
Using Other Learner Corpora in the 2013 NLI Shared Task

1. Introduction

- The 2013 Native Language Identification Shared Task (Tetreault et al. 2013)
 - Participated in all three tasks: one closed-training, two open-training
- The new TOEFL-11 learner essay corpus (Blanchard et al. 2013)
- Well controlled, but limited in scope?
- Our focus is on building robust models
- Use of cross-corpus evaluation (Brooke and Hirst 2012; Bykh and Meurers 2012)

2. Base Model

Parsed with Stanford parser

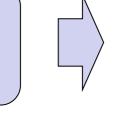
Binary features

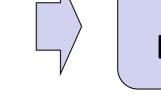
SVM classifier

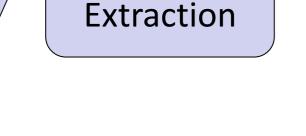
Word bigrams

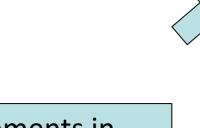
C parameter: 1

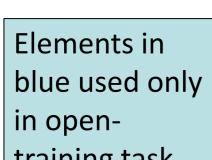


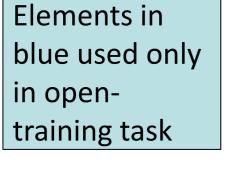

Mixed POS/function trigrams


Frequency cutoff feature selection


One-versus-all subclassifiers







Feature

Feature/Data

Selection

Statistical

Classifier

4. External Corpora for Open-Training Tasks

- Lang-8 Corpus (Brooke and Hirst 2012)
- Noisy but good coverage web corpus
- ICLE (Granger et al., 2009)
- FCE (Yannakoudakis et al., 2011)
 - Short answers (letters, short stories)
- ICCI (Tono et al., 2012)
 - Grade school essays
- ICNALE (Ishikawa, 2011)
 - Asian college essays
 - Strictly controlled for genre

Table 4: Number of tokens (in thousands) in external learner corpora, by L1.

Lang-8 (new) 11694k 7044k	ICLE 227k	FCE 33k	ICCI 2221r	ICNALE
11694k	227k			
		33k	2221z	
7044k		0 0 11	232k	199k
	552k	30k	243k	366k
5174k	0k	37k	0k	151k
536k	256k	61k	0k	0k
861k	225k	83k	49k	0k
450k	251k	31k	0k	0k
331k	258k	29k	91k	0k
51k	222k	22k	0k	0k
218k	0k	0k	0k	0k
11k	0k	0k	0k	0k
2k	0k	0k	0k	0k
	536k 861k 450k 331k 51k 218k 11k	536k256k861k225k450k251k331k258k51k222k218k0k11k0k	536k 256k 61k 861k 225k 83k 450k 251k 31k 331k 258k 29k 51k 222k 22k 218k 0k 0k 11k 0k 0k	536k 256k 61k 0k 861k 225k 83k 49k 450k 251k 31k 0k 331k 258k 29k 91k 51k 222k 22k 0k 218k 0k 0k 0k 11k 0k 0k 0k

Table 5: Number of tokens (in thousands) in Indian corpora, by expected L1

L1	Indian Corpus		
LΙ	News	Twitter	Blog
Hindi	996k	146k	2089k
Telugu	998k	133k	76k

- Few Hindi and Telugu texts
- Solution: Indian corpora
 - News from Hindi/Telugu areas
 - Tweets geolocated in these areas
 - Translated ICWSM blog posts (Burton et al. 2009)

5. Open-Training Task 2

- Failed attempt: Metaclassifier
 - Worse than TOEFL-11 alone
 - Best score 78.5%
- Main approach: Combine data
- Method 1: Bias adaption (BA)
- Equalize output class ratios
- Result: Lang-8 definitely helps

Table 6: Corpus testing for open-training task; best result is in bold

old.				
Training Sat	Accuracy (%)			
Training Set	no BA	with BA		
TOEFL-11 only	79.7	79.2		
+Lang-8	79.5	80.5		
+ICLE	80.2	80.2		
+FCE	79.6	79.3		
+ICCI	77.3	76.7		
+ICANLE	79.7	79.3		
+Lang-8+ICLE	80.4	80.4		

+all but ICCI

- Method 2: Training data selection
 - Rank training data on the basis of test data language model
- Remove fraction r of data
- Result: all data but ICCI is useful when both methods applied

Table 7: Training set selection testing for open-training task 2; best result is in bold, best submitted run is in ital-

Training Set	Accuracy (%)		
Training Set	no BA	with BA	
TOEFL-11 only	79.7	79.2	
+Lang-8	79.5	80.5	
+Lang-8 $r = 0.1$	81.4	81.6	
+Lang-8 $r = 0.2$	80.6	81.5	
+Lang-8 $r = 0.3$	81.0	80.6	
+all but ICCI	80.0	80.4	
+all but ICCI $r = 0.1$	81.5	82.5	
+all but ICCI $r = 0.2$	81.0	81.6	

3. Closed Task

- Standard features (Brooke and Hirst 2012)
- Character trigrams
- POS trigrams
- Context-free grammar productions
- Dependencies
- Only dependencies improved model
- Feature selection
- Frequency cutoff
- No feature selection preferred
- New features
- Partial abstractions
- Dependency chains
- Productions with unspecified elements
- TSG fragments (Swanson and Charniak 2013)
- MRC psycholinguistic lexicon (Coltheart, 1980) /
- All new features fail to improve on best from Table 2

Table 1: Feature testing for closed-training task, previously investigated features; best result is in bold.

