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Introduction

We are excited to be holding the 10th anniversary the BEA workshop. Since starting in 1997, the BEA
workshop, now one of the largest workshops at NAACL/ACL, has become one of the leading venues for
publishing innovative work that uses NLP to develop educational applications. The consistent interest
in and growth of the workshop has clear ties to societal need and related advances in the technology, and
the maturity of the NLP/education field. NLP capabilities now support an array of learning domains,
including writing, speaking, reading, and mathematics. Within these domains, the community continues
to develop and deploy innovative NLP approaches for use in educational settings. In the writing and
speech domains, automated writing evaluation (AWE) and speech scoring applications, respectively, are
commercially deployed in high-stakes assessment and instructional settings, including Massive Open
Online Courses (MOOCs). We also see widely-used commercial applications for plagiarism detection
and peer review. Major advances in speech technology, have made it possible to include speech in both
assessment and Intelligent Tutoring Systems. There has been a renewed interest in spoken dialog and
multi-modal systems for instruction and assessment as well as feedback. We are also seeing explosive
growth of mobile applications for game-based applications for instruction and assessment. The current
educational and assessment landscape, continues to foster a strong interest and high demand that pushes
the state-of-the-art in AWE capabilities to expand the analysis of written responses to writing genres
other than those traditionally found in standardized assessments, especially writing tasks requiring use
of sources and argumentative discourse.

The use of NLP in educational applications has gained visibility outside of the NLP community. First,
the Hewlett Foundation reached out to public and private sectors and sponsored two competitions: one
for automated essay scoring, and the other for scoring of short answer, fact-based response items. The
motivation driving these competitions was to engage the larger scientific community in this enterprise.
MOOCs are now beginning to incorporate AWE systems to manage the thousands of constructed-
response assignments collected during a single MOOC course. Learning@Scale is a recent venue for
discussing NLP research in education. The NLP-TEA workshop, now in its second year (NLP-TEA2),
gives special attention to papers working on Asian languages. The Speech and Language Technology
in Education (SLaTE), now in its sixth year, promotes the use of speech and language technology for
educational purposes. Another breakthrough for educational applications within the CL community is
the presence of a number of shared-task competitions over the last three years. There have been three
shared tasks on grammatical error correction with the most recent edition hosted at CoNLL 2014. In
2014 alone, there were four shared tasks for NLP and Education-related areas.

As a community, we continue to improve existing capabilities and to identify and generate innovative
ways to use NLP in applications for writing, reading, speaking, critical thinking, curriculum
development, and assessment. Steady growth in the development of NLP-based applications for
education has prompted an increased number of workshops, typically focusing on one specific subfield.
In this volume, we present papers from these subfields: tools for automated scoring of text and speech,
automated test-item generation, dialogue and intelligent tutoring, evaluation of genres beyond essays,
feedback studies, grammatical error detection, native language identification, and use of corpora. One
of the oral presentations proposes a Shared Task that addresses the task of automated evaluation of
scientific writing. This presentation will also be presented as a poster to allow greater opportunity for
discussion beyond the main conference day.
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We received 44 submissions and accepted 10 papers as oral presentations and 19 as poster presentation
and/or demos. Each paper was reviewed by three members of the Program Committee who were
believed to be most appropriate for each paper. We continue to have a very strong policy to deal with
conflicts of interest. First, we made a concerted effort to not assign papers to reviewers if the paper had
an author from their institution. Second, with respect to the organizing committee, authors of papers
for which there was a conflict of interest recused themselves from the discussion and decision making.

This workshop offers an opportunity to present and publish work that is highly relevant to ACL, but
is also highly specialized, and so this workshop is often a more appropriate venue for such work. The
Poster session offers more breadth in terms of topics related to NLP and education, and maintains the
original concept of a workshop. We continue to believe that the workshop framework designed to
introduce work in progress and new ideas needs to be revived, and we hope that we have achieved this
with the breadth and variety of research accepted for this workshop. The total number of acceptances
represents a 66% acceptance rate across oral (23%) and poster presentations (43%).

While the field is growing, we do recognize that there is a core group of institutions and researchers
who work in this area. With a higher acceptance rate, we were able to include papers from a wider
variety of topics and institutions. The papers accepted to this workshop were selected on the basis of
several factors, including the relevance to a core educational problem space, the novelty of the approach
or domain, and the strength of the research.

The accepted papers were highly diverse, falling into the following themes:

Speech-based and dialogue applications: Loukina et al. compare several methods of feature selection
for speech scoring systems and show that the use of shrinkage methods such as Lasso regression makes
it possible to rapidly build models that both satisfy the requirements of validity and intepretability;
Volodina and Pijetlovic present the development and the initial evaluation of a dictation and spelling
prototype exercise for second language learners of Swedish based on text-to-speech technology in a
CALL context.; Somasundaran et al. investigate linguistically-motivated features for automatically
scoring a spoken picture-based narration task by building scoring models with features for story
development, language use and task relevance of the response; Jaffe et al. present a log-linear ranking
model for interpreting questions in a virtual patient dialogue system.

Automated writing evaluation: Rahimi et al. present an investigation of score prediction for the
“organization” dimension of an assessment of analytical writing for writers in the lower grades;
Napoles and Callison-Burch explore applications of automatic essay scoring applied to a corpus of
essays written by college freshmen and discuss the challenges related to evaluation of essays that
do not have a highly-constrained structure; Zesch et al. analyze the potential of recently proposed
methods for semi-supervised learning based on clustering for short-answer scoring; Ramachandran et
al. present a new approach that uses word-order graphs to identify important patterns from scoring
rubrics and top-scoring student answers; Farra and Somasundaran investigate whether the analysis
of opinion expressions can help in scoring persuasive essays, and predict holistic essay scores using
features extracted from opinion expressions and topical elements; Zesch et al. investigate task-
independent features for automated essay scoring and evaluate their transferability on English and
German datasets; Ramachandran et al. use an extractive summarization tool called MEAD to extract
a set of responses that may be used as alternative reference texts to score responses; Mathew et al.
identified computational challenges in restructuring encyclopedic resources (like Wikipedia or thesauri)
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to reorder concepts with the goal of helping learners navigate through a concept network; Goutte et
al. extract, from the text of the test items, keywords that are most relevant knowledge components,
and using a small dataset from the PSLC datashop, they show that this is surprisingly effective;
Yannakoudakis and Cummins perform a systematic study to compare the efficacy of different automated
text scoring metrics under different experimental conditions; Chen et al. introduce a novel framework
based on a probabilistic model for emotion wording assistance; Madnani et al. conduct a crowd-sourced
study on Amazon Mechanical Turk to answer questions concerning the effects of type and amount of
writing feedback; Wilson and Martin conduct a quasi-experimental study comparing the effects of a
feedback condition on eighth-grade students’ writing motivation and writing achievement.

Test-item generation: Beinborn et al. describe a generalized framework for test difficulty prediction
that is applicable to several languages and test types., and develop two ranking strategies for candidate
evaluation inspired by automatic solving methods based on language model probability and semantic
relatedness; Niraula and Rus discuss a study that uses active learning for training classifiers to judge
the quality of gap-fill questions; Kumar et al. describe RevUP , a system that deals with automatically
generating gap-fill questions.

Error detection: Ledbetter and Dickinson describe a morphological analyzer for learner Hungarian,
built upon limited grammatical knowledge of Hungarian requiring very few resources and flexible
enough to do both morphological analysis and error detection, in addition to some unknown word
handling; Kochmar and Briscoe present a novel approach to error correction in content words in learner
writing focusing on adjective–noun (AN) combinations.

Use of corpora and annotation: Willis discusses the Amati system which aims to help human markers
improve the speed and accuracy of their marking for short-answer question types; Wang et al. present
the Jinan Chinese Learner Corpus, a large collection of L2 Chinese texts produced by learners that can
be used for educational tasks, such as automated essay scoring.

Native language identification: Malmasi and Cahill propose a function to measure feature independence
for an NLI system, and analyze its effectiveness on a standard NLI corpus; Malmasi et al. examine
different ensemble methods, including an oracle, to estimate the upper limit of classification accuracy
for NLI, and show that the oracle outperforms state-of-the-art systems, and present a pilot study of
human performance for NLI, the first such experiment.

A shared task proposal (Daudaravicius) discusses a shared task for evaluating scientific writing, and
describes the corpus and evaluation metrics associated with this task.

We wish to thank everyone who submitted a paper, all of the authors for their contributions, the
members of the Program Committee for their thoughtful reviews, and everyone who attended this
workshop. We would especially like to thank our sponsors: American Institutes for Research, Appen,
Educational Testing Service, Grammarly, McGraw-Hill Education/CTB, Pacific Metrics, Pearson and
Turnitin LightSide, whose contributions allowed us to subsidize students at the workshop dinner, and
make workshop T-shirts! In addition, we thank Joya Tetreault for creating the T-shirt design.

Joel Tetreault, Yahoo Labs
Jill Burstein, Educational Testing Service
Claudia Leacock, McGraw-Hill Education/CTB
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Abstract

Language proficiency tests are a useful tool
for evaluating learner progress, if the test diffi-
culty fits the level of the learner. In this work,
we describe a generalized framework for test
difficulty prediction that is applicable to sev-
eral languages and test types. In addition,
we develop two ranking strategies for candi-
date evaluation inspired by automatic solving
methods based on language model probabil-
ity and semantic relatedness. These ranking
strategies lead to significant improvements for
the difficulty prediction of cloze tests.

1 Introduction

In learning scenarios, evaluating the learner’s pro-
ficiency is crucial to assess differences in learner
groups and also individual learner progress. This
kind of evaluation is usually performed over the
learner’s results on certain tasks or tests. For infor-
mative results, it is important that the test difficulty
is suitable for the learner. It needs to be challeng-
ing enough to avoid boredom and stagnation, but the
learner should still be able to solve the task at least
partially. In this work, we focus on language profi-
ciency tests and aim at predicting the difficulty for
five different test datasets.

Understanding the challenging elements of a task
is an essential prerequisite for learner support. In
natural language processing, human performance is
usually considered as the gold standard for auto-
matic approaches. The models are tuned and ad-
justed to reach human-like results. In learning set-
tings, the human performance is flawed because of

limited knowledge and lack of experience. In this
work, we thus apply a reverse approach: we exploit
strategies from automatic solving to model human
difficulties.

To enable the experiments, we retrieved datasets
from various testing institutions and conducted a
learner study to obtain error rates for an additional
test type.1 For a better understanding of the differ-
ences between test types, we first calculate the can-
didate space of potential answers and compare it to
learner answers. We assume that higher answer am-
biguity leads to higher difficulty. As all datasets al-
low binary scoring (correct/wrong), the difficulty of
an item is interpreted as the proportion of wrong an-
swers, also referred to as the error rate. We then
build a generalized difficulty prediction framework
based on an earlier approach we presented in Bein-
born et al. (2014a) which was limited to English and
to one specific test type. We evaluate the prediction
for different test types and languages and obtain re-
markable results for French and German.

Many language tests are designed as multiple
choice questions. The generalized prediction ap-
proach lacks predictive power for this format be-
cause the evaluation strategy for the answer candi-
dates is solely based on word frequency. We develop
two strategies for more sophisticated candidate rank-
ing that are inspired by automatic solving methods
based on language models and semantic relatedness.
We show that the candidate ranking can successfully
model human evaluation strategies and leads to im-
proved difficulty prediction for cloze tests.

1The dataset is available at:
https://www.ukp.tu-darmstadt.de/data/c-tests
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In order to establish common ground, we first in-
troduce the concept of reduced redundancy testing
and the most popular test types.

2 Reduced Redundancy Tests

In language learning, most proficiency tests rely on
the principle of reduced redundancy testing as intro-
duced by Spolsky (1969). He formalized the idea
that “natural language is redundant” and that the
proficiency level of language learners can be esti-
mated by their ability to deal with reduced redun-
dancy. For testing, redundancy can be reduced by
eliminating (partial) words from a text to create a
gap. The learner is then asked to fill in the gaps i.e.
to complete the missing words.

Reduced redundancy tests can be distinguished
into open and closed answer formats. In open for-
mats, the learner has to actually produce the solu-
tion, while it can be selected from a small fixed set of
multiple choice options in closed formats. This tech-
nique provides full control over the candidate space,
but the selection of good answer options (distrac-
tors), that are not a proper solution, is a difficult task.
Most previous works in the field of educational nat-
ural language processing focus on the generation of
distractors to manipulate the difficulty, i.e. for cloze
tests (Zesch and Melamud, 2014; Mostow and Jang,
2012; Agarwal and Mannem, 2011; Mitkov et al.,
2006), vocabulary exercises (Skory and Eskenazi,
2010; Heilman et al., 2007; Brown et al., 2005) and
grammar exercises (Perez-Beltrachini et al., 2012).

In addition to the answer format, the test types
can be distinguished by the gap type and the dele-
tion rate. On the local level, the gap type determines
which portion of the word is deleted. On the global
test level, the deletion rate determines the distribu-
tion of gaps in the text. A higher number of gaps
per sentence results in a higher redundancy reduc-
tion. This increases the dependency between gaps
as the mutilated context of a single gap can only be
recreated by solving the surrounding gaps.

2.1 Cloze test

Cloze tests have been introduced by Taylor (1953)
and have become the most popular form of reduced
redundancy testing. In cloze tests, full words are
deleted from a text. This strategy requires compre-

Figure 1: Example for a cloze question, the solution is
observance.

hensive context, so the deletion rate is usually ev-
ery 7th word or higher (Brown, 1989). The main
problem with cloze tests is that the gaps are usually
highly ambiguous and the set of potential solutions
cannot be exactly anticipated (Horsmann and Zesch,
2014). Therefore, most cloze tests are designed as
closed formats, so that the correct solution can be
selected from a set of distractors (see Figure 1 for an
example).

2.2 C-test

Although the cloze test is widely used, the setup
contains several weaknesses such as the small num-
ber of gaps and the ambiguity of the solution. The
C-test is an alternative of the cloze test that has been
developed by Klein-Braley and Raatz (1982). The
C-test construction principle enables a higher num-
ber of gaps on less text, every second word of a short
paragraph is transformed into a gap. As this high
deletion rate would lead to an unfeasible degree of
redundancy reduction, only the second “half” of the
word is deleted to narrow down the candidate space,
see the example below.

Vacc like penic and ot antibiotics th
were disco as a dir result are lik the
grea inventions o medical sci .2

2.3 Prefix deletion test

The prefix deletion test is a more difficult variant of
the C-test that can be used to assess more advanced
students up to native speakers (Sigott and Köberl,
1996). In this case, the first “half” of the word (the
prefix) is deleted. As word endings vary less than
word onsets (at least for the languages under study),
the candidate space is increased and allows alterna-
tive solutions that are equally valid. See the previous

2Solutions: Vaccines, penicillin, other, that, discovered, di-
rect, likely, greatest, of, science
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example as a prefix deletion test below.
ines like illin and er antibiotics at

were vered as a ect result are ely the
test inventions f medical nce.

In standard C-tests, a big challenge is to select the
correct inflection of the solution, especially for lan-
guages with a rich morphology. In prefix deletion
tests, the inflected ending of the word is already pro-
vided and thus the focus is shifted towards seman-
tic challenges. Psycholinguistic experiments have
shown that the information value of the initial part
of a word is higher than the final part (Broerse and
Zwaan, 1966; Kinoshita, 2000). This supports the
assumption that prefix deletion tests are more diffi-
cult.

In general, the following hypothesis is supposed:
A higher degree of redundancy reduction for the gap
results in a bigger candidate space and leads to in-
creased difficulty (compare the results by Sigott and
Köberl (1996)). In the following section, we provide
an approximation of the candidate space for each
test variant.

3 Candidate Space

The main difference between the different test types
is the number of competing candidates. In this sec-
tion, we analyze the candidate space for the three
languages English, French and German and for the
test types cloze, C-test and prefix deletion. We cal-
culate the candidates for each word in the vocabu-
lary and then average the results for words with the
same length to approximate the candidate space.

Language Words Mean word length

English (American) 99,171 8.5 ±2.6
French 139,719 9.6 ±2.6
German 332,263 12.0 ±3.5

Table 1: Vocabulary size and mean word length for dif-
ferent languages

Candidate space for different languages We fo-
cus on English, French and German because they are
used in our datasets. The word list package provided
by Ubuntu for spell-checking serves as vocabulary.3

The size of the lists vary depending on the mor-
phological richness of the language; the German list

3http://packages.ubuntu.com/de/lucid/wordlist, 15.12.2014

is more than three times bigger than the English one
(see Table 1). It should also be noted that the aver-
age word length is much higher for German. This is
mainly due to the existence of noun compounds that
concatenate two or more words into one.
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Figure 2: Mean number of candidates for different test
types with respect to word length

Figure 2 illustrates how the candidate space varies
for the languages under study. It can be seen that for
English the candidate space is maximized for ex-
tremely short words and decreases rapidly with in-
creased word length. In comparison, the French and
in particular the German candidate space is more
leveled: it is smaller for short words, but bigger and
more constant for longer words.
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Figure 3: Mean number of English candidates for differ-
ent test types with respect to word length

Candidate space for different test types Figure 3
shows the English candidate space for the test types.
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The number of candidates for the cloze test with five
distractors is of course always five. Compared to
the C-test, the candidate space for the prefix dele-
tion test is extremely large, in particular for words
with medium length (five to nine characters). This
could be an explanation why this test type is con-
sidered to be more difficult than the standard C-test.
However, following this hypothesis, the cloze tests
should be fairly easy given the consistently small
candidate space. The obtained error rates and the
feedback of our test participants do not support this
assumption. This gives rise to the idea that the can-
didate space considered by the learner differs from
the computational one.

Candidate evaluation by learners When solving
open formats, the learners cannot consider the full
candidate space; only the words that are in the active
vocabulary of the learner are accessible. In addition,
the context can lead to priming effects and the test
situation might alter the stress level of the participant
and apply further restrictions.

