Greedy algorithms/dynamic programming (part 4 of CSC 282),

http://www.cs.rochester.edu/"stefanko/Teaching/08CS282

1 Schedule

Problem sessions:

Part 1 of he homework is due Nov 4, 2008.
Part 2 of he homework is due Nov 6, 2008.
The QUIZ will be on Tuesday, Nov. 11, 2008.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

Huffman encoding (p.139, DSV).
Coin-change problems (handout).

Longest increasing subsequence (p.157, DSV).
Edit distance (p.159, DSV).

Knapsack (p.164, DSV).

Chain matrix multiplication (p.171, DSV).
Independent sets in trees (p.176, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

e Two basic greedy algorithms: Huffman encoding, coin change.

e Two basic dynamic programming algorithms: knapsack, longest increasing subsequence.
Testing method:

e Trace all of the four algorithms above/compute answer to example problems.
Example test problems (homework):

4.1 (due Nov 4, 2008) Suppose that symbols a, b, ¢,d, e, f, g, h occur with frequencies
1/36,1/36,1/12,1/9,5/36,1/6,7/36,1/4, respectively. Construct the Huffman encoding of the alphabet.

4.2 (due Nov 4, 2008) Consider the coin change problem with coin values 1,3,5. Does the greedy algorithm
always find an optimal solution? If the answer is no, provide a counterexample. If the answer is yes, give a proof.

4.3 (due Nov 4, 2008) Consider the coin change problem with coin values 1,4,6. Does the greedy algorithm
always find an optimal solution? If the answer is no, provide a counterexample. If the answer is yes, give a proof.

4.4 (due Nov 4, 2008) Consider the coin change problem with coin values 1,4,7. Does the greedy algorithm
always find an optimal solution? If the answer is no, provide a counterexample. If the answer is yes, give a proof.

4.5 (due Nov 4, 2008) Consider the knapsack problem with knapsack limit 136 and the following items (weight,value):
(41,4),(48,4), (44,4),(37,3),(29,2), (26,2), (22, 2), (40,4), (46, 4).
Find an optimal solution of the problem.

4.6 (due Nov 4, 2008) Find the longest increasing subsequence of
5,3,4,1,6,10,7,11,12,8,9.



4 Additional homework

4.7 (due Nov 4, 2008) We are given an n x n array A of zeros and ones. Give an algorithm to find the size of
the largest contiguous all-ones square. Your algorithm must run in time O(n?).

4.8 (due Nov 4, 2008) We are given n positive numbers aq,...,a, (the numbers are not necessarily integers).
The goal is to select a subset of the numbers with maximal sum and such that no three consecutive numbers are
selected. Here are three example inputs together with optimal solutions (the numbers in boxes are selected):

[5][5]8[5][5]

[5]5[12]5[5]
12][2] 1 [2][1]2[5] 5]

Give an O(n)-time algorithm for the problem.

4.9 (due Nov 6, 2008) We are given n positive integers aq, ..., a, and another positive integer M. We want to
figure out if we can select a subset of the integers which sums to M. Give an O(Mn)-time algorithm for the problem.

4.10 (due Nov 6, 2008) We are given n coin values c¢1,¢s,..., ¢, and an amount P (the ¢; and P are positive
integers). Unlike in the original coin change problem (where we had an unlimited supply of each coin value) we now
have only 2 of each coin value. We would like to figure out whether we can pay P, and if we can, what is the minimal
number of coins that can be used to pay P. Give an efficient algorithm for the problem.

For example if the coin values are 1,2,5,6 and P = 15 then the answer is yes - use 5 coins (since 15 =6+6+2+1
or 15 =6+ 5+ 2+ 2). (Note that we cannot pay 15 =5+ 5+ 5, since we have only 2 coins of value 5.)

4.11 (due Nov 4, 2008) Write a dynamic programming algorithm which for a given number n finds the smallest
number of squares which sum to n (for example for n = 7 we need 4 squares (7 = 22 + 12 + 12 + 12), whereas for
n = 13 we only need 2 squares (13 = 32 + 2%)). Implement your algorithm and find all numbers from {1,2,...,100}
which need 4 squares. Use “The On-Line Encyclopedia of Integer Sequences” to find a formula for the numbers
which need 4 squares.

4.12 (due Nov 6, 2008) We are given a sequence of n positive numbers aq,...,a,. Give an algorithm which
finds the increasing subsequence of ay, ..., a, with the maximal sum. (For example on input 1,101, 2, 3,100, 4,5 your
algorithm should output 1,2, 3,100.)

5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in
the problem sessions.

e 5.14, 5.15, 5.16, 5.26, 5.32,
e 6.7, 6.8, 6.11, 6.26, 6.27, 6.29.
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