1 Schedule

The homework is **due Sep 11, 2008**.
The QUIZ will be on **Tuesday, Sep. 16**.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

B: Addition (p.11, DSV).
B: Multiplication (p.15, DSV).
B: Division (p.15, DSV).
B: Modular exponentiation (p.19, DSV).
B: Euclid’s algorithm (p.20, DSV).
I: Extended Euclid’s algorithm (p.21, DSV).
A: Primality testing (p.25, DSV).
A: Generating random primes (p.28, DSV).
A: RSA (p.33, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

- Modular arithmetic, Fermat’s little theorem.

 Theorem: Let \(p \) be a prime and let \(a \) be an integer such that \(\gcd(a, p) = 1 \). Then \(a^{p-1} \equiv 1 \pmod{p} \).

- Fermat’s little theorem.

 Theorem: Let \(p \) be a prime and let \(a \) be an integer. Then \(a^p \equiv a \pmod{p} \).

Testing method:

- Compute \(a^b \mod c \). (\(c \) will be a prime smaller than 20.)
- Trace the execution of Euclid’s gcd algorithm.
- Compute the multiplicative inverse of \(a \) modulo \(b \).
- Apply Fermat’s little theorem in a computation (see problems 1.1, 1.4, 1.5, below).

Example problems (homework):

1.1 *(due Sep 11, 2008)* Compute \(2^{101} \mod 5 \).

1.2 *(due Sep 11, 2008)* Compute \(\gcd(30, 105) \). Compute \(\gcd(89, 55) \). Use Euclid’s gcd algorithm. Show all steps.

1.3 *(due Sep 11, 2008)* Compute the multiplicative inverse of 31 modulo 872.

1.4 *(due Sep 11, 2008)* Is \(4^{312} - 9^{1200} \) divisible by 35? Use Fermat’s little theorem to prove your answer.

1.5 *(due Sep 11, 2008)* What is \(2^{2^{100}} \mod 5 \)? (as usual, \(a^{b^c} \) is \(a \) raised to the \(b^c \)-th power).

1.6 *(due Sep 11, 2008)* Prove that for every integer \(x \), either \(x^2 \equiv 0 \pmod{4} \) or \(x^2 \equiv 1 \pmod{4} \).
1.7 (due Sep 11, 2008) Let p, q be two different primes. Let x, y be such that $x \equiv y \pmod{p}$ and $x \equiv y \pmod{q}$. Prove that $x \equiv y \pmod{pq}$.

1.8 (due Sep 11, 2008) For each of the following—prove or disprove (clearly state which of the two are you doing):

- For all $x \in \mathbb{Z}$ such that $\gcd(x, 19) = 1$ we have $x^{18} \equiv 1 \pmod{19}$.
- For all $x \in \mathbb{Z}$ such that $\gcd(x, 21) = 1$ we have $x^{18} \equiv 1 \pmod{21}$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x \pmod{37}$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x \pmod{35}$.

4 Additional homework

1.9 (due Sep 11, 2008) Solve the following system of congruences:

\[
\begin{align*}
 x & \equiv 7 \pmod{11} \\
 x & \equiv 8 \pmod{12} \\
 x & \equiv 9 \pmod{13}
\end{align*}
\]

(HINT: Chinese remainder theorem.)

1.10 (due Sep 11, 2008) Let x, y be unknown positive integers. Let $A = xy$ and $B = x + y$. Give a polynomial-time algorithm which on input A, B computes x, y.

1.11 (due Sep 11, 2008) Let p be a prime and let a, b be two integers such that $a^2 \equiv b^2 \pmod{p}$. Prove that either $a \equiv b \pmod{p}$ or $a \equiv -b \pmod{p}$. Clearly state where in your proof you used the assumption that p is a prime.

1.12 (due Sep 11, 2008) [BONUS PROBLEM] Professor A designed a black-box which on input a computes a^2 in time $O(\log a)$. We would like to use the black-box to multiply numbers, i.e., on input a, b we want to compute ab. We want our algorithm to run in time $O(\log(ab))$.

a) Give such an algorithm.

b) Suppose now, that instead of $x \mapsto x^2$ black-box, we have $x \mapsto x^3$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log(ab))$.

c) Suppose now, that instead of $x \mapsto x^2$ black-box, we have $x \mapsto x^4$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log(ab))$.

In parts a), b), c) you can assume that we can add two numbers c, d in $O(\log(cd))$-time. You can also assume that for any constant f we can divide d by f in $O(\log d)$-time.

5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz.

- 1.1, 1.4, 1.5, 1.10, 1.11, 1.14, 1.15, 1.19, 1.20, 1.22, 1.23, 1.25, 1.26, 1.31, 1.32, 1.37, 1.39.