From the above arguments, one would expect that
the learner’s candidate space is smaller than the ob-
jective candidate space. However, we need to take
into account that learners also consider wrong op-
tions, see the different learner answers for the gap
appro in Figure 4, for example. The computa-
tional candidate space on the left consists of only
9 candidates, but the participants provided 68 dif-
ferent answers along with the solution appropriate
(and only four of them intersect with the candidate
space). This example highlights the importance of
modelling productive difficulties for test types with
open answer format.

For the closed cloze test, the candidate space is
constant. The learners seem to consider even fewer
options, on average only three of the five provided
answers are actually selected. For closed formats, it
is thus more relevant to model candidate ambiguity.
In the following section, we analyze if the difficulty
prediction can be performed for all test types despite
the varying candidate space.

4 Difficulty prediction

Teachers are often not able to correctly anticipate the
difficulties a learner might face. For the example
in Section 2, one would probably expect high error

Figure 5: Visualization of gap difficulty. Easy gaps are
marked green, intermediate gaps yellow and difficult gaps
red.

rates for vaccines and penicillin, while the problems
with likely and that might come as a surprise (see
Figure 5). For optimal learner support, it is impor-
tant to predict these difficulties.

4.1 Previous work

The earliest analyses of test difficulty operate on
the level of the full text instead of individual gaps.
Klein-Braley (1984) performs a linear regression
analysis with only two difficulty indicators – average
sentence length and type-token ratio – and obtained
useful predictions of the mean test difficulty for her
target group. Eckes (2011) also focuses on the mean
test difficulty and aims at calibrating C-tests using a
Rasch model to build a test pool.

Kamimoto (1993) performs classical item analy-
sis on the gap level and creates a tailored C-test that
only contains selected gaps which better discrimi-
nate between students. However, the gap selection
is based on previous test results instead of gap fea-
tures and cannot be applied on new tests.

In previous work (Beinborn et al., 2014a), we re-
ported the first results for automatic difficulty pre-
diction on the gap level. We introduced a model for
the difficulty prediction of English C-test gaps that
combines aspects of text and word difficulty with
properties of the candidate space and gap dependen-
cies. As the current work builds on this model, we
summarize the feature space below.

Text difficulty For all test types, the difficulty of
the test text determines the available context for the
participant. A more challenging text increases the
difficulty of all gaps as the participant’s orienta-
tion in the text becomes more complicated (compare
Brown (1989)). The difficulty of the underlying text
can be determined by readability features. Our ap-
proach combines traditional features as the average
sentence and word length with more advanced fea-
tures from all linguistic levels (e.g. lexical, syntac-
tic, semantic, discourse) including features specific
to readability for language learning as for example

4



Figure 4: The candidates for the gap appro : The computational candidate space is on the left, the answers provided
by the students are on the right.

the “cognateness of words” (Beinborn et al., 2014b).

Word difficulty On a more local level, the dif-
ficulty of the particular solution word determines
whether the participant is even capable of knowing
the solution. Previous work by Brown (1989) and
Sigott (1995) shows that the word class and the word
frequency correlate with the gap difficulty. In ad-
dition, Klein-Braley (1996) analyzed error patterns
in C-tests that are related to production problems
(correct word stem in wrong form) and early clo-
sure (the participant selects a solution that works
locally, but not in the larger context). In previous
work, we operationalized and extended these find-
ings by implementing many word difficulty features
targeted at morphology, word frequency, cognate-
ness and spelling (Beinborn et al., 2014a).

Test parameters In our previous work, we fo-
cused on English C-Tests, so the test parameters
were fixed to a deletion rate of two, the C-test gap
type and an open answer format. In order to eval-
uate the candidate space, we calculated the num-
ber of candidates and ranked them based on their
frequency in the context. Due to the high deletion
rate, the context is limited to the direct left and right
neighbor. In addition, we evaluated the position of
the gap and the solution frequency of the previous
gap to assess dependencies between items.

4.2 Our generalized approach

Our approach for automatic difficulty prediction
builds on the model introduced earlier for English C-
tests as summarized above (Beinborn et al., 2014a).
We reduce the feature set (from 87 to 70) and only
include those features that can be adapted to all
our target languages and test types. This com-

prises features estimating the difficulty of the solu-
tion and its direct context (cognateness, frequency,
word class, inflection, compound structure, spelling
difficulty, etc.)4, the readability of the text (type-
token-ratio, number of clauses, average word and
sentence length, etc.) and the test parameters (num-
ber of candidates, position of gap, etc). We also
adapt the pipelines to include proper German and
French pre-processing using DkPro (de Castilho and
Gurevych, 2014) and adapt the candidate calculation
to the different test types.

In order to assure comparability to previous work,
we also use support vector machines for regression
in Weka (Hall et al., 2009) through the DKPro TC
framework (Daxenberger et al., 2014).

4.3 Data

Table 2 provides an overview of the test datasets
used in this paper. It consists of four open formats
and one closed format with multiple choice options.
The number of participants is averaged over the texts
because each participant worked with 5 texts in the
open formats.5 The error rates should not be com-
pared across test types because the participants had
different levels of language proficiency. The high
standard deviations indicate that each test contains
gaps that are rather easy and others that are ex-
tremely difficult. In Beinborn et al. (2014a) we have
shown that the error rate for a single item remains

4For the English C-test, we consider the cognateness to Ger-
man because it is the L1 of the majority of the participants. For
the French and German tests, we do not have information about
the L1. We therefore consider the cognateness with English be-
cause we assume that most participants have at least rudimen-
tary knowledge of English.

5The total number of participants is thus much higher, but
this is not relevant for the error rate calculation
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Format Test type Texts Gaps Particip. Avg. error rate

Open

C-test en 39 775 210 .35±.25
C-test fr 40 799 24 .52±.28
C-test de 82 1,640 251 .55±.26
Prefix de 14 348 225 .36±.23

Closed Cloze en 100 100 22 .27±.22

Table 2: Overview of test data

quite stable for varying sample sizes.

C-test We use the same English C-test data as in
our previous work (Beinborn et al., 2014a) and ad-
ditionally obtained French tests. In both cases, the
tests served as a placement test at the language cen-
tre of the TU Darmstadt in order to assign students to
language levels. The participants had heterogeneous
backgrounds regarding their language proficiency
and mother tongue, but the majority was German.
Furthermore, we received German C-tests from the
TestDaf institute that have been administered to for-
eign students who apply for studying in Germany. It
is a subset of the data described in Eckes (2011).

Prefix deletion For the prefix deletion test, we
received German tests from the University of
Duisburg-Essen that test the proficiency of prospec-
tive teachers.6 The participants are a mix of native
German speakers and students with migratory back-
ground (26%). Their language proficiency is much
higher than that of the participants in the other tests.

Cloze tests For cloze tests, we could not find
any test data with error rates. We thus conducted
a study to collect error rates ourselves using the
Microsoft sentence completion dataset.7 For this
dataset, Zweig and Burges (2012) transformed 1400
sentences from 5 Sherlock Holmes novels (written
by Arthur Conan Doyle) into cloze tests. In each se-
lected sentence, they replace a low-frequency con-
tent word with a gap and provide the solution along
with 4 distractors (so-called closed cloze). The dis-
tractors were generated automatically based on n-
gram frequencies and then handpicked by human
judges. It should be noted that all distractors form
grammatically correct sentences and that the n-gram
probabilities for the answer options are comparable.

6http://zlb.uni-due.de/sprachkompetenz
7http://research.microsoft.com/en-us/projects/scc/,

15.12.2014

Dataset LOO Gaps LOO Texts

C-test en .55 .47
C-test fr .70 .67
C-test de .63 .61
Prefix de .54 .27
Cloze en .20 .20

Table 3: Pearson correlation for difficulty prediction re-
sults in an leave-one-out cross-validation setting on the
gap and on the text level

We tested a subset of the cloze questions with an
eloquent native speaker of English and he answered
100% correctly. In order to determine the difficulty
for language learners, we set up 10 web surveys with
10 questions each (as in Figure 1) and asked ad-
vanced learners of English to answer them.

4.4 Prediction Results

Table 3 shows the correlation between the measured
human error rates and the predictions of our gener-
alized prediction approach. It should be noted that
we used the same features for each dataset. In prac-
tical applications, it would of course be possible to
tune the feature selection for each task separately.
For research purposes, however, we are interested in
creating uniform conditions to allow a more mean-
ingful comparison.

In our previous approach, we performed leave-
one-out testing on all gaps to account for the small
amount of training data. As each text of the open for-
mat test types contains 20 gaps, leave-one-out test-
ing on all gaps increases the risk of over-fitting the
model to specific text properties. For a more realis-
tic prediction setting, we additionally perform leave-
one-out testing on the texts, i.e. we always test on 20
gaps from one coherent text. We will focus on the
results reported for this scenario, although they are
slightly worse. The baseline, that always predicts
the mean error rate, yields a correlation of 0 for all
test types.

Languages The results show that the difficulty
prediction can be successfully adapted to other lan-
guages. The correlation for the English C-tests is a
bit lower than in previous work (0.60) because we
reduced the set of features as described above. This
allowed us to obtain results for German and French
that are even better than the ones previously reported
for English.
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fix deletion dataset

Test Types The results for the test types show that
the prediction framework struggles with the prefix
deletion and the cloze tests. One obvious reason
could be the size of the training data which is sig-
nificantly smaller for these tasks.

We first have a closer look at the prefix deletion
test to explain the strong decline for leave-one-out
cross-validation on texts. We find that the most sig-
nificant prediction errors can be found for one par-
ticular text. This text exhibits a very high readability
(e.g. low type-token and pronoun ratio, few adjec-
tives and adverbs), but contains many difficult gaps.
This combination has not been observed in the train-
ing data which explains that the difficulty of all gaps
is strongly underestimated (resulting in negative val-
ues for the predicted error rates).

Figure 6 shows that the differences between gaps
are actually predicted quite well, one could simply
add a constant factor (of about 0.4) to receive an
acceptable prediction. For the purpose of the er-
ror analysis, we remove that particular text from the
evaluation and re-calculate the results. This yields
a more reasonable Pearson correlation of 0.43 and
shows that the difference between LOO on gaps and
on text is due to over-fitting to text properties of
the training data. This effect would surely decrease
with more training data as can be seen for the bigger
French and German datasets.

For the cloze test on the other hand, something
more essential is going wrong. In Section 3, we have
seen that the main difference for this test type is the
closed candidate space. The features modelling pro-
duction problems are thus not relevant here. While
the number of the candidates is fixed, the set is still
very variable because the distractors can be freely
selected from the whole vocabulary. The better the
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Figure 7: The search space for the sentence Pure wa
has n smell, ta , or co . In this graph, the solu-
tion is always the topmost candidate, the candidate space
is simplified.

distractors fit the gap, the more difficult it gets for
the learner to select the solution, as in the following
example:

When his body had been carried from the cellar
we found ourselves still confronted with a problem
which was almost as as that with which we had
started.

[tall, loud, invisible, quick, formidable]
Only very few learners managed to identify the

solution formidable in this case, while the example
in Figure 1 was quite easy for them. For difficulty
prediction, it is therefore important to estimate the
ambiguity of the answer options. In the remainder of
the paper, we examine whether strategies that have
been successfully applied for automatic solving of
language tests can also provide insights into human
difficulties with candidate ambiguity.

5 Candidate evaluation strategies

The main challenge for solving a reduced redun-
dancy test consists in identifying the most suitable
candidate in the candidate space. The context fitness
of a candidate can be evaluated based on language
model probabilities and on semantic relatedness be-
tween the candidate and the context.

LM-based approach A probabilistic language
model (LM) calculates the probability of a phrase
based on the frequencies of lower order n-grams ex-
tracted from training data (Stolcke, 1994). This can
be used to predict the fitness of a word for the sen-
tential context. Bickel et al. (2005), for example,
evaluate the use of probabilistic language models to
support auto-completion of sentences in writing edi-
tors. In the completion scenario, only the left context
is available, while the learner can also consider the
right context in language tests. Zweig et al. (2012)
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thus model the problem of solving cloze tests by ap-
plying methods from lexical substitution to evaluate
and rank the candidates. The part to be substituted
is a gap and the set of “substitution candidates” is
already provided by the answer options.

Unfortunately, we cannot rely on static sentences
for the open test formats as the context needs to
be determined by solving the surrounding gaps.
For each gap, we take all candidates into account
and generate all possible sentences resulting from
the combinations with the candidates of subsequent
gaps. This can lead to strong dependencies between
items, i.e. solving a subsequent item is facilitated,
if the previous one has been solved correctly. As
a consequence, we need to evaluate a combinato-
rial search space that grows exponentially with the
number of gaps in the sentence (see Figure 7). We
thus use a pruning step after each gap that scores the
generated sub-sentences using a language model and
only keeps the n best. For the closed cloze test, the
number of generated sentences is of course limited
to the number of candidates (5) because each sen-
tence contains only one gap.

We use 5-gram language models that are trained
on monolingual news corpora using berkeleylm with
Kneser-Ney smoothing.8 Zweig et al. (2012) trained
their models explicitly on training data only from
Sherlock Holmes novels. In order to better sim-
ulate learner knowledge, we use rather small and
controlled training data from the Leipzig collection
(Quasthoff et al., 2006) consisting of one million
sentences for each language.

For solving the test, we then select the generated
sentence with the highest log-probability in the lan-
guage model and count how many gaps are solved
correctly. If several sentences obtain the same prob-
ability, we pick one at random. We run this strategy
ten times and average the results. For comparison,
we implement a baseline that always selects the most
frequent candidate without considering the context.

Semantic relatedness approach Language mod-
els cannot capture relations between distant words in
the sentence. To account for this constraint, Zweig
et al. (2012) include information from latent se-
mantic analysis (Deerwester et al., 1990). For this
method, every word is represented by a vector of re-

8http://code.google.com/p/berkeleylm, 15.12.2014

Human Baseline LM-Based Semantic

C-test en .68 .11 .76 -
C-test fr .48 .10 .79 -
C-test de .45 .09 .76 -
Prefix de .64 .09 .73 -
Cloze en .70 .21 .26 .32

Table 4: Solving accuracy for the different candidate
evaluation strategies

lated words that is calculated on the basis of train-
ing data. The semantic relatedness between two
words can then be expressed by the cosine simi-
larity of the two vectors. Similar to Zweig et al.
(2012), we sum over the cosine similarity between
the candidate and every content word in the sentence
to calculate the candidate fitness. While they cal-
culate relatedness based on a latent semantic anal-
ysis index of the domain-specific Holmes corpus,
we use explicit semantic analysis (Gabrilovich and
Markovitch, 2007) calculated on Wikipedia to bet-
ter model the learner’s general domain knowledge.9

The semantic approach cannot be applied on open
formats because semantic relatedness is not infor-
mative for function words and inflections.

Results The accuracy of the automatic solving
strategies and the average human performance in
Table 4 shows that the LM-based solving strategy
strongly outperforms the baseline and can also beat
the average human solver for the open test formats.10

Even the large candidate space of the prefix dele-
tion test can be disambiguated quite well. For the
cloze tests, the candidate ambiguity seems to be
more challenging. The LM-based candidate eval-
uation only performs slightly better than the base-
line due to the fact that the distractor generation
approach assured comparable context frequency of
all candidates. The semantic relatedness approach
works slightly better, but also fails to select the cor-
rect candidate in most cases.

Not surprisingly, our results for the cloze tests are
worse than those obtained with domain-specific cor-
pora in previous work. However, we are not inter-
ested in developing a perfect solving method, but
aim at modelling the difficulty for the learner. A

9Index retrieved from https://public.ukp.informatik.tu-
darmstadt.de/baer/wp eng lem nc c.zip, 30.03.2015

10The human results should not be compared across test types
as the participant groups had different backgrounds and differ-
ent language proficiency.
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question is less likely to be solved if the context fit-
ness of a distractor is rated higher than that of the so-
lution. The failures of the automatic solving might
hence be indicative for the difficulty prediction for
cloze tests.

6 Improved difficulty prediction

The solving approaches described above provide a
ranking of the candidates that can be instrumental
for difficulty prediction. We develop two new fea-
tures that evaluate the context fitness of the candi-
dates based on the measures described above and re-
turn the rank of the solution. We assume that a gap
is more difficult if the solution is not the top-ranked
candidate.

We have seen that many of the difficulty features
that have been developed for the C-test are not ap-
plicable for the cloze data. The C-test difficulty has
been modelled by estimating the size of the candi-
date space (which is constant in this case), produc-
tion difficulties (which are not relevant in closed for-
mats), and a frequency-based ranking of the candi-
dates (which has been controlled by the test design-
ers). The remaining features measure the readabil-
ity of the text, the frequency of the direct context,
and the word class of the gap and provide important
information about the general difficulty of the gap
independent of the answer options. We analyze if
the ranking features can then capture the important
aspect of candidate ambiguity to improve difficulty
prediction for cloze tests.

Results The results in Table 5 show that reducing
the feature set to those that are actually relevant for
closed formats already has a small effect, but it is not
significant. Adding the ranking features then leads
to a strong improvement in difficulty prediction. The
best result is obtained with the semantic relatedness
ranking.

We explained above that the LM-based approach
is not suitable for solving this cloze dataset because
the answer options have been controlled with re-
spect to frequency. However, the participants are not
aware of this constraint, and frequency effects actu-
ally do play a role in learner processing. This ex-
plains that LM-based ranking can also be beneficial
for difficulty prediction.

Our results show that modelling the context fit-

# Features Pearson’s r

Standard features 70 .20
Reduced features 33 .24
Reduced + LM ranker 34 .38*
Reduced + Semantic ranker 34 .42*
Reduced + LM + Semantic ranker 35 .39*

Table 5: Improved prediction results for cloze tests. Sig-
nificant differences to the result with the standard features
are indicated with * (p<0.01).

ness of the candidates is essential for predicting the
difficulty of closed cloze tests.11

7 Conclusions

In this work, we have performed difficulty predic-
tion for different types of reduced redundancy test-
ing for several languages. To our knowledge, this
is the first approach to predict the difficulty of pre-
fix deletion tests, cloze tests and French and Ger-
man C-tests. We obtained remarkably good results
for French and German that were even better than
the ones previously reported for English. In practi-
cal teaching scenarios, the feature selection could be
further tuned to the respective test type and learner
group.

