate EsT(I, 5, 7)-EsT(I,25 — F5, 3) < 2000
if < (5" 4+ 4)/2 then
PRINT-COOLING-SCHEDULE( J) (optimal move)
else
if 7= L then
PRINT-COOLING-SCHEDULE( ) (long move)
else
A — (8% — Fo) /2
print 5o + v, o + (3/2)7, Bo + (7/4)7, . .., fo + (2 — 2~ Mnindly,
Bad — Bad U [
PRINT-COOLING-SCHEDULE(7*) (interval move)
end
end
else
print oo
end




Appendix — proof of:
1) E[X; X, ... X{] = “WANTED”

2) the X. are easy to estimate
VIXi]
E[X])2

Theorem (Dyer-Frieze’91)

O (t2/82) samples (O(t/s?) from each X))

give
1+e estimator of “WANTED” with prob>3/4

=0(1)




The Bienaymé-Chebyshev inequality

P(Y gives (1tc)-estimate )

1. VY] 1
E[Y])? ¢&°
X, + X, + ...+ X
V= n




The Bienaymé-Chebyshev inequality

P(Y gives (1tc)-estimate )

1. VY] 1
E[Y])? ¢&°
.V[Y] 1 V[X] y= X, +X,+ ...+ X
E[Y]? n “E[X])? n




The Bienayme-Chebyshev inequality

Let X,,...,X,,X be independent, identically
distributed random variables,
Q=E[X]. Let

X, + X, + ... + X
n

n

Y=

Then
P(Y gives (1tc)-estimate of Q)

V[IX] 1

n E[X]? &?

>1 -



Chernoff’s bound

Let X,,...,X,,X be independent, identically
distributed random variables, 0 < X <1,
Q=E[X]. Let

X, + Xy # ... # X
n

Y=

Then
P(Y gives (1tc)-estimate of Q)

q_ o-2.n.E[X]/3



ne — 3 In(s)

E[X] &2

0<X<1




0<X<1

1 1 1
E[X] &

ne — 3 In(s)

E[X] &2

0<X<1




Median “boosting trick”

1 4 X+ X, + ...+ X
n= \'—
E[X] ¢ n
P(o < ) > 3/4

(1-2)Q (1+c)Q

O
I

Y



Median trick — repeat 2T times
(1-€)Q (1+:)Q
0—0—0 010000000

P(o < ) > 3/4
U
> T out of 2T _ -T/4
o 000 )>1-e€
v -TI4

P( UELIEREE in) >1-e



0<X<1

1 32
n= In (1/5)
TR P E[X] ¢&°
+ median trick
1 3
n = In (1/0)
E[X] <2

0<X<1



_ VA 82 s
"= Exe = ()

+ median trick

L 3
n = In (1/0)
E[X] ¢&°

0<X<1



Appendix — proof of:
1) E[X; X, ... X{] = “WANTED”

2) the X. are easy to estimate
VIXi]
E[X])2

Theorem (Dyer-Frieze’91)

O (t2/82) samples (O(t/s?) from each X))

give
1+e estimator of “WANTED” with prob>3/4

=0(1)




How precise do the X. have to be?

First attempt — Chernoff’s bound



How precise do the X. have to be?

First attempt — Chernoff’s bound

Main idea:

c c e c N
(D) (AE-2)(AE=5)... (15 -0) = 12



How precise do the X. have to be?

First attempt — Chernoff’s bound

Main idea:

c c e c N
(D) (AE-2)(AE=5)... (15 -0) = 12

82

n=®( E[1x1 1 In(1/8))

each term Q (t?) samples = Q (t3) total



How precise do the X. have to be?

Bienayme-Chebyshev is better
(Dyer-Frieze’1991)

X=X, X, ... X,

GOAL: SCV(X) < £2/4

P( X gives (1+¢)-estimate )

V[xX] - 1
E[X]°/ ¢

>1 -



How precise do the X. have to be?

Bienayme-Chebyshev is better
(Dyer-Frieze’1991)

Main idea:
c2/4

SCV(X) <=

— SCV(X) < /4

SCV(X) = (1+SCV(X,)) ... (1+SCV(X,)) - 1

V([X] E[X?]
SCV(X)= EIX)? = EDX? -1




How precise do the X. have to be?

Bienayme-Chebyshev is better
(Dyer-Frieze’1991)

X=X, X,...X

Main idea:

c%/4

SCV(X) <=

— SCV(X) < ¢4

each term O(t /¢?) samples = O(t?%/¢?) total



if we have sampler oracles for

then we can get adaptive schedule
of length t=0" ( (In A)"2)

independent sets  O7(n?)
(using Vigoda’01, Dyer-Greenhill’01)

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems:

Ising model O’(n?) for B<P¢
(using Marinelli, Olivieri’95)
k-colorings O"(n?) for k>2A

(using Jerrum’95)




