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independent sets 

spanning trees

matchings

perfect matchings

k-colorings

Counting



independent sets 

Compute the number of

(hard-core gas model)

independent set            subset S of vertices, 
of a graph             no two in S are neighbors

=



# independent sets = 7

independent set = subset S of vertices
no two in S are neighbors



# independent sets = 5598861

independent set = subset S of vertices
no two in S are neighbors



#P-complete

#P-complete even for 3-regular graphs

graph G # independent sets in G

(Dyer, Greenhill, 1997)



graph G # independent sets in G

approximation   

randomization

?



We would like to know Q 

Goal:   random variable  Y such that 

P( (1-ε)Q ≤ Y ≤ (1+ε)Q ) ≥ 1-δ

“Y gives (1±ε)-estimate”



(approx) counting  ⇔ sampling
Valleau,Card’72 (physical chemistry),
Babai’79 (for matchings and colorings),
Jerrum,Valiant,V.Vazirani’86

random variables: X1 X2 ... Xt

E[X1 X2 ... Xt] 

= O(1)
V[Xi]

the Xi are easy to estimate

=  “WANTED”

the outcome of the JVV reduction:

such that
1)

2)

squared coefficient 
of variation (SCV) E[Xi]2



E[X1 X2 ... Xt] 

= O(1)
V[Xi]

E[Xi]2

the Xi are easy to estimate

=  “WANTED”1)

2)

O(t2/ε2) samples (O(t/ε2) from each Xi) 

give 
1±ε estimator of “WANTED” with prob≥3/4

Theorem (Dyer-Frieze’91)

(approx) counting  ⇔ sampling



JVV for independent sets

P( ) 

1
# independent sets =

GOAL: given a graph G, estimate the 
number of independent sets of G



JVV for independent sets

P(  )

P( ) =

?

?

?

?

?P( )
?

P(  )P( )
X1 X2 X3 X4

Xi ∈ [0,1] and E[Xi] ≥½ ⇒ = O(1)
V[Xi]

E[Xi]2

P(A∩B)=P(A)P(B|A)



Self-reducibility for independent sets
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Self-reducibility for independent sets
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Self-reducibility for independent sets
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Self-reducibility for independent sets



SAMPLER
ORACLEgraph G

random 
independent
set of G

JVV: If we have a sampler oracle:

then FPRAS using O(n2) samples.  



SAMPLER
ORACLEgraph G

random 
independent
set of G

JVV: If we have a sampler oracle:

then FPRAS using O(n2) samples.  

SAMPLER
ORACLE

β, graph G set from
gas-model 
Gibbs at β

ŠVV: If we have a sampler oracle:

then FPRAS using O*(n) samples.  



O*( |V| ) samples suffice for counting

Application – independent sets

Cost per sample (Vigoda’01,Dyer-Greenhill’01)
time = O*( |V| ) for graphs of degree ≤ 4.

Total running time:
O* ( |V|2 ). 



Other applications

matchings                    O*(n2m)
(using Jerrum, Sinclair’89)

spin systems: 
Ising model            O*(n2) for β<βC

(using Marinelli, Olivieri’95)

k-colorings             O*(n2) for k>2Δ
(using Jerrum’95)

total running time



easy = hot

hard = cold



1

2

4
Hamiltonian

0



Hamiltonian
H : Ω→ {0,...,n}

Big set = Ω

Goal: estimate |H-1(0)|

|H-1(0)| = E[X1] ... E[Xt ]



Distributions between hot and cold

μβ (x) ∝ exp(-H(x)β)

β = inverse temperature

β = 0    ⇒ hot ⇒ uniform on Ω
β = ∞ ⇒ cold ⇒ uniform on H-1(0)  

(Gibbs distributions)



μβ (x) = exp(-H(x)β)

Normalizing factor = partition function

Z(β)=  ∑ exp(-H(x)β)
x∈Ω

Z(β)

Distributions between hot and cold

μβ (x) ∝ exp(-H(x)β)



Partition function

Z(β)=  ∑ exp(-H(x)β)
x∈Ω

have:     Z(0) = |Ω|
want:     Z(∞) = |H-1(0)|



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

SAMPLER
ORACLE

graph G
β

subset of V
from μβ



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

W ∼ μβ



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

W ∼ μβ X = exp(H(W)(β - α))



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

W ∼ μβ X = exp(H(W)(β - α))

E[X] =  ∑ μβ(s) X(s) 
s∈Ω

= 
Z(α)
Z(β)

can obtain the following ratio:



Partition function

Z(β) =  ∑ exp(-H(x)β)
x∈Ω

Our goal restated

Goal: estimate Z(∞)=|H-1(0)|

Z(∞) =
Z(β1)   Z(β2)           Z(βt)

Z(β0)  Z(β1)           Z(βt-1)
Z(0)

β0 = 0 < β1 < β 2 < ... < βt = ∞

...