In order to improve difficulty prediction for closed
test formats, we developed two ranking strategies
for candidate evaluation inspired by automatic solv-
ing methods. The approaches evaluate the fitness of
a candidate in the sentential context based on lan-
guage model probability and semantic relatedness.
We have reached significant improvements of the
difficulty prediction for closed cloze tests by includ-
ing these ranking features. Especially the semantic
approach seems to be a good model for human eval-
uation strategies.

For future work, we will extend our analysis to a
bigger set of closed test formats and work towards
better models of learner knowledge.
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Test processing. In Rüdiger Grotjahn, editor, Der C-
Test. Theoretische Grundlagen und praktische Anwen-
dungen 3, pages 23–94. Brockmeyer, Bochum.

Ruslan Mitkov, Le An Ha, and Nikiforos Karamanis.
2006. A computer-aided environment for generating
multiple-choice test items. Natural Language Engi-
neering, 12(2):177–194, May.

Jack Mostow and Hyeju Jang. 2012. Generating Diag-
nostic Multiple Choice Comprehension Cloze Ques-
tions. pages 136–146.

Laura Perez-Beltrachini, Claire Gardent, and German
Kruszewski. 2012. Generating Grammar Exercises.
In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 147–156.

Uwe Quasthoff, Matthias Richter, and Christian Bie-
mann. 2006. Corpus portal for search in monolingual
corpora. In Proceedings of the fifth international con-
ference on language resources and evaluation, volume
17991802.

10



Günther Sigott and Johann Köberl. 1996. Deletion
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Abstract

Automated scoring systems used for the eval-
uation of spoken or written responses in lan-
guage assessments need to balance good em-
pirical performance with the interpretability
of the scoring models. We compare several
methods of feature selection for such scor-
ing systems and show that the use of shrink-
age methods such as Lasso regression makes
it possible to rapidly build models that both
satisfy the requirements of validity and in-
tepretability, crucial in assessment contexts as
well as achieve good empirical performance.

1 Introduction

In this paper we compare different methods of se-
lecting the best feature subset for scoring models
used in the context of large-scale language assess-
ments, with a particular look at the assessment of
spoken responses produced by test-takers.

The basic approach to automatically scoring writ-
ten or spoken responses is to collect a training cor-
pus of responses that are scored by human raters,
use machine learning to estimate a model that maps
response features to scores from this corpus , and
then use this model to predict scores for unseen re-
sponses (Page, 1966; Burstein et al., 1998; Landauer
et al., 2003; Eskenazi, 2009; Zechner et al., 2009;
Bernstein et al., 2010). While this method is often
quite effective in terms of producing scoring mod-
els that exhibit good agreement with human raters,
it can lend itself to criticism from the educational

∗Currently at Civis Analytics

measurement community if it fails to address cer-
tain basic considerations for assessment design and
scoring that are common practice in that field.

For instance, Ramineni and Williamson (2013) ar-
gue that automated scoring not only has to be reli-
able (i.e., exhibiting a good empirical performance
as demonstrated, for example, by correlations be-
tween predicted and human scores), but also valid.
One very important aspect of validity is to what ex-
tent the automated scoring model reflects important
dimensions of the construct measured by the test (a
construct is the set of knowledge, skills, and abili-
ties measured by a test). For example, a speaking
proficiency test for non-native speakers may claim
that it assesses aspects such as fluency, pronunci-
ation, and content accuracy in a test-taker’s spo-
ken response(s). If the features that contribute to
the scoring models can be seen as measuring all of
these aspects of spoken language well, the model
would be considered valid from a construct point of
view. However, if certain dimensions of the con-
struct are not represented (well) by the feature set
used in the scoring model, and/or features contained
in the model address aspects not considered to be
relevant for measuring the test construct, the con-
struct validity of the scoring model would not be
considered ideal (cf. also Bernstein et al. (2010)
and Williamson et al. (2012) who make similar ar-
gument).

Furthermore, relative contributions by features to
each construct dimension should be easily obtain-
able from the scoring model. To satisfy this require-
ment, machine-learning approaches such as support
vector machines (SVMs) with non-linear kernels
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may be less ideal than a simple straightforward lin-
ear regression model, where the contribution of each
feature in the model is immediately obvious.

Finally, the contribution of each feature to the
final score should be consistent with the relevant
constructs: if all of the features in the model are
designed to be positively correlated with human
scores, the coefficients of all such features in the fi-
nal model should be positive as well.

Fulfilling all of these requirements when build-
ing automated scoring models is not trivial and has,
in the past, typically involved the participation and
advice of human content and measurement experts
whose role it is to optimize the feature set so that
it adheres to the aforementioned criteria as much as
possible, while still allowing for good empirical per-
formance of the resulting automated scoring model
(Zechner et al., 2009; Cheng et al., 2014). However,
there are certain limitations to this manual process
of scoring- model building, not the least of which
is the aspect of time it takes to build models with
iterative evaluations and changes in the feature set
composition.

Alternatively, one can compute a large number of
potential features and then use automatic feature se-
lection to identify the most suitable subset. This sec-
ond approach is commonly used in studies that aim
to maximize the performance of machine-learning
systems (cf. for example, Hönig et al. (2010) among
many others), but to our knowledge, it has not yet
been applied in the assessment context where model
performance needs to be balanced with model va-
lidity in terms of construct coverage and other con-
straints such as feature polarity.

We consider several methods of automatic fea-
ture selection commonly applied to linear models
(Hastie et al., 2013). These include subset selec-
tion methods such as step-wise feature selection as
well as shrinkage methods such as Lasso regression
(Tibshirani, 1996). We focus on feature selection
methods that can be scaled to a large number of fea-
tures which exclude, for example, the best-subset
approach, which becomes unfeasible for more than
30–40 features. We also exclude methods that use
derived input such as principal component regres-
sion or partial least squares because the contribu-
tion of each feature in the final model would be
more difficult to interpret. Finally, we consider fea-

ture selection methods which make it possible to re-
strict the coefficients to positive values. Such restric-
tion is not specific to automated scoring and there-
fore various algorithms have been developed to ad-
dress this requirement (see, for example, Lipovet-
sky (2009) for further discussion). We consider sev-
eral of such methods including non-negative least
squares regression Lawson and Hanson (1981) and
a constrained version of Lasso regression (Goeman,
2010).

In this paper we address the following questions:
(a) What methods of automatic feature selection can
address all or most of the requirements of automated
scoring and therefore are most suitable for this pur-
pose? (b) Does more constrained selection affect the
performance of such scoring models? (c) How do
models based on automated feature selection com-
pare to models based on human expert feature selec-
tion in terms of empirical performance and construct
coverage?

The paper is organized as follows: Section 2 pro-
vides a description of the data used in this study, fur-
ther details about the feature-selection methods, and
the parameter setting for these methods. Section 3
presents the comparison between different feature-
selection methods in terms of performance, coeffi-
cient polarity, and construct coverage of the selected
feature subset. Finally, Section 4 summarizes the re-
sults of our experiments.

2 Data and Methodology

2.1 Data

The study is based on spoken responses to an En-
glish language proficiency test. During the original
test administration, each speaker provided up to six
responses. Two of the items required test takers to
listen to an audio file and respond to a prompt about
the conversation or lecture they heard. For the other
two items, the test takers were required to read a
short passage and listen to an audio file, and then
integrate information from both sources in their re-
sponses to that prompt. The remaining two items
asked the speakers to discuss a particular topic. All
responses consisted of unscripted speech and were
no longer than 1 minute each.

Both the training and evaluation sets included re-
sponses from about 10,000 speakers. With few ex-
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ceptions, the training set included one response from
each speaker, for a total of 9,956 responses and
9,312 speakers. The evaluation set included a simi-
lar number of speakers (8,101), but we used all avail-
able responses for each speaker, for a total of 47,642
responses1 . There was no overlap of speakers or
prompts between the two sets.

All responses were assigned a holistic proficiency
score by expert raters. The scores ranged from 1
(low proficiency) to 4 (high proficiency). The raters
evaluated the overall intelligibility of responses,
grammar, the use of vocabulary, and topic develop-
ment. About 10% of the responses in the evaluation
set and all responses of the training set were scored
by two raters. The agreement between the two raters
was Pearson’s r = 0.63 for the training set and r =
0.62 for the evaluation set.

2.2 Features
For each response, we extracted 75 different features
which covered five aspects of language proficiency:
fluency, pronunciation accuracy, prosody, grammar,
and vocabulary. Some examples of such features
include speech rate (fluency), normalized acous-
tic model score (pronunciation accuracy), language
model score (grammar), and average lexical fre-
quency of words used in the response(vocabulary).
Several features were closely related: for example,
the speech rate was measured in both words per sec-
ond and syllables per second.

All features are designed to be positively corre-
lated with human proficiency scores. For features
that have a negative correlation with a proficiency
score (such as the number of disfluencies), the val-
ues are multiplied by -1 so that the final correlation
is always positive.

The features for the baseline EXPERT model were
manually selected by an expert in English language
learning to fulfill the criteria described in 1. The
expert only had access to the training set while do-
ing the feature selection. The model included 12
features which represented the five dimensions of
language proficiency described above. The features
were then used as independent variables in an ordi-
nary least squares (OLS) linear regression using the

1A small number of responses originally collected from
these speakers were not included in the evaluation set due to
their low audio quality or other problems.

proficiency score assigned by the first rater as the
dependent variable.

We also built scoring models using all 75 features
and several methods of automatic feature selection,
following (Hastie et al., 2013). These are listed in
Table 1.

Table 1: The methods used for automatic feature selec-
tion in this study

Name Description
ALL No feature selection. This model uses

OLS regression and all 75 available
features.

STEP Features were identified by hybrid
stepwise selection with search in both
directions

NNLS Features were identified by fitting the
non-negative least squares regression
model. (Lawson and Hanson (1981)
as implemented by Mullen and Van
Stokkum (2012))

LASSO Used features that were assigned non-
zero coefficients after fitting a Lasso re-
gression (Tibshirani, 1996). All esti-
mated coefficients were restricted to be
non-negative (Goeman, 2010; Goeman
et al., 2012). See 2.3 for details about
parameter tuning.

We used 10-fold cross-validation on the training
set to estimate model performance and tune the pa-
rameters for the Lasso regression. The allocation
of responses between the folds was the same for all
models. In all cases, the feature selection was ap-
plied separately to each fold.

The models were evaluated by the correlation be-
tween predicted and observed scores, the number of
features in the final model, the percentage of fea-
tures with positive coefficients, and by the number
of constructs that were represented in the automati-
cally selected subset model.

2.3 Setting parameters for LASSO model

We trained two versions of the LASSO models:
LASSO where λ parameter for L1-regularization was
tuned empirically to achieve the best model fit and
LASSO* where λ was set to obtain the smallest pos-
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sible set of features without a substantial loss in per-
formance.

To set λ for LASSO*, we used the algorithm de-
scribed in Park and Hastie (2007) to identify the val-
ues of λ that corresponded approximately to changes
in feature sets. This was done separately for each
fold.

We then computed the model performance for
each feature set and identified the best performing
set of each size (in many cases different values of λ
produced several different feature sets with the same
number of features). Figure 1 shows the perfor-
mance obtained for models with different numbers
of features selected by LASSO across the ten folds.

The figure shows that the number of features (12)
in the EXPERT model may be insufficient to include
all information covered by the features.2 The aver-
age correlation for models with this number of fea-
tures was r = 0.63. The optimal number of fea-
tures for this dataset appeared to be around 21–25
features. We therefore set λ to

√
n ∗ lg(p), where n

is the number of cases and p is the total number of
features. For this dataset, this rule-of-thumb value
forced a more aggressive feature selection and pro-
duced a model with approximately 25 features.

3 Results

3.1 Model performance

Figure 2 and Table 2 show that the models with au-
tomatic feature selection consistently outperformed
the baseline EXPERT model (paired t-test with
Holm’s adjustment for multiple comparisons: p <
0.00001 for all models). Note that all of these mod-
els also used a higher number of features than what
was included in the EXPERT model.

The models that did not have restrictions on pos-
itive coefficients achieved the highest performance.
However, half of the coefficients in both STEP and
ALL were negative. This is partially due to the fact
that many features were highly correlated which re-
sulted in what is known as “multicollinearity distor-
tion of regression coefficients” (cf. also Lipovetsky
(2009) for further discussion). Therefore the mod-
els created using these feature-selection methods vi-

2The figure shows the performance of the best performing
set consisting of 12 features as identified by LASSO. These were
not the same features as selected by the expert
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Figure 1: The performance of models based on LASSO
feature selection by the number of features. The boxplots
show the results across 10 folds of the training set. The
horizontal line shows the performance at Nfeat = 12 (r =
0.63), the size of the subset in the EXPERT model.

olated the criterion that the coefficient assigned to
each feature must have the same sign as the marginal
correlation between that feature and human score.

The methods which restricted feature selection to
positive coefficients (NNLS, LASSO and LASSO*)
addressed this problem, but the performance of these
models was somewhat lower (r = 0.65 vs. r = 0.67,
p < 0.001) which suggests that there is further in-
teraction between different features that are not cur-
rently captured by a model restricted to positive co-
efficients.

There was no significant difference in perfor-
mance between NNLS, LASSO and LASSO* but the
NNLS and LASSO models included more features
than LASSO* model, making them more difficult to
interpret. LASSO* appeared to reach the best com-
promise between model complexity and model per-
formance.

Finally, we evaluated the extent to which the per-
formance of LASSO models was due to the different
methods of coefficient estimation. We used the fea-
ture set selected by LASSO* to fit an OLS regression
and compared the performance of the two models.
There was no difference in performance between the
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models with coefficients estimated by OLS or penal-
ized coefficients, but the two-step approach resulted
in models with small negative coefficients in four out
of ten folds. Therefore we used the original LASSO*
with penalized coefficients for final evaluation.

Table 2: Maximum and minimum number of features se-
lected by each model (Nmin and Nmax), average ratio of
features assigned positive coefficients to the total N fea-
tures (P/N ) and average Pearson’s r between predicted
and observed scores rresp across 10 folds

Nmin Nmax P/N rresp

EXPERT 12 12 1 0.606
ALL 75 75 0.55 0.667
STEP 37 43 0.62 0.667
NNLS 32 37 1.00 0.655
LASSO 32 36 1.00 0.655
LASSO* 22 27 1.00 0.649
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Figure 2: Model performance (Pearson’s r) across 10
folds. Feature selection was performed separately at each
fold. The horizontal line indicates the agreement between
two human raters.

3.2 Model performance on unseen data
We then applied these feature selection methods
to the whole training set and evaluated their per-
formance on the unseen evaluation set. The re-
sults were consistent with the results of the cross-
validation and are shown in Table 3.

The LASSO* model trained on the entire training
set included 25 features, all of which had positive
coefficients. The correlation between the predicted
and observed scores was rresp = 0.653, which was
above the EXPERT baseline (rresp = 0.607).

In addition to response-level agreement, we also
computed the agreement for scores aggregated by
speaker. During the test administration, the scores
for all six responses given by each speaker are
summed to compute an overall speaking proficiency
score. Therefore, speaker-level agreement rsp was
calculated as the correlation coefficient (Pearson’s
r) between the summed observed scores and the
summed predicted scores for each speaker. Fol-
lowing operational practice, this was only done for
7,390 speakers, where scores were available for 5
or more responses.3 . We found that the model cre-
ated using the LASSO* feature selection also outper-
formed the EXPERT model for speaker-level agree-
ment with rsp increasing from 0.78 to 0.84.

Table 3: Model performance on the unseen evalua-
tion set using different feature- selection methods. The
agreement between two human raters for this data is
rresp=0.62 for single responses. The human-human
agreement for the aggregated speaker-level score, rsp,
was not available for this particular data since only a
small subset of responses were scored by two human
raters. Based on other data from the same test, rsp be-
tween two human raters is expected to be around 0.9

Nfeat P/N rresp rsp

EXPERT 12 1 0.61 0.78
ALL 75 0.55 0.67 0.86
STEP 40 0.65 0.67 0.86
NNLS 37 1 0.66 0.85
LASSO 36 1 0.66 0.85
LASSO* 25 1 0.65 0.84

3.3 Construct coverage

All methods of automatic feature selection pro-
duced feature subsets that represented the five sub-
constructs covered by the expert model: fluency,
pronunciation accuracy, prosody, grammar, and vo-
cabulary sophistication. In the rest of this section we

3If only 5 responses were available for a given speaker, the
mean of these scores was added to their sum in order to estimate
the overall speaker score.
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Table 4: Relative weights of features representing differ-
ent constructs covered by the scoring models.

Construct EXPERT LASSO*
Delivery
Fluency 0.580 0.527
Pronunciation accuracy 0.098 0.151
Prosody 0.080 0.035
Total for delivery: 0.759 0.712
Language use
Grammar 0.155 0.103
Vocabulary 0.086 0.183
Total for Language Use: 0.241 0.286

only consider in detail the features included in the
LASSO* model which was selected in 3.1 as the best
compromise between model complexity and model
performance.

The selected model included 25 features covering
all of the constructs currently represented by the ex-
pert model. To evaluate the construct coverage of
each model we first computed standardized weights
for each features. We then scaled the standardized
weights for each model so that their sum equaled 1
and refer to them as “relative weights.” Finally, we
computed the sum of relative weights of all features
representing a given construct or sub-construct. The
results are shown in Table 4.

The two models, EXPERT and LASSO* closely
matched in terms of construct coverage: delivery
features in both models accounted for about 70-
75% of the final score, with most weight given to
fluency features, followed by pronunciation accu-
racy and rhythm. Language-use features accounted
for 25% of the final score, but the relative weights
of sub-constructs differed between the two models:
while the EXPERT model assigned more weight to
grammar features, the LASSO* model assigned more
weight to vocabulary features.

