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 Conference on Artificial Intelligence, 1999.A Brief Introduction to BoostingRobert E. SchapireAT&T Labs, Shannon Laboratory180 Park Avenue, Room A279, Florham Park, NJ 07932, USAwww.research.att.com/�schapireschapire@research.att.comAbstractBoosting is a general method for improving theaccuracy of any given learning algorithm. Thisshort paper introduces the boosting algorithmAdaBoost, and explains the underlying theoryof boosting, including an explanation of whyboosting often does not su�er from over�tting.Some examples of recent applications of boost-ing are also described.BackgroundBoosting is a general method which attempts to \boost"the accuracy of any given learning algorithm. Boostinghas its roots in a theoretical framework for studying ma-chine learning called the \PAC" learning model, due toValiant [37]; see Kearns and Vazirani [24] for a good in-troduction to this model. Kearns and Valiant [22, 23]were the �rst to pose the question of whether a \weak"learning algorithm which performs just slightly bet-ter than random guessing in the PAC model can be\boosted" into an arbitrarily accurate \strong" learningalgorithm. Schapire [30] came up with the �rst prov-able polynomial-time boosting algorithm in 1989. Ayear later, Freund [14] developed a much more e�cientboosting algorithm which, although optimal in a certainsense, nevertheless su�ered from certain practical draw-backs. The �rst experiments with these early boostingalgorithms were carried out by Drucker, Schapire andSimard [13] on an OCR task.AdaBoostThe AdaBoost algorithm, introduced in 1995 by Freundand Schapire [18], solved many of the practical di�cul-ties of the earlier boosting algorithms, and is the fo-cus of this paper. Pseudocode for AdaBoost is givenin Fig. 1. The algorithm takes as input a trainingset (x1; y1); : : : ; (xm; ym) where each xi belongs to somedomain or instance space X, and each label yi is insome label set Y . For most of this paper, we assumeY = f�1;+1g; later, we discuss extensions to the multi-class case. AdaBoost calls a given weak or base learningalgorithm repeatedly in a series of rounds t = 1; : : : ; T .

Given: (x1; y1); : : : ; (xm; ym)where xi 2 X, yi 2 Y = f�1;+1gInitialize D1(i) = 1=m.For t = 1; : : : ; T :� Train weak learner using distribution Dt.� Get weak hypothesis ht : X ! f�1;+1g with error�t = Pri�Dt [ht(xi) 6= yi] :� Choose �t = 12 ln�1� �t�t �.� Update:Dt+1(i) = Dt(i)Zt � � e��t if ht(xi) = yie�t if ht(xi) 6= yi= Dt(i) exp(��tyiht(xi))Ztwhere Zt is a normalization factor (chosen so thatDt+1 will be a distribution).Output the �nal hypothesis:H(x) = sign TXt=1 �tht(x)! :Figure 1: The boosting algorithm AdaBoost.One of the main ideas of the algorithm is to maintaina distribution or set of weights over the training set.The weight of this distribution on training example i onround t is denoted Dt(i). Initially, all weights are setequally, but on each round, the weights of incorrectlyclassi�ed examples are increased so that the weak learneris forced to focus on the hard examples in the trainingset.The weak learner's job is to �nd a weak hypothesisht : X ! f�1;+1g appropriate for the distribution Dt.The goodness of a weak hypothesis is measured by itserror �t = Pri�Dt [ht(xi) 6= yi] = Xi:ht(xi)6=yi Dt(i):Notice that the error is measured with respect to the
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# rounds marginFigure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as reported bySchapire et al. [32]. Left: the training and test error curves (lower and upper curves, respectively) of the combinedclassi�er as a function of the number of rounds of boosting. The horizontal lines indicate the test error rate of thebase classi�er as well as the test error of the �nal combined classi�er. Right: The cumulative distribution of marginsof the training examples after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden)and solid curves, respectively.distribution Dt on which the weak learner was trained.In practice, the weak learner may be an algorithm thatcan use the weights Dt on the training examples. Alter-natively, when this is not possible, a subset of the train-ing examples can be sampled according to Dt, and these(unweighted) resampled examples can be used to trainthe weak learner.Once the weak hypothesis ht has been received, Ada-Boost chooses a parameter �t as in the �gure. Intu-itively, �t measures the importance that is assigned toht. Note that �t � 0 if �t � 1=2 (which we can assumewithout loss of generality), and that �t gets larger as �tgets smaller.The distribution Dt is next updated using the ruleshown in the �gure. The e�ect of this rule is to increasethe weight of examples misclassi�ed