Our goal restated

Z(∞) =
Z(β1)   Z(β2)           Z(βt)

Z(β0)  Z(β1)           Z(βt-1)
Z(0)...

How to choose the cooling schedule?

Cooling schedule:

E[Xi]  =
Z(βi)

Z(βi-1)

V[Xi]

E[Xi]2
= O(1)

minimize length, while satisfying

β0 = 0 < β1 < β 2 < ... < βt = ∞



Parameters: A and n

Z(0) = A

Z(β) =  ∑ exp(-H(x)β)
x∈Ω

H:Ω→ {0,...,n}

Z(β) = ak e-β k∑
k=0

n

ak = |H-1(k)|



Parameters

Z(0) = A H:Ω→ {0,...,n}

independent sets 

matchings 

perfect matchings 

k-colorings 

2V

V!

kV

A

E

n

V

V

E

≈ V!



Previous cooling schedules

Z(0) = A H:Ω→ {0,...,n}

β → β + 1/n
β → β (1 + 1/ln A) 
ln A →∞

“Safe steps”

O( n ln A)
Cooling schedules of length

O( (ln n) (ln A) )

β0 = 0 < β1 < β 2 < ... < βt = ∞

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)



No better fixed schedule possible

Z(0) = A H:Ω→ {0,...,n}

Za(β) =          (1 + a e          ) A
1+a

- β n

A schedule that works for all

(with a∈[0,A-1])

has LENGTH ≥ Ω( (ln n)(ln A) )  



Parameters

Z(0) = A H:Ω→ {0,...,n}
Our main result:

non-adaptive schedules 
of length Ω*( ln A )

Previously:

can get adaptive schedule
of length O* (  (ln A)1/2 )



Related work

can get adaptive schedule
of length O* (  (ln A)1/2 )

Lovász-Vempala 
Volume of convex bodies in O*(n4)

schedule of length O(n1/2)

(non-adaptive cooling schedule)



Existential part

for every partition function there exists 
a cooling schedule of length O*((ln A)1/2)

Lemma:

can get adaptive schedule
of length O* (  (ln A)1/2 )

there exists



W ∼ μβ X = exp(H(W)(β - α))

E[X2]

E[X]2

Z(2α-β) Z(β)

Z(α)2
= ≤ C

E[X]
Z(α) 
Z(β)=

Express SCV using partition function

(going from β to α)



f(γ)=ln Z(γ)
Proof:

E[X2]

E[X]2

Z(2α-β) Z(β)

Z(α)2
= ≤ C

≤ C’=(ln C)/2

β α 2α-β



f(γ)=ln Z(γ)
f is decreasing
f is convex
f’(0) ≥ –n
f(0) ≤ ln A

Proof:

either f or f’
changes a lot

Let K:=Δf

Δ(ln |f’|) ≥ 1
K

1



f:[a,b] → R, convex, decreasing
can be “approximated” using

f’(a)
f’(b)

(f(a)-f(b))

segments



Proof:

β α 2α-β

Technicality: getting to 2α-β



Proof:

β α 2α-β

βi

βi+1

Technicality: getting to 2α-β



Proof:

β α 2α-β

βi

βi+1
βi+2

Technicality: getting to 2α-β



Proof:

β α 2α-β

βi

βi+1
βi+2

Technicality: getting to 2α-β

βi+3

ln ln A

extra
steps



Existential → Algorithmic

can get adaptive schedule
of length O* (  (ln A)1/2 )

there exists

can get adaptive schedule
of length O* (  (ln A)1/2 )