4 Discussion

Building automated scoring models for constructed
responses, such as spoken or written responses in
language assessments, is a complex endeavor. Aside
from the obvious desire for high empirical perfor-
mance, as measured in terms of agreement between
predicted and human scores, a number of impor-

tant considerations from educational measurement
should be taken into account as well. They include,
foremost, the validity of the scoring model and, in
particular, to what extent features that measure cer-
tain aspects of the construct are represented in the
model, and features that are not related to the con-
struct are not. Additionally, the relative contribu-
tion of each feature to the score based on the model
should be transparent to the test taker and score user.
Finally, each feature’s contribution to the score must
be in the same polarity as its marginal correlation
with the criterion score (human score or dependent
variable).

Because of this complexity, scoring models for
constructed responses were typically built in the past
using human experts who selected features based
on these criteria in an iterative fashion, training and
evaluating scoring models after each feature set was
chosen.

In this paper, we applied different methods of
feature selection in order to select the best feature
set for the automated scoring of spoken responses
to an English language proficiency test. We aimed
to simultaneously achieve optimal construct cover-
age, maximal interpretability of the resulting scoring
model, and good empirical performance.

For research question (a), what methods of feature
selection are most suitable for the automated scoring
of spoken responses, we found that a model based
on Lasso regression fine-tuned to enforce more ag-
gressive feature selection reaches a good compro-
mise between relatively small number of features
and good agreement with human scores. In addition,
this model could also satisfy the requirement that all
coefficients are positive. Finally, the LASSO* model
represented all constructs included into the EXPERT

model.
Our results showed that some of the constraints

imposed by the requirements to model interpretabil-
ity decrease model performance in comparison to
unconstrained models (research question b). Thus,
the requirement to keep all coefficients positive in
line with feature interpretation reduced response-
level performance of the model from 0.667 to 0.65.
While the difference is relatively small, it is statisti-
cally significant. More research is needed to explore
whether the information lost due to this constraint
may be relevant to the constructs covered by the
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model and can be incorporated into a future model
by developing new combined features.

Finally, for research question (c), how automatic
and expert feature selection compare in terms of
empirical performance and construct coverage, we
found that in comparison to expert feature selec-
tion, computing a large number of features with sub-
sequent automatic selection leads to higher perfor-
mance (for LASSO*: r = 0.84 vs. r = 0.78 on
the evaluation set for aggregated scores for each test
taker) while maintaining construct validity and inter-
pretability of the resulting models. Furthermore, the
feature subset produced by LASSO* closely matched
the EXPERT model in terms of the relative contribu-
tion of each construct.

To summarize, the application of Lasso regression
to feature selection for automated speech scoring
made it possible to rapidly build models which both
achieved higher performance than the expert base-
line and also satisfied the requirements of construct
coverage and interpretability of the model posed by
the assessment context. In this respect, Lasso re-
gression was superior to other common methods of
feature selection such as step-wise selection, which
could not satisfy all of these requirements.

In this study, the features selected by LASSO*
showed consistently good construct coverage across
10 folds of the training set. Yet it is possible that
for a different dataset the LASSO* method may lead
to a feature subset which is considered sub-optimal
by an expert. In this case, the automatically selected
feature set can be adjusted by the expert to ensure
appropriate construct coverage by adding additional
features to the model or removing unwanted fea-
tures from the original feature set and re-running the
model to estimate the coefficients. Of course, such
adjustments may lead to a loss in performance, in
which case the optimal balance between construct
validity and model performance will be determined
by other considerations such as the nature of the as-
sessment or the role of the automated scoring system
in determining the final score.

5 Conclusion

In this paper we compared a range of different
methods for the purpose of feature selection for the
automated scoring models of spoken language in

the context of language assessment and educational
measurement.

Based on a number of criteria as to what consti-
tutes scoring models that have not only high empir-
ical performance, are valid from a construct point
of view, and interpretable for the test taker or score
user, we demonstrated that in using the LASSO*
method all criteria can be satisfied: the resulting
scoring model has construct coverage commensu-
rate to that built by a human expert and its empirical
performance is, at the same time, superior.

In future work, we plan to refine the automated
feature selection process by using construct con-
straints directly in the feature selection procedure.
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Abstract

This paper presents an investigation of score
prediction for the Organization dimension of
an assessment of analytical writing in re-
sponse to text. With the long-term goal of
producing feedback for students and teach-
ers, we designed a task-dependent model that
aligns with the scoring rubric and makes use
of the source material. Our experimental re-
sults show that our rubric-based model per-
forms as well as baselines on datasets from
grades 6-8. On shorter and noisier essays from
grades 5-6, the rubric-based model performs
better than the baselines. Further, we show
that the baseline model (lexical chaining) can
be improved if we extend it with information
from the source text for shorter and noisier
data.

1 Introduction

As a construct, ‘Organization’ has figured in sys-
tems for scoring student writing for decades. On
the NAEP (National Assessment of Educational
Progress), the organization of the text, coherence,
and focus are judged in relation to the writer’s pur-
pose and audience (National Assessment Governing
Board, 2010) to determine a single holistic score.
Alternatively, when organization is considered as
a separate dimension, some surface features of or-
ganization are considered. Such surface features
include: effective sequencing; strong inviting be-
ginning; strong satisfying conclusion; and smooth
transitions1. Assessments aligned to the Common

1Retrieved from http://www.rubrics4teachers.com/pdf/
6TRAITSWRITING.pdf, February 25, 2015

Core State Standards (CCSS), the academic stan-
dards adopted widely in 2011 that guide K-12 ed-
ucation, reflect a shift in thinking about the scoring
of organization in writing to consider the coherence
of ideas in the text2. The consideration of coherence
as a critical aspect of organization of writing is rela-
tively new.

Notably, prior studies in natural language process-
ing have examined the concept of discourse coher-
ence, which is highly related to the coherence of
topics in an essay, as a measure of the organization
of analytic writing. For example, in Somasundaran
et al. (2014) the coherence elements are adherence
to the essay topic, elaboration, usage of varied vo-
cabulary, and sound organization of thoughts and
ideas. In Crossley and McNamara (2011) the ele-
ments are effective lead, clear purpose, clear plan,
topic sentences, paragraph transitions, organization,
unity, perspective, conviction, grammar, syntax, and
mechanics.

Many computational methods are used to measure
such elements of discourse coherence. Vector-based
similarity methods measure lexical relatedness be-
tween text segments (Foltz et al., 1998) or between
discourse segments (Higgins et al., 2004). Centering
theory (Grosz et al., 1995) addresses local coherence
(Miltsakaki and Kukich, 2000). Entity-based essay
representation along with type/token ratios for each
syntactic role is another method to evaluate coher-

2See, e.g., Grades 4 and 5 Expanded rubric
for analytic and narrative writing retrieved from
http://www.parcconline.org/sites/parcc/files/Grade 4-5 ELA
Expanded Rubric FOR ANALYTIC AND NARRATIVE
WRITING 0.pdf
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ence (Burstein et al., 2010) that is shown in Burstein
et al. (2013) to be a predictive model on a corpus
of essays from grades 6-12. Lexical chaining ad-
dresses multiple aspects of coherence such as elabo-
ration, usage of varied vocabulary, and sound orga-
nization of thoughts and ideas (Somasundaran et al.,
2014). Discourse structure is used to measure the or-
ganization of argumentative writing (Cohen, 1987;
Burstein et al., 1998; Burstein et al., 2003b).

In previous studies, assessments of text coherence
have been task-independent, which means that these
models are designed to be able to evaluate the co-
herence of the response to any writing task. Task-
independence is often the goal for automated scor-
ing systems, but it is also important to measure the
quality of students’ organization skills when they are
responding to a task-dependent prompt. One advan-
tage of task-dependent scores is the ability to pro-
vide feedback that is better aligned with the task.

One of the types of writing emphasized in the
CCSS is writing in response to text (Correnti et al.,
2013). In as early as the fourth and fifth grades, stu-
dents are expected to write analytical responses to
text, which involves making claims and marshalling
evidence from a source text to support a viewpoint.

The Response-to-Text Assessment (RTA) (Cor-
renti et al., 2013; Correnti et al., 2012) was
developed for research purposes to study upper-
elementary students’ text-based writing skills. The
RTA is evaluated with a five-trait rubric. Efforts to
automate the assessment of student responses have
been underway to support scaling up the use of the
RTA in research and also to explore the potential of
providing feedback on student writing to teachers.
Specifically, evaluation of the Evidence dimension
is investigated in Rahimi et al. (2014). In the present
study, we aim to design a model to evaluate the Or-
ganization dimension of the RTA.

Our study differs in three noteworthy ways from
previous studies aiming to evaluate organization. In-
sofar as the Organization dimension of the RTA con-
cerns the coherence of the essay, this is similar to
previous investigations that operationalize this trait
as adherence to the essay topic, sentence-to-sentence
flow, and logical paragraph transitions. Specifically,
however, Organization as conceived by the RTA also
concerns how well the pieces of evidence provided
from the text are organized to make a strong ar-

gument. In this sense, what matters is coherence
around the ordering of pieces of evidence.

This additional aspect of Organization is impor-
tant to the evaluation of the RTA and to text-based
writing in general; yet, available models for assess-
ing coherence do not capture this aspect, primar-
ily because Organization has been treated largely as
task-independent. As such, these models are insuf-
ficient for our purposes, even if they might perform
well on score prediction. For our study, then, we set
out to design a model that draws upon information
from the source text as well as the scoring rubric to
assess Organization in RTA.

Second, while past studies have focused on the
writing of advanced students (i.e., in high school
and beyond), we evaluate the writing of students in
grades 5 through 8. An implication of this is that
the pieces are typically very short, full of grammati-
cal and spelling errors, and not very sophisticated in
terms of organization. This difference in the popula-
tion under study renders our task more complex than
in previous studies.

Third, we sought to develop a model that is con-
sistent with the rubric criteria and easily explainable.
Such a model has greater potential to generate useful
feedback to students and teachers.

In this paper, we first introduce the data (a set
of responses written by 5th and 6th graders, and a
set by students in grades 6-8). Next, we explain
the two different structures we designed from which
we extracted features. Then we explain the fea-
tures, experiments, and results. We show that in
general, our rubric-based task-dependent model per-
forms as well as (if not better than) the rigorous
baselines we used. Moreover, we show that differ-
ent approaches to evaluating organization in student
writing work differently on different populations.
On shorter and noisier essays from grades 5-6, the
rubric-based model performs better than the base-
lines. Meanwhile, for essays from grades 6-8, our
rubric-based model does not perform significantly
differently from the baselines; however, the combi-
nation of our new features with the baselines per-
forms the best. Finally, we show that even a lexical
chaining baseline can be improved with the use of
topic information from the source text.
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Excerpt from the article: The people of Sauri have made amazing progress in just four years. The Yala Sub-District Hospital has
medicine, free of charge, for all of the most common diseases. Water is connected to the hospital, which also has a generator for
electricity.
Prompt: The author provided one specific example of how the quality of life can be improved by the Millennium Villages Project in
Sauri, Kenya. Based on the article, did the author provide a convincing argument that winning the fight against poverty is achievable in
our lifetime? Explain why or why not with 3-4 examples from the text to support your answer.
Essay with score of 1 on Organization dimension: Yes because Poverty should be beaten. Their are solutions to the Promblem that
keep people impoverished. In 2004 two adults and three children was rushed to the hospital because of a disease. The disease was
called Malaria. Mosquitoes carry Malaria. They pass it to people by bitting them. 20,000 kids die from malaria each day. A brighter
future is a better life and better health. Poverty means to be Poor or have no money. People can end poverty. Ending poverty is easy.
In 2004 Hannah Sachs visited the Millenium Villages Project in Kenya, a country in Africa. While they was there they saw people that
were bare footed and had tattered clothing. The country that they went to had Poverty. She felt bad for the people. The Millennium
Villages Project was created to help reach the Millennium Development Goals.
Essay with score of 4 on Organization dimension: This story convinced me that “winning the fight against poverty is achievable
because they showed many example in the beginning and showed how it changed at the end. One example they sued show a great
amount oF change when they stated at first most people thall were ill just stayed in the hospital Not even getting treated either because
of the cost or the hospital didnt have it, but at the end it stated they now give free medicine to most common deseases.
Anotehr amazing change is in the beginning majority of the childrenw erent going to school because the parents couldn’t affford the
school fee, and the kdis didnt like school because tehre was No midday meal, and Not a lot of book, pencils, and paper. Then in 2008
the perceNtage of kids going to school increased a lot because they Now have food to be served aNd they Now have more supplies. So
Now theres a better chance of the childreN getting a better life
The last example is Now they dont have to worry about their families starving because Now they have more water and fertalizer. They
have made some excellent changes in sauri. Those chaNges have saved many lives and I think it will continue to change of course in
positive ways

Table 1: A small excerpt from the Time for Kids article, the prompt, and sample low and high-scoring essays from
grades 5–6.

2 Data

Our dataset consists of student writing from the RTA
introduced in Correnti et al. (2013). Specifically,
we have two datasets from two different age groups
(grades 5-6 and grades 6-8), which represent differ-
ent levels of writing proficiency.

The administration of the RTA involves having
the classroom teacher read aloud a text while stu-
dents followed along with their own copy. The
text is an article from Time for Kids about a United
Nations effort (the Millennium Villages Project) to
eradicate poverty in a rural village in Kenya. Af-
ter a guided discussion of the article as part of the
read-aloud, students wrote an essay in response to a
prompt that requires them to make a claim and sup-
port it using details from the text. A small excerpt
from the article, the prompt, and two student essays
from grades 5-6 are shown in Table 1.

Our datasets (particularly responses by students
in grades 5-6) have a number of properties that may
increase the difficulty of the automatic essay assess-
ment task. The essays in our datasets are short,
have many spelling and grammatical errors, and the
modal essays score at a basic level on Organization.
Some statistics about the datasets are in Table 2.

The student responses have been assessed on five
dimensions, each on a scale of 1-4 (Correnti et al.,
2013). Half of the assessments are scored by an ex-
pert. The rest are scored by undergraduate students

Dataset Mean SD

5–6
grades

# words 161.25 92.24
# unique words 93.27 40.57
# sentences 9.01 6.39
# paragraphs 2.04 1.83

6–8
grades

# words 207.99 104.98
# unique words 113.14 44.14
# sentences 12.51 7.53
# paragraphs 2.71 1.74

Table 2: The two dataset’s statistics

trained to evaluate the essays based on the criteria.
The corpus from grades 5-6 consists of 1580 essays,
with 602 of them double-scored for inter-rater reli-
ability. The other corpus includes 812 essays, with
almost all of them (802) double-scored. Inter-rater
agreement (Quadratic Weighted Kappa) for Organi-
zation on the double-scored portion of the grades 5-6
and 6-8 corpora respectively are 0.68 and 0.69.

In this paper we focus only on predicting the score
of the Organization dimension. The distribution of
Organization scores is 398 (25%) ones, 714 (46%)
twos, 353 (22%) threes, and 115 (7%) fours on the
grades 5-6 dataset, and 128 (16%) ones, 316 (39%)
twos, 246 (30%) threes, and 122 (15%) fours on the
grades 6-8 dataset. Higher scores on the 6–8 corpus
indicate that the essays in this dataset have better or-
ganization than the student essays in the 5–6 dataset.
The rubric for this dimension is shown in Table 3.
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1 2 3 4
Strays frequently or significantly
from main idea*

Attempts to adhere to the main
idea*

Adheres to the main idea*
(i.e., The main idea is evident
throughout the response)

Focuses clearly on the main idea
throughout piece* and within
paragraph

Has little or no sense of begin-
ning, middle, and end(2) (i.e.,
Lacks topic and concluding sen-
tence, or has no identifiable mid-
dle)

Has a limited sense of begin-
ning, middle, and end(2) (i.e.,
Lacks a topic or concluding sen-
tence, or has short development
in middle)

Has an adequate sense of begin-
ning, middle, and end(2) (topic
and concluding sentences may
not quite match up. Or, may be
missing a beginning or ending,
but organization is very clear
and strong

Has a strong sense of begin-
ning, middle, and end (2) (i.e.,
Must have topic sentence and
concluding sentence that match
up and relate closely to the same
key idea, and well-developed
middle)

Has little or no order; May fea-
ture a rambling collection of
thoughts or list-like ideas with
little or no flow(4)(5)

Attempts to address different
ideas in turn+, in different parts
of the response(3) (i.e., Some
ideas may be repeated in differ-
ent places)

Addresses different ideas in
turn+, in different parts of the
response(3), although multiple
paragraphs may not be used(1)

Features multiple appropriate
paragraphs (1), each addressing
a different idea+

Consists mostly of a summary or
copy of the whole text or large
sections of the text (The orga-
nization of the response is nec-
essarily the organization of the
original text)

Has some uneven or illogical
flow from sentence to sentence
or idea to idea (3)

Demonstrates logical flow from
sentence to sentence and idea to
idea(3)

Demonstrates logical and seam-
less flow from sentence to sen-
tence and idea to idea(3)

*In implementation, when scoring the rubric experts and trained coders considered the coherence of the evidence
in support of the author’s main claim for the text. Thus, in implementation coders placed pre-eminence on
whether the evidence contributing support to the original claim formed a coherent body of evidence.
+When scoring the rubric, experts and trained coders considered whether the different ideas were presented in a logical order
to evaluate how well they worked together to form coherent evidence for the main claim. The sequence of the evidence
as well as how well the author elaborated different pieces of evidence, in turn, were both considered when coding. (4)(5)

Table 3: Rubric for the Organization dimension of RTA. The numbers in the parentheses identify the corresponding
feature group in section 4 that is aligned with that specific criteria.

3 Topic-Grid and Topic Chains

Lexical chains (Somasundaran et al., 2014) and en-
tity grids (Burstein et al., 2010) have been used to
measure lexical cohesion. In other words, these
models measure the continuity of lexical meaning.
Lexical chains are sequences of related words char-
acterized by the relation between the words, as well
as by their distance and density within a given span.
Entity grids capture how the same word appears in
a syntactic role (Subject, Object, Other) across adja-
cent sentences.