_	Feature Set	Accuracy (%
-	Word+mixed	76.8
	Word+mixed+characters	72.0
	Word+mixed+POS	76.6
	Word+mixed+productions	77.9
	Word+mixed+dependencies	78.9
	Word+mixed+dep+prod	78.4

Table 2: Feature frequency cutoff testing for closedtraining task: best result is in bold.

15 task, best result is in oor	iu.
Cutoff	Accuracy (%)
At least 5 occurrences	78.9
At least 3 occurrences	79.5
At least 2 occurrences	79.7
All features	80.2

Table 3: Feature testing for closed-training task, new features: best result is in bold.

Feature Set	Accuracy (%)
Best	80.2
Best+partial abstraction	79.7
Best+dependency chains	78.6
Best+wild card productions	78.8
Best+TSG fragments	78.1
Best+MRC lexicon	54.2

6. Open-Training Task 1

Table 8: ICLE testing for Open-training task 1; best result

Training Cat	Accuracy (
Training Set	no BA	with	
Lang-8	47.0	57	
Lang-8+FCE	47.9	58	
Lang-8+ICCI	46.4	54	
Lang-8+ICNALE	46.9	57	
Lang-8+ICNALE+FCE	47.7	58	
Lang-8+ICNALE+FCE $r = 0.1$	46.6	58	

- Approach to blind task:
- Effect of bias adaption is key
- Again, all corpora useful for
 - Proficiency effects?

Training Sat	Accuracy	
Training Set	no BA	with BA
Lang-8	37.2	59.6
Lang-8+FCE	37.9	61.3
Lang-8+ICCI	35.7	61.4
Lang-8+ICLE	37.3	61.4
Lang-8+ICLE+FCE	37.6	61.7
Lang-8+ICLE+FCE $r = 0.1$	37.7	61.9

- testing on other corpora
- Corpus selection inconsistent
- training except ICCI
- Post-hoc analysis in TOEFL-11

on Computational Linguistics.

- confirms that all but the ICCI are useful and domain adaption helps
- All three Indian corpora can distinguish Hindi/Telugu somewhat, but only tweets and news are useful additions for NLI in TOEFL-11

Table 11: 11-language testing on TOEFL-11 sets for open-training task 1; best result is in bold, best submitted run is

	Training Set		TOEFL-11 test		TOEFL-11 training	
		no BA	with BA	no BA	with BA	
	Lang-8	39.5	53.2	37.2	48.2	
	Lang-8+ICCI	36.9	51.0	34.9	46.3	
	Lang-8+FCE+ICLE+ICNALE	44.5	55.8	44.9	53.1	
	Lang-8+FCE+ICLE+ICNALE+Indian news	45.2	56.5	45.5	54.9	
	Lang-8+FCE+ICLE+ICNALE+Indian tweets	44.9	56.4	45.1	53.4	
	Lang-8+FCE+ICLE+ICNALE+Indian translated blog	45.4	50.1	45.7	49.9	
	Lang-8+FCE+ICLE+ICNALE+News+Tweets	45.2	57.5	45.5	55.2	
4	Lang-8+FCE+ICLE+ICNALE+News+Tweets $r = 0.1$	44.9	58.2	45.0	58.2	
/		T-1-1- 10.	T., 4:	antina fam Ona	n tuoinina toola 1.	

Table 10: Indian corpus testing for Open-training task 1; best result is in bold. Accuracy (%)

Accuracy (%)

References and Acknowledgements

- Daniel Blanchard, Joel Tetreault, Derrick Higgins, Aoife Cahill, and Martin Chodorow. 2013. TOEFL11: A corpus of non-native English. Technical report, ETS. Julian Brooke and Graeme Hirst. 2012. Robust, lexicalized native
- language identification. In *Proceedings of the 24th International* Conference on Computational Linguistics. Kevin Burton, Akshay Java, and Ian Soboroff. 2009. The ICWSM 2009 Spinn3r Dataset. In *Proceedings of the Third Annual Conference on*

Weblogs and Social Media

Sylviane Granger, Estelle Dagneaux, Fanny Meunier, and Magali Paquot. 2009. International Corpus of Learner English (Version 2). Presses Universitaires de Louvain

Max Coltheart. 1980. MRC Psycholinguistic Database User Manual.

Shin'ichiro Ishikawa, 2011. A new horizon in learner corpus studies: The aim of the ICNALE project, In Weir, George and Shin'ichiro

using recurring *n*-grams – investigating abstraction and domain

dependence. In *Proceedings of the 24th International Conference*

- Ishikawa, and Kornwipa Poonpon (editors), Corpora and Language Technologies in Teaching, Learning and Research, pages 3–11.
- University of Strathclyde Press, Glasgow, UK. Ben Swanson and Eugene Charniak. 2012. Native language detection with tree substitution grammars. In *Proceedings of the 50th* Annual Meeting of the Association for Computational Linguistics.
- Joel Tetreault, Daniel Blanchard, and Aoife Cahill. 2013. Summary report on the first shared task on native language identification. In Proceedings of the Eighth Workshop on Building Educational Applications Using NLP.
- Yukio Tono, Yuji Kawaguchi, and Makoto Minegishi, editors. 2012. Developmental and Cross-linguistic Perspectives in Learner Corpus Research. John Benjamins, Amsterdam/Philadelphia. Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 2011. A new
 - dataset and method for automatically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics.
 - This work was supported by the Natural Sciences and Engineering Research Council of Canada. Thanks to Bo Han and Paul Cook for help with the tweets, and Varada Kolhatkar for help with Indian newpapers

© Copyright 2013 Julian Brooke and Graeme Hirst

Serhiy Bykh and Detmar Meurers. 2012. Native language identification