4.1 (due Apr. 23, 2009) Consider the following MDP

- the states are $S = \{1, 2, \dots, 11\} \times \{1, 2, \dots, 11\}.$
- the reward function is given by R((6,6)) = 1, and R((x,y)) = 0 for $(x,y) \neq (6,6)$
- the discount factor is $\gamma = 0.99$.
- in each state there are two actions:
 - horizontal: if the state is (x, y) then the next state is $(\max\{1, x 1\}, y)$ with probability 1/2 and $(\min\{11, x + 1\}, y)$ with probability 1/2.
 - vertical: if the state is (x, y) then the next state is $(x, \max\{1, y 1\})$ with probability 1/2 and $(x, \min\{11, y + 1\})$ with probability 1/2.
- compute the optimal policy using both value iteration and policy iteration (solving a system of linear equations in the "value-computation phase").
- Give an 11×11 matrix filled with H's and V's containing the optimal policy.