Intuitively, we hypothesize that these models will
not perform as well on short, noisy, and low quality
essays as on longer, better written essays. When the
essays are short, noisy, and of low quality (i.e., lim-
ited writing proficiency), the syntactic information
may not be reliable. Moreover, even when there is
elaboration on a single topic (continuation of mean-
ing), there may not be repetition of identical or sim-
ilar words. This is because words that relate to a
given topic in the context of the article may not
be deemed similar according to external similarity
sources such as WordNet. Take, for example, the
following two sentences:

“The hospitals were in bad situation. There was
no electricity or water.”

In the entity grid model, there would be no tran-
sition between these two sentences because there
are no identical words. The semantic similarity of
the nouns “hospitals” and “water” is very low and
there would not be any chain including a relation
between the words “hospitals”, “water”, and “elec-
tricity”. But if we look at the source document and
the topics within it, these two sentences are actu-
ally addressing a very specific sub-topic. Therefore,
we think there should be a chain containing both of
these words and a relation between them.

More importantly, what we are really interested in
evaluating in this study is the organization and cohe-
sion of pieces of evidence, not the lexical cohesion.

These reasons, altogether, motivated us to design
new topic-grid and topic chain models (inspired by
entity-grids and lexical chains), which are more re-
lated to our rubric and may be able to overcome the
issues we mentioned above.

A topic-grid is a grid that shows the presence or
absence of each topic addressed in the source text
(i.e., the article about poverty) in each text unit of
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a written response. The rows are analogous to the
words in an entity-grid, except here they represent
topics instead of individual words. The columns are
text units. We consider the unit as a sentence or a
sub-sentence (since long sentences can include more
than one topic and we don’t want to lose the order-
ing and transition information from one topic to the
next). We explain how we extract the units later in
this section.

To build the grids, we use the information in the
source text. That is, we had experts of the RTA man-
ually extract the exhaustive list of topics discussed in
the article. Similarly, in other studies on evaluation
of content (typically in short answer scoring), the
identification of concepts and topics is manual (Liu
et al., 2014). Since the source text explicitly ad-
dresses the conditions in a Kenyan village before
and after the United Nations-intervention, and since
the prompt leads students to discuss the contrasting
conditions at these different time points, we extract
topics that provided evidence for the “before” and
“after” states, respectively. That is, except for some
general topics which are related to the conclusion
of the text, for each major topic t the experts define
two sub-topics tbefore and tafter by listing specific
examples related to each sub-topic .

The resulting list of topics was used to gener-
ate the rows of the topic-grid. The experts defined
7 different topics; 4 of them have before and af-
ter states, resulting in 11 sub-topics in total. Each
sub-topic is defined by an exhaustive list of related
examples from the text. For instance, the topic
“Hospitals after” (extracted from part of the arti-
cle mentioned in Table 1) includes 5 examples that
are shown here by their domain words (we use the
stemmed version of the words): “1. Yala sub-district
hospital medicine 2. medicine free charge 3. water
connected hospital 4. hospital generator electricity
5. medicine common diseases”.

Following this, each text unit of the essay is
automatically labeled with topics using a simple
window-based algorithm (with a fixed window size
= 10), which relies on the presence and absence of
topic-words in a sliding window and chooses the
most similar topic to the window. (Several equally
similar topics might be chosen). If there are fewer
than two words in common with the most similar
topic, the window is annotated with no topic. We

1 2 3 4 5 6 7 8 9 10
Hospitals.b - x - - - - - - - -
Hospitals.a - - x - - - - - - -

Education.b - - - x - - - - - -
Education.a - - - - x x - - - -

Farming.b - - - - - - x - - -
Farming.a - - - - - - - x - -

General x - - - - - - - x x
Topic Chain

Hospitals (b,2),(a,3)
Education (b,4),(a,5),(a,6)

Farming (b,7),(a,8)

Table 4: The topic-grid (on the top) and topic-chains (on
the bottom) for the example essay with score=4 in Table
1. a and b indicate after and before respectively.

did not use spelling correction to handle topic words
with spelling errors, although it is in our future plan.

The rule is that each column in the grid represents
a text unit. A text unit is a sentence if it has no dis-
joint windows annotated with different topics. Oth-
erwise, we break the sentence into multiple text units
where each of them covers a different topic (the ex-
act boundaries of the units are not important). Fi-
nally, if the labeling process annotates a single win-
dow with multiple topics, we add a column to the
grid with multiple topics present in it.

See Table 4 for an example of a topic-grid for
the essay with the score of four in Table 1. Con-
sider the third column in the grid. It represents the
bold text unit (the second part of the second sen-
tence) in Table 1. The corresponding sentence has
two text units since it covers two different topics
“Hospitals before” and “Hospitals after”. The “x”
in the third column indicates the presence of the
topic “Hospital after” which is mentioned above.
The topics that are not mentioned in the essay are
not included in the grid.

Then, chains are extracted from the grid. We have
one chain for each topic t including both tbefore and
tafter. Each node in a chain carries two pieces of in-
formation: the index of the text unit it appears in and
whether it is a before or after state. We do not con-
sider chains related to general topics that do not have
a before or after state. Examples of topic-chains are
presented in Table 4. Finally, we extract several fea-
tures, explained in section 4, from the grid and the
chains to represent some criteria from the rubric.
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4 Features

As indicated above, one goal of this research in
predicting Organization scores is to design a small
set of rubric-based features that performs acceptably
and also models what is actually important in the
rubric. To this end, we designed 5 groups of fea-
tures, each addressing one criterion in the rubric.
Some of these features are not new and have been
used before to evaluate the organization and coher-
ence of the essay; however, the features based on
the topic-grid and topic-chains (inspired by entity-
grids and lexical chains) are new and designed for
this study. The use of before and after information
to extract features is based on the rubric and the na-
ture of the prompt, and it can be generalized to other
contrasting prompts. Below, we explain each of the
features and its relation to the rubric. Each group of
features is indicated with a number that relates it to
the corresponding criteria in the rubric in Table 3.

(1) Surface: Captures the surface aspect of orga-
nization; it includes two features: number of para-
graphs and average sentence length. Multiple para-
graphs and medium-length sentences help readers
follow the essays more easily.

(2) Discourse structure: Investigates the dis-
course elements in the essays. We cannot expect
the essays written by students in grades 5-8 to have
all the discourse elements mentioned in Burstein et
al. (2003a), as might be expected of more sophis-
ticated writers. Indeed, most of the essays in our
corpora are short and single-paragraph (the median
of # paragraphs is one). In terms of the structure,
then, taking cues from the rubric, we are interested
in the extent to which it has a clear beginning idea,
concluding sentence, and well-developed middle.

We define two binary features, beginning and end-
ing. In the Topic-list, there is a general topic that
represents general statements from the text and the
prompt. If this topic is present at the beginning or at
the end of the grid, the corresponding feature gets a
value of 1. A third feature measures if the beginning
and the ending match. We measure LSA-similarity
(Landauer et al., 1998) of 1 to 3 sentences from the
beginning and ending of the essay with respect to
the length of the essay. The LSA is trained by the
source document and the essays in the training cor-
pus. The number of sentences are chosen based on

the average essay length.
(3) Local coherence and paragraph transitions:

Local coherence addresses the rubric criterion re-
lated to logical sentence-to-sentence flow. It is mea-
sured by the average LSA (Foltz et al., 1998) sim-
ilarity of adjacent sentences. Paragraph transitions
capture the rubric criterion of discussing different
topics in different paragraphs. It is measured by the
average LSA similarity of all paragraphs (Foltz et
al., 1998). For an essay where each paragraph ad-
dresses a different topic, the LSA similarity of para-
graphs should be less than for an essay in which the
same topic appears in different paragraphs. For one
paragraph essays, we divide the essays into 3 equal
parts and calculate the similarity of 3 parts.

(4) Topic development: Good essays should have
a developed middle relevant to the assigned prompt.
The following features are designed to capture how
well-developed an essay is:
Topic-Density: Number of topics covered in the es-
say divided by the length of the essay. Higher Den-
sity means less development on each topic.
Before-only, After-only (i.e., Before and after the
UN-led intervention referenced in the source text):
These are two binary features. It measures if all the
sentences in the essay are labeled only with “before”
or only with “after” topics. A weak essay might, for
example, discuss at length the condition of Kenya
before the intervention (i.e., address several “before”
topics) without referencing the result of the interven-
tion (i.e., “after” topics).
Discourse markers: Four features that count the dis-
course markers from each of the four groups: con-
tingency, expansion, comparison, and temporal, ex-
tracted by “AddDiscourse” connective tagger (Pitler
and Nenkova, 2009). Eight additional features rep-
resent count and percentage of discourse markers
from each of the four groups that appear in sentences
that are labeled with a topic.
Average Chain Size: Average number of nodes in
chains. Longer chains indicate more development
on each topic.
Number and percentage of chains with variety: A
chain on a topic has variety if it discusses both as-
pects (‘before’ and ‘after’) of that topic.

(5) Topic ordering and patterns: It is not just
the number of topics and the amount of develop-
ment on each topic that is important. More impor-
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tant is how students organized these topics in their
essays. Logical and strategic organization of topics
helps to strengthen arguments. Meanwhile, as re-
flected in the rubric in Table 3, little or no order in
the discussion of topics in the essay means poor or-
ganization. In this section we present the features we
designed to assess the quality of the essays in terms
of organization of topics.
Levenshtein edit-distance of the topic vector repre-
sentations for “befores” and “afters”, normalized by
the number of topics in the essay. If the essay has
a good organization of topics, it should cover both
the before and the after examples on each discussed
topic. It is also important that they come in a sim-
ilar order. For example, suppose the following two
vectors represent the order of topics in an essay: be-
fores=[3,4,4,5] , afters=[3,6,5]. First we compress
the vectors by combining the adjacent similar top-
ics. In this example topic number 4 will be com-
pressed. So the final vectors are: befores=[3,4,5]
, afters=[3,6,5]. The normalized Levensthein be-
tween these two vectors is 1/4, which shows the
number of edits required to change one number
string into the other normalized by total number of
topics in the two vectors. The greater the value, the
worse the pattern of discussed topics.
Max distance between chain’s nodes: Large distance
can be a sign of repetition. The distance between
two nodes is the number of text units between those
nodes in the grid.
Number of chains starting and ending inside another
chain: There should be fewer in well-organized es-
says.
Average chain length (Normalized): The length of
the chain is the sum of the distances between each
pair of adjacent nodes. The normalized feature is
divided by the length of the essay.
Average chain density: Equal to average chain size
divided by average chain length.

5 Experiments and Results

5.1 Experimental Setup

We configure a series of experiments to test the va-
lidity of three hypotheses: H1) the new features per-
form better than the baselines; H2) the topic-grid
model performs better on shorter and noisier essays
than longer and well-written essays; H3) the lexical

chaining baseline can be improved with the use of
topic information from the source document.

For all experiments we use 10 runs of 10 fold
cross validation using Random Forest as a classifier
(max-depth=5). We also tried some other classifica-
tion and regression methods, such as logistic regres-
sion and gradient boosting regression, and all the
conclusions remained the same. Since our dataset is
imbalanced, we use SMOTE (Chawla et al., 2002)
oversampling method. This method involves cre-
ating synthetic minority class examples. We only
oversampled the training data, not the testing data.

All performance measures are calculated by com-
paring the classifier results with the first human
rater’s scores. We chose the first human rater be-
cause we do not have the scores of the second rater
for the entire dataset. We report the performance
as Quadratic Weighted Kappa, which is a standard
evaluation measure for essay assessment systems.
We use corrected paired t-test (Bouckaert and Frank,
2004) to measure the significance of any difference
in performance.

We use two well-performing baselines from re-
cent methods to evaluate organization and coherence
of the essays. The first baseline (EntityGridTT) is
based on the entity-grid coherence model introduced
by Barzilay and Lapata (2005). This method has
been used to measure the coherence of student es-
says (Burstein et al., 2010). It includes transition
probabilities and type/token ratios for each syntac-
tic role as features. We perform a set of experi-
ments using different configurations for the entity-
grid baseline, and we find that the best model is an
entity-grid model with history=2, salience=1, syn-
tax=on and type/token ratios. We therefore use this
best configuration in all experiments. It should be
noted that this works to the advantage of the entity-
grid baseline since we do not have parameter tuning
for the other models.

The second baseline (LEX1) is a set of features
extracted from Lexical Chaining (Morris and Hirst,
1991). We use Galley and McKeown (2003) lexical
chaining and extract the first set of features (LEX1)
introduced in Somasundaran et al. (2014). We do not
implement the second set because we do not have the
annotation or the tagger to tag discourse cues.
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Model (5–6) (6–8)
1 EntityGridTT 0.42 0.49
2 LEX1 0.45 0.53 (1)
3 EntityGridTT+LEX1 0.46 (1) 0.54 (1)
4 Rubric-based 0.51 (1,2,3) 0.51
5 EntityGridTT+Rubric-based 0.49 (1,2,3) 0.53 (1)
6 LEX1+Rubric-based 0.51 (1,2,3) 0.55 (1)
7 EntityGridTT+LEX1 0.50 (1,2,3) 0.56 (1)

+Rubric-based

Table 5: Performance of our rubric-based model com-
pared to the baselines on both datasets. The numbers in
parenthesis show the model numbers which the current
model performs significantly better than.

5.2 Results and Discussion

We first examine the hypothesis that the new features
perform better than the baselines (H1). The results
on the corpus of grades 5-6 (see Table 5) show that
the new features (Model 4) yield significantly higher
performance than either baseline (Models 1 and 2)
or the combination of the baselines (Model 3). The
results of Models 5, 6, and 7 show that our new fea-
tures capture information that is not in the baseline
models since each of these three models is signif-
icantly better than models 1, 2, and 3 respectively.
The best result in all experiments is bolded.

We repeated the experiments on the corpus of
grades 6-8. The results in Table 5 show that there
is no significant difference between the rubric-based
model and the baselines, except that in general,
models that include lexical chaining features per-
form better than those with entity-grid features.

We configured another experiment to examine
the generalizability of the models across different
grades. In this experiment, we used one dataset for
model training and the other for testing. We divided
the test data into 10 disjoint sets to be able to per-
form significance tests on the performance measure.
The results in Table 6 show that for both experi-
ments, the rubric-based model performs at least as
well as the baselines. Where the training is on grades
6-8 and we test the model on the shorter and nois-
ier set of 5-6, the rubric-based model performs sig-
nificantly better than the baselines. Where we test
on the 6-8 corpus, the rubric-based model performs
better than the baselines (although not always sig-
nificantly), and adding it to the baselines (Model 5)
adds value to them significantly.

Model Train(5–6) Train(6–8)
Test(6–8) Test(5–6)

1 EntityGridTT 0.51 (2) 0.43
2 LEX1 0.43 0.41
3 EntityGridTT+LEX1 0.52 (2) 0.42
4 Rubric-based 0.56 (2) 0.47 (1,2,3)
5 EntityGridTT+LEX1 0.58 (2,3,1) 0.45

+Rubric-based

Table 6: Performance of our rubric-based model com-
pared to the baselines. Each time, we train the models on
one dataset and test on the other. The numbers in paren-
thesis show the model numbers which the current model
performs significantly better than.

Altogether, our first and second hypotheses seem
to hold. On the grade 5-6 data, the rubric-based
model performs better than the baselines; for grades
6-8, the rubric-based features add value to the base-
lines. That is, with shorter and noisier essays, mod-
els based on coarse-grained topic information out-
perform state-of-the-art models based on syntactic
and lexical information. Moreover, while the state
of the art models perform better on better-written es-
says, to get an even better performing model for es-
says written by younger children, we need a model
that examines more and different aspects of orga-
nization. Additionally, we believe that the rubric-
based, task-dependent model yields more informa-
tion about students’ writing skills that could be fed
back to teachers (and students) than the baselines.

Next, we repeated all of the experiments using
each of the isolated groups of features. The results
in Table 7 show that Topic-Development and Topic-
Ordering are the most predictive set of features.
While the topic-based features may not be better
than the baselines, they can be improved. One po-
tential improvement is to enhance the alignment of
the sentences with their corresponding topics (since
we currently use a very simple model for alignment).
Moreover, we believe that the topic ordering features
are more substantive and potentially provide more
useful information for students and teachers.

We also conducted an ablation test to investigate
how important each group of features is in the new
model. In the first phase, we remove each group of
features and select the one that decreases the perfor-
mance most significantly. This group of features has
the greatest influence after accounting for all other
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Model (5–6) (6–8) Train(5–6) Train(6–8)
Cross-val Cross-val Test(6–8) Test(5–6)

1 TopicDevelopment 0.40 0.42 0.43 0.36
2 TopicOrdering 0.40 0.43 0.44 0.43
3 TopicDevelopment+TopicOrdering 0.42 0.45 0.46 0.40
4 Surface 0.32 0.40 0.42 0.35
5 LocalCoherence+ParagraphTransition 0.20 0.21 0.23 0.18
6 DiscourseStrucutre 0.25 0.19 0.26 0.22

Table 7: Performance of each group of features in isolation. The first two columns are for cross validation experiments.
The last two column are the results for training on one corpus and testing on the other one.

features. In the second phase, we repeat the exper-
iment, having already removed the most influential
feature. We continue the experiment until we have
reached a single group of features. The results show
that the features in order of their importance are:
Surface > TopicOrdering > LocalCoherence +
ParagraphTransitions > DiscourseStructure >

TopicDevelopment. In this test, surface features
were more influential than topic ordering, despite
the fact that topic-ordering in isolation is more pre-
dictive than surface features. One potential reason
might be that the surface features may not be cor-
related with other task-dependent features such as
topic-ordering and topic development. Examining
the correlation between some of the features across
feature groups is an area for future investigation.