by ht, and to de-crease the weight of correctly classi�ed examples. Thus,the weight tends to concentrate on \hard" examples.The �nal hypothesis H is a weighted majority vote ofthe T weak hypotheses where �t is the weight assignedto ht.Schapire and Singer [33] show how AdaBoost and itsanalysis can be extended to handle weak hypotheseswhich output real-valued or con�dence-rated predictions.That is, for each instance x, the weak hypothesis ht out-puts a prediction ht(x) 2 Rwhose sign is the predictedlabel (�1 or +1) and whose magnitude jht(x)j gives ameasure of \con�dence" in the prediction.Analyzing the training errorThe most basic theoretical property of AdaBoost con-cerns its ability to reduce the training error. Let uswrite the error �t of ht as 12�
t. Since a hypothesis thatguesses each instance's class at random has an error rateof 1=2 (on binary problems), 
t thus measures how much

better than random are ht's predictions. Freund andSchapire [18] prove that the training error (the fractionof mistakes on the training set) of the �nal hypothesisH is at mostYt h2p�t(1 � �t)i = Yt q1� 4
2t� exp �2Xt 
2t! : (1)Thus, if each weak hypothesis is slightly better than ran-dom so that 
t � 
 for some 
 > 0, then the trainingerror drops exponentially fast.A similar property is enjoyed by previous boosting al-gorithms. However, previous algorithms required thatsuch a lower bound 
 be known a priori before boost-ing begins. In practice, knowledge of such a bound isvery di�cult to obtain. AdaBoost, on the other hand, isadaptive in that it adapts to the error rates of the indi-vidual weak hypotheses. This is the basis of its name |\Ada" is short for \adaptive."The bound given in Eq. (1), combined with the boundson generalization error given below prove that AdaBoostis indeed a boosting algorithm in the sense that it cane�ciently convert a weak learning algorithm (which canalways generate a hypothesis with a weak edge for anydistribution) into a strong learning algorithm (which cangenerate a hypothesis with an arbitrarily low error rate,given su�cient data).Generalization errorFreund and Schapire [18] showed how to bound thegeneralization error of the �nal hypothesis in terms ofits training error, the size m of the sample, the VC-dimension d of the weak hypothesis space and the num-2
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boosting stumps boosting C4.5Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of 27 benchmark problems asreported by Freund and Schapire [16]. Each point in each scatterplot shows the test error rate of the two competingalgorithms on a single benchmark. The y-coordinate of each point gives the test error rate (in percent) of C4.5 onthe given benchmark, and the x-coordinate gives the error rate of boosting stumps (left plot) or boosting C4.5 (rightplot). All error rates have been averaged over multiple runs.ber of rounds T of boosting. (The VC-dimension is astandard measure of the \complexity" of a space of hy-potheses. See, for instance, Blumer et al. [4].) Speci�-cally, they used techniques from Baum and Haussler [3]to show that the generalization error, with high proba-bility, is at mostP̂r [H(x) 6= y] + ~O rTdm !where P̂r [�] denotes empirical probability on the train-ing sample. This bound suggests that boosting willover�t if run for too many rounds, i.e., as T becomeslarge. In fact, this sometimes does happen. However, inearly experiments, several authors [8, 12, 28] observedempirically that boosting often does not over�t, evenwhen run for thousands of rounds. Moreover, it was ob-served that AdaBoost would sometimes continue to drivedown the generalization error long after the training er-ror had reached zero, clearly contradicting the spirit ofthe bound above. For instance, the left side of Fig. 2shows the training and test curves of running boost-ing on top of Quinlan's C4.5 decision-tree learning al-gorithm [29] on the \letter" dataset.In response to these empirical �ndings,Schapire et al. [32], following the work of Bartlett [1],gave an alternative analysis in terms of the margins ofthe training examples. The margin of example (x; y) is