Algorithmic construction

μβ (x) = exp(-H(x)β)
Z(β)

using a sampler oracle for μβ

we can construct a cooling schedule of length 

≤ 38 (ln A)1/2(ln ln A)(ln n)

Our main result:

Total number of oracle calls

≤ 107 (ln A) (ln ln A+ln n)7 ln (1/δ)



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction

X is “easy to estimate”



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction

we make progress (assuming B1>1)



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction

need to construct a “feeler” for this



Algorithmic construction

current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

need to construct a “feeler” for this

= Z(β)

Z(α)

Z(2β−α)

Z(α)



Algorithmic construction

current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

need to construct a “feeler” for this

= Z(β)

Z(α)

Z(2β−α)

Z(α)

bad “feeler”



Rough estimator for Z(β)

Z(α)

Z(β) = ak e-β k∑
k=0

n

For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)



Rough estimator for 

Z(β) = ak e-β k∑
k=0

n

For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)

For U ∼ μα we have P(H(U)=k) = 
ak e-α k

Z(α)

If H(X)=k likely at both α, β ⇒ rough 
estimator

Z(β)

Z(α)



Rough estimator for 

For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)

For U ∼ μα we have P(H(U)=k) = 
ak e-α k

Z(α)

P(H(U)=k)
P(H(W)=k) ek(α-β) = 

Z(β)

Z(α)

Z(β)

Z(α)



Rough estimator for 

Z(β) = ak e-β k∑
k=0

n

ak e-β kFor W ∼ μβ we have 
P(H(W)∈[c,d]) = 

Z(β)

∑
k=c

d

Z(β)

Z(α)



P(H(U)∈[c,d])
P(H(W)∈[c,d])

≤ e ec(α-β)

e 
1

≤

If |α-β|⋅ |d-c| ≤ 1 then

Rough estimator for Z(β)

Z(α)

We also need P(H(U) ∈ [c,d]) 
P(H(W) ∈ [c,d])

to be large.

Z(β)

Z(α)

Z(β)

Z(α)



Split {0,1,...,n} into h ≤ 4(ln n)  ln A
intervals

[0],[1],[2],...,[c,c(1+1/  ln A)],...

for any inverse temperature β there 
exists a interval with P(H(W)∈ I) ≥ 1/8h

We say that I is HEAVY for β



Algorithm  

find an interval I which is heavy for 
the current inverse temperature β

see how far I is heavy (until some β*)

use the interval I for the feeler 
Z(β)

Z(α)

repeat

Z(2β−α)

Z(α)
either 

* make progress, or
* eliminate the interval I



Algorithm  

find an interval I which is heavy for 
the current inverse temperature β

see how far I is heavy (until some β*)

use the interval I for the feeler 
Z(β)

Z(α)

repeat

Z(2β−α)

Z(α)
either 

* make progress, or
* eliminate the interval I
* or make a “long move”



if we have sampler oracles for μβ
then we can get adaptive schedule

of length t=O* (  (ln A)1/2 )

independent sets       O*(n2)
(using Vigoda’01, Dyer-Greenhill’01)

matchings                    O*(n2m)
(using Jerrum, Sinclair’89)

spin systems: 
Ising model             O*(n2) for β<βC

(using Marinelli, Olivieri’95)
k-colorings             O*(n2) for k>2Δ

(using Jerrum’95)





O(t2/ε2) samples (O(t/ε2) from each Xi) 

give 
1±ε estimator of “WANTED” with prob≥3/4

Theorem (Dyer-Frieze’91)

Appendix – proof of:

E[X1 X2 ... Xt] 

= O(1)
V[Xi]

E[Xi]2

the Xi are easy to estimate2)

=  “WANTED”1)



P( Y gives (1±ε)-estimate )

≥ 1 -
V[Y]

E[Y]2

1

ε2

Y=
X1 + X2 + ... + Xn

n

The Bienaymé-Chebyshev inequality



P( Y gives (1±ε)-estimate )

≥ 1 -

Y=
X1 + X2 + ... + Xn

n
V[Y]

E[Y]2
=

1 V[X]
E[X]2n

The Bienaymé-Chebyshev inequality

squared coefficient 
of variation SCV

V[Y]

E[Y]2

1

ε2



P( Y gives (1±ε)-estimate of Q )  