As for Hypothesis 3, as we suggested in section 3,
to measure the coherence in our text-based essays,
we need to use the information from the source text.
To reprise the example in section 3, we think there
should be a chain containing both of the words “hos-
pital” and “water”, and a relation between them. To
examine this claim, we modified the lexical chain-
ing algorithm in such a way that it uses both external
sources to measure semantic similarity and also our
list of topics extracted from the source text. If we
are adding a word w1 from subtopic t1 and there is a
chain containing a word w2 on the same subtopic t1,
there should be a relation in the chain between w1

and w2. If there is no Strong or Extra-Strong seman-
tic relation between w1 and w2, we consider the re-
lation as Medium-Strong. The relations are defined
per Hirst and St-Onge (1998).

Table 8 presents the effect of this modification on
the performance. As hypothesized, the modified ver-
sion performs significantly better than the base lexi-
cal chains on essays from grades 5-6.

Model (5-6) (6-8)
1 LEX1 0.45 0.53
2 LEX1+Topic 0.48 (1) 0.54

Table 8: Performance of the baseline and the topic-
extended lexical chaining model on the two datasets.

6 Conclusion and Future Work
We present the results for predicting the score of
the Organization dimension of a response-to-text as-
sessment in a way that aligns with the scoring rubric.
We used two datasets of essays written by students
in grades 5-8. We designed a set of features aligned
with the rubric that we believe will be meaningful
and easy to interpret given the writing task. Our
experimental results show that our task-dependent
model (consistent with the rubric) performs as well
as either baseline on both datasets. On the shorter
and noisier essays from grades 5-6, the rubric-based
model performs better than the baselines. On the
better-written essays from grades 6-8, the rubric-
based features can add value to the baselines. We
also show that the lexical chaining baseline can be
improved on shorter and noisier data if we extend it
using task-dependent information from the text.

There are several ways to improve our work.
First, we plan to use a more sophisticated method
to annotate text units, such as information retrieval
based approaches.We need to tune all our parame-
ters that were chosen intuitively or were set to the
default value. We will test the generalizability of our
model by using other texts and prompts from other
response-to-text writing tasks. We would also like to
extract topics and words automatically, as our cur-
rent approach requires these to be manually defined
by experts (although this task needs to be only done
once for each new text and prompt).
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Abstract

In this paper, we describe a morphological
analyzer for learner Hungarian, built upon
limited grammatical knowledge of Hungarian.
The rule-based analyzer requires very few re-
sources and is flexible enough to do both mor-
phological analysis and error detection, in ad-
dition to some unknown word handling. As
this is work-in-progress, we demonstrate its
current capabilities, some areas where analy-
sis needs to be improved, and an initial foray
into how the system output can support the
analysis of interlanguage grammars.

1 Introduction and Motivation

While much recent research has gone into grammat-
ical error detection and correction (Leacock et al.,
2014), this work has a few (admitted) limitations:
1) it has largely focused on a few error types (e.g.,
prepositions, articles, collocations); 2) it has largely
been for English, with only a few explorations into
other languages (e.g., Basque (de Ilarraza et al.,
2008), Korean (Israel et al., 2013)); and 3) it has
often focused on errors to the exclusion of broader
patterns of learner productions—a crucial link if one
wants to develop intelligent computer-assisted lan-
guage learning (ICALL) (Heift and Schulze, 2007)
or proficiency classification (Vajjala and Loo, 2013;
Hawkins and Buttery, 2010) applications or con-
nect to second language acquisition (SLA) research
(Ragheb, 2014). We focus on Hungarian morpho-
logical analysis for learner language, attempting to
build a system that: 1) works for a variety of mor-

phological errors, providing detailed information for
each; 2) is feasible for low-resource languages; and
3) provides analyses for correct and incorrect forms,
i.e., is both a morphological analyzer and an error
detector. Perhaps unsurprisingly, we find that the
best way to accomplish these goals is to hearken
back to the parsing ill-formed input literature (see
Heift and Schulze, 2007, ch. 2) and develop a rule-
based system, underscoring the point that different
kinds of linguistic properties require different kinds
of systems (see Leacock et al., 2014, ch. 7).

We hope to make the analysis of Hungarian mor-
phology maximally useful. Consider ICALL system
development, for example: successful systems not
only provide meaningful feedback for learners but
also model learner behavior (e.g., Amaral and Meur-
ers, 2008). To do this requires tracking correct and
incorrect use of different linguistic phenomena (e.g.,
case). Furthermore, one likely wants to keep track
of individual differences between learners as well
as to track general developmental trends—a point
relevant to SLA research more generally (Dörnyei,
2010; Gass and Selinker, 2008).

In addition to providing a platform for ICALL
development and SLA research, another long-term
goal of our project is to develop an annotated cor-
pus of learner Hungarian, including both linguis-
tic and error annotation. The exact delineation be-
tween the two kinds of annotation is an open ques-
tion (Ragheb and Dickinson, 2014), and building an
analyzer which does both can show the link for at
least certain types of errors. Additionally, the link
between corpus data and automatic analysis is part
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of an important feedback loop: if one views error de-
tection as the relaxation of grammatical constraints
(Reuer, 2003; Schwind, 1995), it is important to de-
termine which constraints may be relaxed—given
the huge space of possible variation (e.g., reordering
affixes)—and this work is a step in that direction.

One further point is worth mentioning: the ana-
lyzer we describe makes use of a limited amount of
grammatical knowledge in a rule-based system, al-
lowing for potential application to other languages
with minimal effort and resources. Our hope is that
this can provide a basis for research into other lesser-
resourced languages and some less-investigated er-
ror types. The system is also flexible and adaptable,
designed to allow for the variation and inconsisten-
cies expected of early learner language.

The paper is organized as follows. In Section 2
we discuss facts about Hungarian relevant for build-
ing an analyzer, as well as previous research in rel-
evant areas, and in Section 3 we describe the data
used for analysis. We turn to the actual analyzer in
Section 4, employing a simple chart-parsing strat-
egy that allows for feature clashes and crucially re-
lies on a handful of handwritten affixes, which es-
sentially encode the “rules” of the grammar (i.e.,
the approach is fairly lexicalized). The evaluation
in Section 5 is tripartite, reflecting our different
goals: evaluating the quality of assigned morpholog-
ical tags (Section 5.1), the error detection capabili-
ties (Section 5.2), and the ability to extract informa-
tion for learner modeling (Section 5.3). The work is
still in progress, and thus the evaluation also points
to ways in which the system can be improved.

2 Background and Previous Work

2.1 Hungarian

Hungarian is an agglutinative language belonging to
the Finno-Ugric family. It has a rich inflectional and
derivational morphological system, as illustrated in
(1). Verbs take suffixes to indicate number, per-
son, tense, and definiteness, as in (1a), in addition
to suffixes which alter aspectual quality or modal-
ity. Nouns, meanwhile, take suffixes for number,
internal and external possession, and case (1b), of
which there are 20 (e.g. inessive in (1b)), many

of which roughly correspond to adpositions in other
languages. Allomorphs of most suffixes are selected
based on vowel harmony, for which features (e.g.
+BK) must match, as with the inessive case in (1b)
and (1c). For both verbs and nouns, the ordering of
grammatical suffixes is fixed (Törkenczy, 2008).

(1) a. fut
run

-ott
-PST

-ál
-2SG.INDEF

‘you [2sg.] ran’
b. könyv

book[-BK]
-eim
-1SG.PL[-BK]

-ben
-INESSIVE[-BK]

‘in my books’
c. ház

house[+BK]
-ban
-INESSIVE[+BK]

‘in (a) house’

The rich morphology of Hungarian necessitates
taking the morpheme as the basic unit of analysis. A
single morpheme can convey a wealth of informa-
tion (e.g. person, number, definiteness on verb suf-
fixes), and a sufficiently extensive set of phonologi-
cal and morphological features must be used, partic-
ularly if one is to capture individual variation.

2.2 Morphological analysis for Hungarian

Morphological analysis for agglutinative lan-
guages tends to be based on finite-state transducers
(Koskenniemi, 1983; Oflazer, 1994; Özlem
Çetinoǧlu and Kuhn, 2013; Aduriz et al., 2000).
These are robust, but the process is not quickly
adaptable to other languages, as every rule is
language-specific, and there is no clear way to
handle learner innovations.

For Hungarian, HuMor (High-speed Unification
Morphology) (Prószéky and Kis, 1999) uses a bank
of pre-encoded knowledge in the form of a dictio-
nary and feature-based rules. Megyesi (1999) ex-
tends the Brill tagger (Brill, 1992), a rule-based tag-
ger, with simple lexical templates. Tron et al. (2005)
derive a morphological analyzer, Hunmorph, from
a language-independent spelling corrector, using a
recursive affix-stripping algorithm that relies on a
dictionary to remove affixes one by one until a root
morpheme is found. The dictionary is customiz-
able to other languages, and the idea of using affix-
removal to identify stems is similar to our technique
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(Section 4). Morphdb (Trón et al., 2006), a lexical
database for Hungarian, encodes only irregularities
and uses features on the appropriate lexical items
to apply the proper phonological and morphological
processes during analysis. These various tools have
been incorporated into a variety of other Hungarian
systems (Halácsy et al., 2006; Bohnet et al., 2013;
Farkas et al., 2012; Zsibrita et al., 2013). For ap-
proaches like Hunmorph and Morphdb that rely on a
dictionary, unknown words are the main problem—
also a crucial issue for innovative learner forms.

2.3 Grammatical error detection

There is some work exploring morphological deriva-
tions in learner language. Dickinson (2011) looks
for stem-suffix mismatches to identify potential er-
rors (for Russian) and uses heuristics to sort through
multiple analyses. There is, however, no evaluation
on learner data. We focus on building a small gram-
mar to explicitly license combinations and provide
a variety of evaluations on real learner data. Prior
work in L2 Hungarian uses the HunLearner corpus
(Durst et al., 2014; Vincze et al., 2014) to develop
systems to automatically identify errors. Our work
explores similar directions, focusing not only on the
identification of non-target forms but also systemat-
ically describing them and making that information
available in the form of morphological annotation.

The work presented here is related to the idea
of constraint relaxation and constraint ranking (e.g.,
Menzel, 2006; Schwind, 1995), wherein grammat-
ical constraints are defeasible (see Leacock et al.,
2014, ch. 2). In the case of morphology, the primary
process of relaxing constraints is in allowing stems
and affixes to combine which are generally not al-
lowed to do so (see also Section 4).

There is a wealth of research on statistical er-
ror detection and correction of grammatical errors
for language learners (Leacock et al., 2014), includ-
ing for Hungarian (Durst et al., 2014; Vincze et al.,
2014). As has been argued before (e.g., Chodorow
et al., 2007; Tetreault and Chodorow, 2008), statisti-
cal methods are ideal for parts of the linguistic sys-
tem difficult to encode via rules. Since Hungarian
morphology is a highly rule-governed domain of the
language and since we want detailed linguistic infor-

mation for feedback, we do not focus on statistical
methods here. We hope, however, to eventually ob-
tain an appropriate distribution of errors in order to
incorporate probabilities into the analysis.

The emphasis on rule-based error detection allows
one to connect the work to broader techniques for
modeling learner behavior, in the context of ICALL
exercises (Thouësny and Blin, 2011; Heift, 2007) or
in mapping and understanding development (cf. Vaj-
jala and Loo, 2013; Vyatkina, 2013; Yannakoudakis
et al., 2012). Our evaluation thus focuses on multi-
ple facets of the output and its use (Section 5).

3 Data and Annotation

3.1 Corpus

The corpus was collected from L1 English students
of Hungarian at Indiana University and is divided
into three levels of proficiency (Beginner, Intermedi-
ate, Advanced) as determined by course placement
in one of three two-semester sequences. The corpus
consists of journal entries, each a minimum ten sen-
tences in length on a topic selected by the student.

The corpus at present contains data for 14 learn-
ers (9 Beginner, 1 Intermediate, 4 Advanced), 9391
sentences total, with 10 annotated journals. The
corpus represents both cross-sectional and longitu-
dinal data. Productions from multiple learners can
be compared across or (for beginners) within profi-
ciency levels, and a single learner’s data over time
can also be analyzed. Additionally, passages are
often longer and feature more descriptive language
than those produced for grammatical exercises.

3.2 Annotation

Each journal has been transcribed manually and an-
notated for errors with EXMARaLDA (Schmidt,
2010).1 The text is segmented on morpheme bound-
aries, and errors are identified in four different tiers,
matched to a target form. The annotation scheme is
specifically for Hungarian, but the principles behind
it can be extended to other morphologically rich lan-
guages (Dickinson and Ledbetter, 2012).

The annotation marks different types of errors re-

1http://www.exmaralda.org/en_index.html
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flecting different levels of linguistic analysis. For
instance, for (2), the annotation shows a CL (vowel
length) error on the verb stem and an MAD (def-
initeness) error on the verb suffix—i.e. the defi-
nite suffix does not agree with the indefinite noun
complements—as shown in Figure 1.

(2) Ajanl
recommend

-om
1SG.DF

bor
wine

-t
ACC

,
,

nem
not

sör
beer

-t
ACC

‘I recommend wine, not beer.’

TXT Ajanlom bort , nem sört .
SEG Ajanl om bor t , nem sör t .
CHA CL
MOR MAD
TGT Ajánl ok bor t , nem sör t .

Figure 1: Error annotation for (2)

There are four basic error annotation categories,
reflecting character (CHA, e.g., vowel harmony,
phonological confusion), morphological (MOR,
e.g., agreement in person, case), grammatical rela-
tion (REL, e.g., case, root selection), and sentence
(SNT, e.g., insertion, ordering) errors. A full list of
categories can be found in Dickinson and Ledbetter
(2012). Different categories of errors can be anno-
tated for the same word, and error spans can over-
lap if necessary. A target (TGT) sentence is also
provided. The morphological analyzer discussed in
section 4 is designed to recognize errors within the
morphological (MOR) and character (CHA) tiers.

4 Morphological Analysis

Our goal for analyzing a word is to provide its
derivation, in order to support morphological analy-
sis, error detection, and learner modeling. A deriva-
tion here refers to a breakdown of a word’s inter-
nal structure into individual morphemes, i.e., a root
morpheme plus affixes, and we want to provide as
much of a derivation as we can even when: a) the
root is unknown, or b) the learner has misapplied
an affix (e.g., it is inappropriate for the rest of the
word). We discuss the knowledge base (Section 4.1),
the basic algorithm (Section 4.2), and our first pass
at making the analyzer more robust (Section 4.3).

4.1 Knowledge base

There are two parts to the knowledge base, a hand-
crafted suffix base and a dictionary obtained from
another project. The dictionary is obtained from A
Magyar Elektronikus Könyvtár.2 To model lesser-
resourced situations, one can experiment with dif-
fering sizes of this lexicon; in general, this type of
resource does not have to contain much information.

The suffix base, on the other hand, is where we en-
code the rules for morphological combination, and
it thus must be developed with more care. We use
205 affixes, including those for noun case, plurals,
verb conjugation, and possession. An affix corre-
sponds to a set of possible categories, the encoding
inspired by the Combinatory Categorial Grammar
(CCG) framework (Steedman and Baldridge, 2011).
For example, the accusative case marker -t has one
possible category KN\N, indicating that it would
create a new category KN (cased noun phrase) if it
was combined with a noun (N) on the left.

Each affix category contains features describing
relevant linguistic properties. For example, features
for the entry for the affix -ot indicates that: a) it con-
tains back vowels and b) it is accusative case when
combined with a noun stem. As another example,
the plural noun suffix -ok also contains back vowels,
but its features furthermore indicate a stem-lowering
effect—i.e. successive affixes must adhere to a re-
stricted subset of allomorphs based on vowel har-
mony. The suffix base represents our grammar engi-
neering, but, as noted, it is quite small.

4.2 Building an analysis

To efficiently determine the correct combinations of
root and affixes, we use a basic CYK chart pars-
ing algorithm (Cocke and Schwartz, 1970), treating
each letter as a unit of analysis; as suffixes drive
the analysis, we process from right to left. At each
possible interval of starting and ending sequences
within a word, the system verifies if the sequence
is either attested in the affix base or in the dictio-
nary of attested language forms. If the sequence
is found, a corresponding category is placed into

2http://www.mek.iif.hu/porta/szint/
egyeb/szotar/ssa-dic/
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the chart. While finite-state techniques are the stan-
dard for morphological analyzers (section 2.2), chart
parsing is easy to implement and makes the process-
ing architecture extendible to syntactic phenomena.

Consider házot (‘house+ACC’), indexed in (3) and
with a corresponding chart in Figure 2. Here, both
-t and -ot can be suffixes, but as only ház—and not
házo—is a verified noun (the N in cell 2–5), the seg-
mentation ház+ot provides the correct analysis.

(3) *5 h 4 á 3 z 2 o 1 t 0

4
3

N 2
Nhyp 1
KN KN\N KN\N 0

5 4 3 2 1

Figure 2: Chart for (3)

As the system is affix-driven, if no root is found
matching an item in the dictionary, the system can
posit a possible stem for the word based on the af-
fixes that were found. This possible stem is then
added to the chart like an attested root, with the
information noted that it is hypothesized, indicated
here as Nhyp in cell 1–5. This ability to hypothesize
is an important feature of the analyzer, as it allows
for “erroneous” or “nonstandard” root morphemes,
crucial to analyzing learner language.

4.3 Constraint relaxation

When general categories are combined in the chart
(Section 4.2), features of affixes and stems are also
compared. Any inconsistencies violating the gram-
mar of Hungarian are marked. A sample derivation
obtained from the chart in Figure 2 is given in Fig-
ure 3, here with one feature shown. The stem re-
quires a lowered allomorph (-at) of the accusative
suffix, but the unlowered allomorph is provided.

h á z
N[+LOW]

o t
KN\N[-LOW]

KN[!LOW]

Figure 3: Feature clash during derivation

The feature clash here indicates a learner inno-
vation, providing some analysis of the their cur-
rent understanding of the language. Importantly for
processing, we currently require: a) equivalence of
main categories (e.g., KN\N must combine with
N), and b) proper ordering of affixes. Neither of
these relaxations seemed to be required for our data,
though future analysis may prove otherwise. In that
light, we can note the importance of the grammar-
writer to put relaxable constraints (e.g., sub-category
information) into features and non-relaxable con-
straints into the main categories.