de�ned to be yXt �tht(x)Xt �t :It is a number in [�1;+1] which is positive if and only ifH correctly classi�es the example. Moreover, the mag-nitude of the margin can be interpreted as a measure ofcon�dence in the prediction. Schapire et al. proved thatlarger margins on the training set translate into a su-perior upper bound on the generalization error. Speci�-cally, the generalization error is at mostP̂r [margin(x; y) � �] + ~O r dm�2!for any � > 0 with high probability. Note that this boundis entirely independent of T , the number of rounds ofboosting. In addition, Schapire et al. proved that boost-ing is particularly aggressive at reducing the margin (in aquanti�able sense) since it concentrates on the exampleswith the smallest margins (whether positive or negative).Boosting's e�ect on the margins can be seen empirically,for instance, on the right side of Fig. 2 which shows thecumulative distribution of margins of the training ex-amples on the \letter" dataset. In this case, even afterthe training error reaches zero, boosting continues to in-crease the margins of the training examples e�ecting acorresponding drop in the test error.Attempts (not always successful) to use the insightsgleaned from the theory of margins have been made3
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PrTFIDFFigure 4: Comparison of error rates for AdaBoost and four other text categorization methods (naive Bayes, proba-bilistic TF-IDF, Rocchio and sleeping experts) as reported by Schapire and Singer [34]. The algorithms were testedon two text corpora | Reuters newswire articles (left) and AP newswire headlines (right) | and with varyingnumbers of class labels as indicated on the x-axis of each �gure.by several authors [6, 20, 26]. In addition, the mar-gin theory points to a strong connection between boost-ing and the support-vector machines of Vapnik and oth-ers [5, 9, 38] which explicitly attempt to maximize theminimum margin.The behavior of AdaBoost can also be understoodin a game-theoretic setting as explored by Freund andSchapire [17, 19] (see also Grove and Schuurmans [20]and Breiman [7]). In particular, boosting can be viewedas repeated play of a certain game, and AdaBoost canbe shown to be a special case of a more general algo-rithm for playing repeated games and for approximatelysolving a game. This also shows that boosting is relatedto linear programming.Multiclass classi�cationThere are several methods of extending AdaBoost tothe multiclass case. The most straightforward general-ization [18], called AdaBoost.M1, is adequate when theweak learner is strong enough to achieve reasonably highaccuracy, even on the hard distributions created by Ada-Boost. However, this method fails if the weak learnercannot achieve at least 50% accuracy when run on thesehard distributions.For the latter case, several more sophisticated meth-ods have been developed. These generally work by re-ducing the multiclass problem to a larger binary prob-lem. Schapire and Singer's [33] algorithm AdaBoost.MHworks by creating a set of binary problems, for each ex-ample x and each possible label y, of the form: \Forexample x, is the correct label y or is it one of theother labels?" Freund and Schapire's [18] algorithmAdaBoost.M2 (which is a special case of Schapire andSinger's [33] AdaBoost.MR algorithm) instead createsbinary problems, for each example x with correct labely and each incorrect label y0 of the form: \For examplex, is the correct label y or y0?"

These methods require additional e�ort in the de-sign of the weak learning algorithm. A di�er-ent technique [31], which incorporates Dietterich andBakiri's [11] method of error-correcting output codes,achieves similar provable bounds to those of Ada-Boost.MH and AdaBoost.M2, but can be used withany weak learner which can handle simple, binary la-beled data. Schapire and Singer [33] give yet anothermethod of combining boosting with error-correcting out-put codes.Experiments and applicationsPractically, AdaBoost has many advantages. It is fast,simple and easy to program. It has no parameters totune (except for the number of round T ). It requires noprior knowledge about the weak learner and so can be
exibly combined with any method for �nding weak hy-potheses. Finally, it comes with a set of theoretical guar-antees given su�cient data and a weak learner that canreliably provide only moderately accurate weak hypothe-ses. This is a shift in mind set for the learning-systemdesigner: instead of trying to design a learning algorithmthat is accurate over the entire space, we can insteadfocus on �nding weaking learning algorithms that onlyneed to be better than random.On the other hand, some caveats are certainly in or-der. The actual performance of boosting on a partic-ular problem is clearly dependent on the data and theweak learner. Consistent with theory, boosting can failto perform well given insu�cient data, overly complexweak hypotheses or weak hypotheses which are too weak.Boosting seems to be especially susceptible to noise [10].AdaBoost has been tested empirically by many re-searchers, including [2, 10, 12, 21, 25, 28, 36]. For in-stance, Freund and Schapire [16] tested AdaBoost on aset of UCI benchmark datasets [27] using C4.5 [29] as aweak learning algorithm, as well as an algorithm which4
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