Let X1,...,Xn,X be independent, identically 
distributed random variables, 
Q=E[X]. Let 

The Bienaymé-Chebyshev inequality 

≥ 1 -
V[X]

n E[X]2

1

ε2

Then

Y=
X1 + X2 + ... + Xn

n



P( Y gives (1±ε)-estimate of Q )  

- ε2 . n . E[X] / 3≥ 1 –

Let X1,...,Xn,X be independent, identically 
distributed random variables, 0 ≤ X ≤ 1, 
Q=E[X]. Let 

Chernoff’s bound 

Y=
X1 + X2 + ... + Xn

n
Then

e



n =
V[X]

E[X]2

1

ε2
1

δ

n =
1

E[X]

3

ε2
ln (1/δ)

0≤X≤1



n =
1

E[X]

1

ε2
1

δ

n =
1

E[X]

3

ε2
ln (1/δ)

0≤X≤1

0≤X≤1



Median “boosting trick”

P( ∈ ) ≥ 3/4

n =
1

E[X]

4

ε2

(1-ε)Q (1+ε)Q

Y=
X1 + X2 + ... + Xn

n

Y

=



Median trick – repeat 2T times

(1-ε)Q (1+ε)Q

P( ∈ ) ≥ 3/4

P( ) ≥ 1 - e -T/4> T out of 2T 

median is in
⇒

⇒
P( ) ≥ 1 - e

-T/4



n =
1

E[X]

32

ε2

n =
1

E[X]

3

ε2

ln (1/δ)

0≤X≤1

0≤X≤1

+ median trick

ln (1/δ)



n =
V[X]

E[X]2

32

ε2

n =
1

E[X]

3

ε2

ln (1/δ)

0≤X≤1

+ median trick

ln (1/δ)



O(t2/ε2) samples (O(t/ε2) from each Xi) 

give 
1±ε estimator of “WANTED” with prob≥3/4

Theorem (Dyer-Frieze’91)

Appendix – proof of:

E[X1 X2 ... Xt] 

= O(1)
V[Xi]

E[Xi]2

the Xi are easy to estimate2)

=  “WANTED”1)



How precise do the Xi have to be?

First attempt – Chernoff’s bound



How precise do the Xi have to be?

First attempt – Chernoff’s bound

(1± )(1± )(1± )... (1± ) ≈ 1±εε
t

ε
t

ε
t

ε
t

Main idea:



How precise do the Xi have to be?

First attempt – Chernoff’s bound

(1± )(1± )(1± )... (1± ) ≈ 1±εε
t

ε
t

ε
t

ε
t

Main idea:

each term Ω (t2) samples   ⇒ Ω (t3) total

n =
1

E[X]

1

ε2
ln (1/δ)Θ( )



How precise do the Xi have to be?

Bienaymé-Chebyshev is better
(Dyer-Frieze’1991)

P( X gives (1±ε)-estimate )

≥ 1 -
V[X]
E[X]2

1

ε2

squared coefficient 
of variation (SCV)

GOAL: SCV(X) ≤ ε2/4

X=X1 X2 ... Xt



How precise do the Xi have to be?

Bienaymé-Chebyshev is better
(Dyer-Frieze’1991)

SCV(X) = (1+SCV(X1)) ... (1+SCV(Xt)) - 1 

Main idea:

SCV(Xi) ≤
ε2/4

t ⇒ SCV(X)  <  ε2/4≈

SCV(X)=
V[X]

E[X]2

E[X2]

E[X]2
= -1



How precise do the Xi have to be?

Bienaymé-Chebyshev is better
(Dyer-Frieze’1991)

X1 X2 ... XtX =
Main idea:

SCV(Xi) ≤
ε2/4

t ⇒ SCV(X)  <  ε2/4≈

each term Ο(t /ε2) samples   ⇒ Ο(t2/ε2) total



if we have sampler oracles for μβ
then we can get adaptive schedule

of length t=O* (  (ln A)1/2 )

independent sets       O*(n2)
(using Vigoda’01, Dyer-Greenhill’01)

matchings                    O*(n2m)
(using Jerrum, Sinclair’89)

spin systems: 
Ising model             O*(n2) for β<βC

(using Marinelli, Olivieri’95)
k-colorings             O*(n2) for k>2Δ

(using Jerrum’95)