5 Evaluation

As mentioned earlier, we evaluate the system in
three different ways. First, we treat the system
as a straight morphological analyzer and evaluate
the quality of assigned morphological tags (Sec-
tion 5.1). Secondly, employing some constraint re-
laxation abilities, we evaluate the system’s capa-
bilities in performing error detection (Section 5.2).
Finally, we illustrate the ability of the system to
provide information on interlanguage grammars,
namely the ability to help distinguish between indi-
vidual learners and levels of learners (Section 5.3).

5.1 Morphological analysis

The system is first evaluated in terms of accuracy
of morphological analysis, both on native (L1) and
learner (L2) data. For every word, the system re-
turns one or more derivations, representing the in-
ternal structure of the word, and the associated mor-
phological features, here represented as a morpho-
logical code. Take, for example, the verb in (4a).

(4) a. lát
see

-t
-PST

-ál
-2SG.INDEF

‘you saw’
b. V

0

m
1

i
2

s
3

3
4

s
5

-
6

-
7

-
8

n
9

The morphological code in (4b) for the verb fol-
lows the scheme used to annotate the Szeged Corpus
(Csendes et al., 2004), applicable to multiple lan-
guages. Each numbered field corresponds to a fea-
ture, and different letters or numbers give the values.
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After the initial verb indicator (V), the code in (4b)
indicates: main verb (m), indicative mood (i), past
tense (s), third person (3), singular (s), indefinite (n).
Three fields are unused (e.g., one for grammatical
gender, not found in Hungarian).

As the system is fairly resource-light (Sec-
tion 4.1), we do not expect state-of-the-art accu-
racy, but we do need to gauge whether it is effec-
tive enough for our purposes and to know how to
improve for the future. We start by investigating its
general accuracy on L1 data, presenting the analyzer
with a selection of native Hungarian data from the
Szeged Corpus (Csendes et al., 2004), taking the first
1000 tokens from a section of compositions (in or-
der to verify results by hand and to compare to the
1021 tokens of learner data discussed below). The
results are in the Total column of Table 1.

Total POS +N POS+N
Precision 0.308 — 0.307 —
Recall 0.262 — 0.315 —
Accuracy 0.467 0.568 0.505 0.592
Unk. POS 0.425 0.425 0.425 0.425
Unk. Word 0.067 0.067 0.067 0.067

Table 1: Morphological analysis on L1 Hungarian data

The corpus provides both a single, context-
specific tag and a list of all appropriate tags, and
we use a set of measures to reflect this situation.
Precision is calculated as the number of codes pro-
duced by the analyzer that appear in the gold stan-
dard list divided by the total number of codes pro-
duced, and recall is the number of codes produced
by the analyzer that appear in the gold standard list
divided by the total number of codes in the gold stan-
dard. Accuracy is the percentage of cases where
the analyzer produces, among its output, the correct
context-specific gold tag. As the analyzer doesn’t
have access to part of speech data in its dictionary,
it may recognize a word but have no tag for it, in
which case it produces an unknown POS tag. Fi-
nally, when the analyzer cannot produce a deriva-
tion, it returns an unknown word tag.

We can see in Table 1 that the analyzer provides
the correct tag in only 47% of the 1000 test cases.
Yet the frequency of the unknown POS tag indi-

cates that nearly half of the time, the analyzer rec-
ognizes the word but cannot determine its internal
structure—i.e., we are not positing incorrect codes
so much as positing nothing. The majority of these
words are monomorphemic nouns, pronouns, adjec-
tives, or adverbs: without the overt morphology in-
dicated by the affixes in the knowledge base, the an-
alyzer relies only on the dictionary, which contains
no information about part of speech. Precision and
Recall seem fairly low, but a closer inspection of the
data reveals that a number of codes are mostly cor-
rect, differing from the gold standard by only one or
two fields. Taking into account only part of speech
(POS), accuracy increases to nearly 57%.

Because nouns were one of the most common
parts of speech for which the analyzer could de-
termine no structure, a second evaluation was per-
formed, positing an additional noun tag in each case
where the unknown POS tag was returned (+N). Pre-
cision fell by a slim margin (due to the increase in
proposed tags), while Recall rose by about 5% and
Accuracy by 4%. Taking into account only part of
speech (POS+N, Accuracy reaches 59%.

Our second analysis targets learner data. In this
analysis, the corrected forms for 1021 words pro-
duced by L2 Hungarian learners were manually an-
notated with morphological codes from the Szeged
Corpus scheme. These gold standard codes were
compared to those returned by the analyzer, as
above with the native data. The design of the ana-
lyzer emphasizes flexibility, and we compare stricter
and more permissive derivations, ignoring feature
clashes that would otherwise result in an incom-
plete parse of a given word (Section 4.3). Results
are in Table 2, where TotalStrict reflects the perfor-
mance of the analyzer when run with strict settings,
i.e., no feature clashes allowed, and TotalFree re-
flects performance when feature clashes are allowed
(and recorded) during derivation. The same tokens
were also analyzed by the magyarlanc tool (Zsibrita
et al., 2013), developed for analyzing the standard
language, as a benchmark (ML). Magyarlanc returns
only one analysis per word, and thus accuracy was
the principal measure for comparison.

Accuracy is on a par with the native L1 data when
the system is used with strict settings, and approxi-
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TotalStrict TotalFree ML
Accuracy 0.499 0.509 0.846
Unk. POS 0.499 0.499 —
Unk. Word 0.109 0.097 0.027

Table 2: Morph. analysis on corrected L2 Hungarian data

mately half of the test cases were recognized by the
analyzer. With flexibility, accuracy increases by 1%
and the unknown word rate decreases by about the
same margin. Magyarlanc outperforms the system,
but even on corrected learner data, accuracy is 85%.

The final analysis is on raw learner data (the same
1021 words with no corrections) to test the ana-
lyzer’s flexibility with the idiosyncracies in authen-
tic learner language. Results are in Table 3.

TotalStrict TotalFree ML
Accuracy 0.464 0.478 0.753
Unk. POS 0.456 0.456 —
Unk. Word 0.137 0.119 0.074

Table 3: Morph. analysis on raw L2 Hungarian data

Accuracy is still fairly low, with a slim increase
in performance with the more permissive settings.
With magyarlanc, accuracy falls by about 10%. For
both, the unknown word rate is higher than with cor-
rected data. Again, a large proportion of the test
cases involve monomorphemic words for which the
analyzer recognizes no internal structure. Access to
POS data, as with magyarlanc, would greatly im-
prove performance. In general, however, an empha-
sis on flexibility and adaptability seems to have ben-
efits for describing learner language, decreasing un-
known word rate and maintaining accuracy.

5.2 Error detection

The next evaluation assesses the system’s ability to
automatically detect errors in learner data. As dis-
cussed in Section 4.3, an error occurs when features
clash (cf. Figure 3). Feature clashes also arise from
unknown words, as the category of a word not in the
dictionary is unspecified. Evaluation of the system
as a whole is given in the Total column of Table 4.

Precision is the number of correctly identified er-

Total Morph Char
Precision 0.380 0.380 0.380
Recall 0.625 0.789 0.938
F1 0.472 0.513 0.541
F0.5 0.412 0.424 0.431

Table 4: Error detection using only dictionary stems

rors divided by the number of errors suggested by
the analyzer. Recall is the number of correctly iden-
tified errors divided by the number of errors in the
gold annotation. The F1 score is the harmonic mean
of precision and recall; because precision is criti-
cal when providing feedback to learners, F0.5 is also
given, weighing precision more heavily. Precision in
Table 4 is very low, below 40%; i.e., 60% of the “er-
rors” identified by the morphological analyzer are
false positives. Recall is better, at over 60%.

The morphological analyzer is not currently de-
signed to handle syntax errors or many agreement
errors, as it considers only one word at a time. Thus,
additional scores are calculated for errors below the
tier of syntax (see Section 3.2). In the Morph col-
umn, only those errors from the morphological tier
and below are considered (i.e., Morph and Char).
For Char, only those errors from the character tier
are considered. Recall improves considerably by
this restricted focus, up to nearly 94% for Char.

Considering the importance of precision, the an-
alyzer needs much improvement. A closer analysis
illustrates some of the problems with the algorithm
and with the test data. The vast majority of false pos-
itives (˜40%) are for proper names. Most named en-
tities are obviously not in the dictionary (excepting,
e.g., Magyarország ‘Hungary’), and the system can-
not recognize them. As described in Section 4, the
analyzer can posit hypothetical stems to complete
a derivation, estimating words as they exist in the
learner’s vocabulary. A second evaluation was per-
formed, allowing the system to hypothesize that any
unknown word may be a valid item in the learner’s
vocabulary. Results are in Table 5.

Precision sees a modest increase to 40%, while
recall falls to less than 10%. Limiting the scope of
analysis once more increases recall (to nearly 7%),
but the F-scores remain less than half of those in the
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Total Morph. Char.
Precision 0.400 0.400 0.400
Recall 0.038 0.043 0.067
F1 0.070 0.078 0.114
F0.5 0.139 0.152 0.200

Table 5: Error detection including hypothesized stems

previous evaluation. Investigating the system’s per-
formance more closely once again reveals a problem
with unknown words and proper names. While the
analyzer is able to posit hypothetical lexical entries,
including nouns, it is impractical to allow any un-
known word to be a potential noun. One of the most
frequent errors, especially for beginners, is vowel
length. Allowing any word to be hypothesized al-
lows any number of these errors to go unnoticed. A
possible solution for vowel length errors is to run a
spelling corrector as part of the pipeline (Durst et al.,
2014), and more generally a short list of common
Hungarian names could improve performance.

Another problem for the analyzer is the appear-
ance of irregular stems in the derivation. For ex-
ample, the analyzer correctly produces a derivation
for megyek (‘I go’, dictionary form megy) but not
for mennek (‘they go’). The derived base form men
must be deemed a new word and potential error. One
way to combat this problem is to encode irregular
lexical items into the knowledge base of the system.

One final issue is the limited scope of the system.
The most frequent source of errors is due to Hun-
garian’s extensive case system. The analyzer can
identify accusative or nominative case on nouns, for
example, but because it considers each word individ-
ually, it cannot determine whether there is an error.
Performance improves when excluding such types,
but adding context-sensitivity is a crucial future step.

5.3 Grammar extraction

The final evaluation is the most exploratory, involv-
ing the extraction of properties which might be use-
ful for comparing different learners. The space of
possibly relevant metrics is quite large (Lu, 2010,
2012; Vajjala and Loo, 2013; Vyatkina, 2013; Yan-
nakoudakis et al., 2012), and in this exploratory
study we focus on a small number of metrics sur-

rounding: a) complexity, and b) paradigm cover-
age. An overall goal is to sort out features which
are good at distinguishing learner level from those
which characterize individual learner differences.

Complexity Complexity is often used to describe
the syntax of learners and the structure of their sen-
tences. We consider the average number of mor-
phemes per word (MPW) and of words per sen-
tence (WPS). Tokenization and segmentation are
performed by the analyzer (and checked for accu-
racy). The last five journal entries for each learner
are analyzed, to avoid masking change over time, as
interlanguage is always changing.

MPW WPS
Beg01 1.38 5.79
Beg02 1.40 4.37
Beg03 1.52 3.84
Beg04 1.31 5.43
Beg06 1.52 5.75
Beg08 1.44 2.81
Beg09 1.58 3.28
Int01 1.51 6.40
Adv01 1.60 15.73
Adv02 1.66 10.90

Table 6: Complexity measures for learners of Hungarian

The beginning learners produce a range of mor-
phemes per word, with some even approaching the
production of the advanced learners. Even the least
morphologically productive learner (Beg04) attains
1.31 morphemes per word. This particular aspect of
morphological complexity, while it increases with
greater proficiency, seems to be a largely individ-
ual feature of learner language, making it a po-
tential candidate for classification tasks to identify
specific learners or to characterize individual differ-
ences. Sentence length, while it has individual varia-
tion, seems to increase over the course of acquisition
and thus may be an indicator of proficiency.

Coverage Taking Hungarian’s morphological
richness into account, we propose paradigm
coverage to represent the frequency of different
verb forms within the same tense and mood (here,
present indicative), thus showcasing how much
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of the paradigm space a learner is using. Any
occurrence of the appropriate verbal affix on any
verb is counted, and the sum of the affix frequencies
is normalized by dividing by the number of journal
entries. Given space constraints, only one beginning
and one advanced learner are presented in Figures 4
and 5. Average frequencies for the indefinite form
are in light gray and for the definite in dark gray.3

1sg 2sg 3sg 1pl 2pl 3pl

0

2

4

Fr
eq

ue
nc

y

Indefinite Definite

Figure 4: Affix coverage for learner Beg01

1sg 2sg 3sg 1pl 2pl 3pl

0

2

4

Fr
eq

ue
nc

y

Indefinite Definite

Figure 5: Affix coverage for learner Adv02

While there are definitely genre effects (e.g., lack
of second person), the individual differences here
may help form a more complete picture of a learner’s
interlanguage. Learner Beg01 appears to have some
of the most complete knowledge of the present in-

3Definiteness is decided by the object of the verb, i.e., a cat
(indefinite) or the cat (definite).

dicative paradigm among beginners, with represen-
tation in the first and third person singular and
plural, definite and indefinite. Learner Adv02 ex-
hibits many instances of the first person, character-
istic of narrative description. This metric seems to
be unique to individual learners (and their choice
of topic), as some beginning learners exhibit more
complete paradigms than the advanced learners.

To return to the theme of the whole paper: re-
gardless of the conclusions drawn exactly from such
paradigms, it is only by automatic morphological
analysis that one is able to investigate differences in
morphological complexity and paradigm coverage.

6 Summary and Outlook

We have presented a rule-based morphological anal-
ysis system for learner Hungarian, employing con-
straint relaxation, and have performed three differ-
ent evaluations to illustrate its utility for linguis-
tic analysis, error analysis, or downstream applica-
tions. We have used very little in the way of hand-
built resources, and, while the system still needs im-
provement, the information captured by the analyzer
already shows promise for describing the interlan-
guage of learners of Hungarian.

There are a number of ways to improve the sys-
tem. Named entities in particular have been a prob-
lem for other approaches (Durst et al., 2014), and we
intend to use similar methods to increase accuracy,
including lists of common names. While syntactic
context is presently unavailable to the analyzer for
disambiguation, we hope to extend the methodol-
ogy to syntax in the future. We also intend to ex-
plore how a record of language use may aid in dis-
ambiguation: if an ambiguous stem has only ever
occurred previously with verbal morphology, for ex-
ample, there is a good chance that its current use is
as a verb. Finally, given a desire to be resource-light
and applicable to other languages, one may investi-
gate iterative bootstrapping methods to allow for the
reduction of the initial size of the knowledge base,
instead building a gradual inventory through analyz-
ing a set of learner data itself.
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Veit Reuer. 2003. Error recognition and feedback
with lexical functional grammar. CALICO Journal,
20(3):497–512.

Thomas Schmidt. 2010. Linguistic tool development
between community practices and technology stan-
dards. In Proceedings of the Workshop on Language
Resource and Language Technology Standards. Malta.

Camilla B. Schwind. 1995. Error analysis and explana-
tion in knowledge based language tutoring. Computer
Assisted Language Learning, 8(4):295–324.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. In Robert Borsley and
Kersti Börjars, editors, Non-Transformational Syn-
tax: Formal and Explicit Models of Grammar. Wiley-
Blackwell.

Joel Tetreault and Martin Chodorow. 2008. The ups and
downs of prepositions error detection in ESL writing.
In Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
865–872.
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Abstract

This work investigates linguistically moti-
vated features for automatically scoring a spo-
ken picture-based narration task. Specifically,
we build scoring models with features for
story development, language use and task rele-
vance of the response. Results show that com-
binations of these features outperform a base-
line system that uses state of the art speech-
based features, and that best results are ob-
tained by combining the linguistic and speech
features.

1 Introduction

Story-telling has been used in evaluating the devel-
opment of language skills (Sun and Nippold, 2012;
McKeough and Malcolm, 2011; Botvin and Sutton-
Smith, 1977). It has also been incorporated into
assessment of English language proficiency in tests
such as ETS’s TOEFL Junior Comprehensive Test1,
where English language skills of non-native middle-
school students are tested on a task designed to elicit
stories based on pictures. The Six-Picture Narration
task presents a series of six pictures (similar to a
comic strip) to the test taker, who must orally pro-
duce a story which incorporates the events depicted
in the pictures. As the scoring guide2 for this task in-
dicates, in addition to fluidity of speech and few pro-
nunciation errors, high scoring responses must also

1Details of the task and sample can be found at
https://toefljr.caltesting.org/sampleQuestions/TOEFLJr/s-
movietheater.html

2https://www.ets.org/s/toefl junior/pdf/
toefl junior comprehensive speaking scoring guides.pdf

show good command of language conventions, in-
cluding grammar and word usage, and must also be
relevant to the task.

Previous work (Evanini and Wang, 2013) ex-
plored automated assessment of the speech compo-
nent of the spoken responses to the picture narra-
tion task, but the linguistic and narrative aspects of
the response have not received much attention. In
this work, we investigate linguistic and construct-
relevant aspects of the test such as (1) relevance and
completeness of the content of the responses with
respect to the prompt pictures, (2) proper word us-
age (3) use of narrative techniques such as detailing
to enhance the story, and (4) sequencing strategies
to build a coherent story.

The contribution of this work is three-fold. First,
we improve the construct coverage of the automated
scoring models by incorporating evaluation of ele-
ments prescribed in the scoring rubric. Second, our
linguistically motivated features allow for clear in-
terpretation and explanation of scores, which is es-
pecially important if the automated scoring is to be
employed for educational purposes. Finally, our re-
sults are promising – we show that the combination
of linguistic and construct-relevant features which
we explore in this work outperforms the state of the
art baseline system, and that the best performance is
obtained when the linguistic and construct-relevant
features are combined with the speech features.

2 Related Work

Evanini et al. (2013; 2014) use features extracted
mainly from speech for scoring the picture narra-
tion task. They employ measures capturing fluency,
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prosody and pronunciation. Our work explores the
other (complementary) dimensions of the test such
as language use, content relevance and story devel-
opment.

Somasundaran and Chodorow (2014) construct
features for awkward word usage and content rele-
vance for a written vocabulary test which we adapt
for our task. Discourse organization features have
been employed for essay scoring of written essays in
the expository and argumentative genre (Attali and
Burstein, 2006). Our discourse features are focused
on the structure of spoken narratives. Our relevance
measure is intended to capture topicality while pro-
viding leeway for creative story telling, which is
different from scoring summaries (Loukina et al.,
2014). King and Dickinson (2013) use dependency
parses of written picture descriptions. Given that
our data is automatically recognized speech, parse
features are not likely to be reliable. We use mea-
sures of n-gram association, such as pointwise mu-
tual information (PMI), that have a long history of
use for detecting collocations and measuring their
quality (see Manning and Schütze (1999) and Lea-
cock et al. (2014) for reviews). Our application of
a large n-gram database and PMI is to encode lan-
guage proficiency in sentence construction without
using a parser.

Picture description tasks have been employed in
a number of areas of study ranging from second
language acquisition to Alzheimer’s disease (Ellis,
2000; Forbes-McKay and Venneri, 2005). Picture-
based story narration has also been used to study re-
ferring expressions (Lee et al., 2012) and to analyze
child narratives (Hassanali et al., 2013).

3 Data

The TOEFL Junior Comprehensive assessment is a
computer-based test intended for middle school stu-
dents around the ages of 11 - 15, and is designed
to assess a student’s English communication skills.
As mentioned above, we focus on the Six-Picture
Narration task. Human expert raters listen to the
recorded responses, which are about 60 seconds in
duration, and assign a score to each on a scale of
1 - 4, with score point 4 indicating an excellent re-
sponse. In this work, we use the automatic speech
recognition (ASR) output transcription of the re-

Total —Score Distribution—
1 2 3 4

Train 877 142 401 252 82
Eval 674 132 304 177 61

Table 1: Number of responses and score distributions for
training and evaluation datasets.

sponses (see (Evanini and Wang, 2013) for details).
The data consists of 3440 responses to 6 prompts,

all of which were scored by human raters. Ta-
ble 1 shows the data size and partitions for the ex-
periments as well as the score distributions. An
ASR partition (with 1538 responses) was created
and used for training the speech recognition mod-
els and was used also for our linguistic feature de-
velopment. Train was used for cross validation ex-
periments as well as for training a final model that
was evaluated on Eval evaluation dataset. Quadratic
Weighted Kappa (QWK) between human raters for
Train is 0.69 and for Eval is 0.70. Responses con-
taining anomalous test taker behavior (such as non-
English responses or non-responses) and responses
with severe technical difficulties (such as static or
background noise) receive separate ratings and are
excluded from this study. This filtering resulted in a
total of 874 responses in Train and 672 responses in
Eval data sets.

4 Features

We explore five different feature sets to help us an-
swer the following questions about the response:
Did the test taker construct a story about the pictures
in the prompt (or did he/she produce an irrelevant re-
sponse instead?) (Relevance); Did the test taker use
words appropriately in the response? Proper usage
of words and phrases is characterized by the proba-
bilities of the contexts in which they are used (Col-
location); Did the test taker adequately organize the
narrative? (Discourse); Did the test taker enhance
the narrative by including details (Detailing); and
Did the test taker develop the story through expres-
sion of emotion and character development? (Senti-
ment)

4.1 Relevance
In order to test if a given response tells a story that is
relevant to the pictures in the prompt, we calculate
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the overlap of the content of the response and the
content of the pictures similar to (Somasundaran and
Chodorow, 2014). To facilitate this, each prompt is
associated with a reference corpus containing a de-
tailed description of each picture, and also an overall
narrative that ties together the events in the pictures.
Each reference corpus was created by merging the
picture descriptions and narratives that were gener-
ated independently by 10 annotators.3 To calculate
overlap, stop words were first removed from lem-
matized versions of the response and the reference
corpus.

Because test-takers often use synonyms and other
words related to the prompt, we expanded the con-
tent words in the reference corpus by adding their
synonyms, as provided in Lin’s thesaurus (Lin,
1998) and in WordNet, and also included their
WordNet hypernyms and hyponyms. This gave us
the following 6 features which measure the over-
lap, or coverage, between the lemmatized response
and the lemmatized (i) reference corpus (lemmas),
(ii) reference corpus expanded using Lin’s the-
saurus (cov-lin), (iii) reference corpus expanded us-
ing WordNet Synonyms (cov-wn-syns), (iv) refer-
ence corpus expanded using WordNet Hypernyms
(cov-wn-hyper), (v) reference corpus expanded us-
ing WordNet Hyponyms (cov-wn-hypo), and (vi)
reference corpus expanded using all of the above
methods (cov-all).

4.2 Collocation
Inexperienced use of language is often characterized
by inappropriate combinations of words, indicating
the writer’s lack of knowledge of collocations. In
order to detect this, we calculate the Pointwise Mu-
tual Information (PMI) of all adjacent word pairs
(bigrams), as well as all adjacent word triples (tri-
grams) in the Google 1T web corpus (Brants and
Franz, 2006). The higher the value of the PMI,
the more common is the collocation for the word
pair/triple in well formed texts. On the other hand,
negative values of PMI indicate that the given word
pair or triple is less likely than chance to occur
together. We hypothesized that this would be a
good indicator of awkward usage, as suggested in

3We do not calculate agreement as producing different de-
scriptions and having variety was the goal of the task of refer-
ence corpus creation.

Chodorow and Leacock (2000).
The PMI values for adjacent words obtained over

the entire response are then assigned to bins, with 8
bins for word pairs and another 8 for word triples
following the procedure from (Somasundaran and
Chodorow, 2014). Each of the 8 bins represents
a range of PMI : p > 20, 10 < p ≤ 20, 1 <
p ≤ 10, 0 < p ≤ 1,−1 < p ≤ 0,−10 < p ≤
−1,−20 < p ≤ −10, p ≤ −20.

We generate two sets of features based on the pro-
portions of bigrams/trigrams falling into each bin,
resulting in a total of 16 features. In addition to
binning, we also encode as features the maximum,
minimum and median PMI value obtained over all
bigrams and trigrams. These encode the best and
the worst word collocations in a response as well as
the overall general quality of the response.

4.3 Discourse
Stories are characterized by events that are related
(and ordered) temporally or causally. In order to
form a coherent narrative, it is often necessary to
use proper transition cues to organize the story. In-
tuitively, coherent responses are more likely to have
these cues than less coherent responses.

In order to detect discourse organization cues, we
use two lexicons. The first was obtained from the
Penn Discourse Treebank (PDTB) annotation man-
ual (Prasad et al., 2008). The second was developed
by manually mining websites giving advice on good
narrative writing. The two lexicons gave us a total of
over 550 cues. From the PDTB and our lexicon, we
extracted the number of times each connective was
encountered in a particular sense (sense information
such as “Temporal” or “Cause” is directly provided
in the PDTB manual, and we added similar informa-
tion to our manually collected lexicon) and used the
frequencies to construct a probability distribution
over the senses for that cue. Then, for each response,
we produced the following features: the number of
cues found in the response (totalCuesCount), the
number of cues found in the response divided by
the number of words in the response (normalized-
CuesCount), the number of cues belonging to the
temporal category (temporalCuesCount), the num-
ber of cues belonging to the causal category (causal-
CuesCount), the sum of the probabilities of belong-
ing to the temporal category for each cue found in
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the response (temporalCuesScore), the sum of the
probabilities of belonging to the causal category for
each cue found in the response (causalCuesScore).

4.4 Detailing

We hypothesized that better responses would show
evidence of effective narrative techniques, such as
providing vivid descriptions of the events and pro-
viding depth to the story. For example, one could
say “In the afternoon a boy and a man went to the
library.”, or make the story more interesting by as-
signing names to the characters and places as “One
day John went to the Central Public Library be-
cause he wanted to do some research for his science
project. An old man was walking behind him; his
name was Peter. ”

We observed that certain syntactic categories,
such as adjectives and adverbs, come into play in
the process of detailing. Also, detailing by providing
names to the characters and places results in a higher
number of proper nouns (NNPs). Thus our detailing
feature set consists of the following features: a bi-
nary value indicating whether the response contains
any proper nouns (presenceNames), the number of
proper nouns in the response (countNames), a binary
value indicating whether the response contains any
adjectives (presenceAdj), the number of adjectives
in the response (countAdj), a binary value indicat-
ing whether the response contains any adverbs (pres-
enceAdv), the number of adverbs in the response
(countAdv). We use separate features for counts and
presence of the syntactic category in order to balance
the trade-off between sparsity and informativeness.
The count features are more informative, but they
can be sparse (especially for higher counts).

4.5 Sentiment

One common technique used in developing a story
is to reveal the character’s private states, emotions
and feelings. This requires the use of subjectivity
and sentiment terms.

We use lexicons for annotating sentiment and
subjective words in the response. Specifically, we
use a sentiment lexicon (ASSESS) developed in pre-
vious work in assessments (Beigman Klebanov et
al., 2013) and the MPQA subjectivity lexicon (Wil-
son et al., 2005). ASSESS lexicon assigns a pos-
itive/negative/neutral polarity probability profile to

its entries, and MPQA lexicon associates a positive,
negative or neutral polarity category to its entries.
We consider a word from the ASSESS lexicon to be
polar if the sum of positive and negative probabili-
ties is greater than 0.65 (we arrived at this number
after manual inspection of the lexicon). This gives
us the subjectivity feature set comprised of the fol-
lowing features: A binary value indicating whether
the response contains any polar words from the AS-
SESS lexicon (presencePolarProfile), the number of
polar words from the ASSESS lexicon found in the
response (cntPolarProfile), a binary value indicating
whether the response contains any polar words from
the MPQA lexicon (presenceMpqaPolar), the num-
ber of polar words from the MPQA lexicon found in
the response (cntMpqaPolar), a binary value indicat-
ing whether the response contains any neutral words
from the MPQA lexicon (presenceMpqaNeut), the
number of neutral words from the MPQA lexicon
found in the response (cntMpqaNeut).

We construct separate features from the ASSESS
lexicon and the MPQA lexicon because we found
that the neutral category had different meanings in
the two lexicons – even the neutral entries in the
MPQA lexicon are valuable as they may indicate
speech events and private states (e.g. view, assess,
believe, cogitate, contemplate, feel, glean, think
etc.). On the other hand, words with a high prob-
ability of being neutral in the ASSESS lexicon are
non-subjective words (e.g. woman, undergo, entire,
technologies).

5 Experiments

For our experiments, we used a supervised learn-
ing framework, with the data described above, to
build scoring models based on our feature sets. We
evaluated several different learning algorithms and
found that a Random Forest Classifier consistently
produced the best results in cross-validation experi-
ments on the training data when we used our features
as well as when we used the baseline set of features.
Hence, all of our results in this section are reported
using this Random Forest learner. Performance was
calculated using Quadratic Weighted Kappa (QWK)
(Cohen, 1968), which is the standard evaluation
metric used in automated scoring. QWK measures
the agreement between the system score and the
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Feature set CV Eval
Relevance 0.43 0.46
Collocation 0.48 0.40
Discourse 0.25 0.27
Details 0.18 0.21
Subjectivity 0.17 0.16
EW13 baseline 0.48 0.52
All Feats 0.52 0.55
All Feats + EW13 0.58 0.58

Table 2: Performance of different feature sets.

human-annotated score, correcting for chance agree-
ment and penalizing large disagreements more than
small ones.

5.1 Baseline

We use the previous state-of-the-art features from
Evanini and Wang (2013) as our baseline (EW13).
They are comprised of the following subsets: flu-
ency (rate of speech, number of words per chunk,
average number of pauses, average number of long
pauses), pronunciation (normalized Acoustic Model
score, average word confidence, average differ-
ence in phone duration from native speaker norms),
prosody (mean duration between stressed syllables),
and lexical choice (normalized Language Model
score).

5.2 Results and Analysis

We performed cross validation on our training data
(Train) and also performed training on the full train-
ing dataset with evaluation on the Eval data. Table
2 reports our results on 10-fold cross validation ex-
periments on the training data (CV), as well results
when training on the full training dataset and test-
ing on the evaluation dataset (Eval). The first 5 rows
report the performance of the individual feature sets
described in Section 4. Not surprisingly, each in-
dividual feature set is not able to perform as well
as the EW13 baseline, which is comprised of an ar-
ray of many features that measures various speech
characteristics. One exception to this is the colloca-
tion feature set that performs as well as the EW13
baseline in the cross validation experiments. No-
tably, the combination of all five feature sets pro-
posed in this work (All Feats), performs better than
the EW13 baseline, indicating that our relevance and

Feature set Performance
EW13 baseline 0.48
EW13 + Relevance 0.54
EW13 + Collocation 0.57
EW13 + Discourse 0.49
EW13 + Details 0.50
EW13 + Subjectivity 0.50

Table 3: Performance of the Baseline when each individ-
ual feature set is added to it.

linguistic features are important for scoring for this
spoken response item type. Finally the best perfor-
mance is obtained when we combine our features
with the speech-based features. This improvement
of All Feats + EW13 over the baseline is statistically
significant at p < 0.01, based on 10K bootstrap sam-
ples (Zhang et al., 2004). Somewhat surprisingly,
the testing on the evaluation dataset showed slightly
better performance for most types of features than
the cross validation testing. We believe that this
might be due to the fact that, for the Eval results, all
the training data were available to train the scoring
models.

We also performed analysis on the Train set to
see if the baseline’s performance is impacted when
each of our individual feature sets is added to it. As
shown in Table 3, each of the feature sets is able to
improve the baseline’s performance (of 0.48 QWK).
Specifically, Discourse and Subjectivity produce a
slight improvement while Relevance produces mod-
est improvement. However, only the improvement
produced by the Collocation features was statisti-
cally significant (p < 0.01)

6 Conclusions

In this work, we explored five different types of lin-
guistic features for scoring spoken responses in a
picture narration task. The features were designed to
capture language proficiency, story development and
task relevance. Our results are promising: we found
that each feature is able to combine well with a state
of the art speech feature system to improve results.
The combination of the linguistic features achieved
better overall performance than the speech features
alone. Finally the best performance was achieved
when linguistic and speech features were combined.
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pages 1–7, Montréal, Canada, June. Association for
Computational Linguistics.

Dekang Lin. 1998. Automatic retrieval and cluster-
ing of similar words. In Proceedings of the 17th in-
ternational conference on Computational linguistics-
Volume 2, pages 768–774. ACL.

Anastassia Loukina, Klaus Zechner, and Lei Chen. 2014.
Automatic evaluation of spoken summaries: the case
of language assessment. In Proceedings of the Ninth
Workshop on Innovative Use of NLP for Building Edu-
cational Applications, pages 68–78, Baltimore, Mary-
land, June. Association for Computational Linguistics.

Christopher Manning and Hinrich Schütze. 1999. Foun-
dations of Statistical Natural Language Processing.
MIT Press.

Anne McKeough and Jennifer Malcolm. 2011. Stories of
family, stories of self: Developmental pathways to in-
terpretive thought during adolescence. New Directions
for Child & Adolescent Development, 2011(131):59 –
71.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse Treebank 2.0. In
Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08), Mar-
rakech, Morocco, May. European Language Resources
Association (ELRA).

Swapna Somasundaran and Martin Chodorow. 2014.
Automated measures of specific vocabulary knowl-
edge from constructed responses (use these words to
write a sentence based on this picture). In Proceedings
of the Ninth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 1–11. Asso-
ciation for Computational Linguistics.

Lei Sun and Marilyn A Nippold. 2012. Narrative writ-
ing in children and adolescents: Examining the literate
lexicon. Language, speech, and hearing services in
schools, 43(1):2–13.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the conference
on Human Language Technology and Empirical Meth-
ods in Natural Language Processing (HLT-EMNLP),
pages 347–354. Association for Computational Lin-
guistics.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. In-
terpreting bleu/nist scores: How much improvement
do we need to have a better system? In Proceed-
ings of the International Conference on Language Re-

47



sources and Evaluation (LREC). European Language
Resources Association (ELRA).

48



Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications, 2015, pages 49–55,
Denver, Colorado, June 4, 2015. c©2015 Association for Computational Linguistics

Measuring Feature Diversity in Native Language Identification

Shervin Malmasi
Centre for Language Technology

Macquarie University
Sydney, NSW, Australia

shervin.malmasi@mq.edu.au

Aoife Cahill
Educational Testing Service

660 Rosedale Rd
Princeton, NJ 08541, USA
acahill@ets.org

Abstract

The task of Native Language Identification
(NLI) is typically solved with machine learn-
ing methods, and systems make use of a wide
variety of features. Some preliminary studies
have been conducted to examine the effective-
ness of individual features, however, no sys-
tematic study of feature interaction has been
carried out. We propose a function to mea-
sure feature independence and analyze its ef-
fectiveness on a standard NLI corpus.

1 Introduction

Researchers in Second Language Acquisition (SLA)
investigate the multiplex of factors that influence our
ability to acquire new languages and chief among
these is the role of the learner’s mother tongue.
This core factor has recently been studied in the
task of Native Language Identification (NLI), which
aims to infer the native language (L1) of an au-
thor based on texts written in a second language
(L2). Machine Learning methods are usually used
to identify language use patterns common to speak-
ers of the same L1 (Tetreault et al., 2012). While
NLI has applications in security, most research has
a strong linguistic motivation relating to language
teaching and learning. In this context, by identifying
L1-specific language usage and error patterns, NLI
can be used to better understand SLA and develop
teaching methods, instructions and learner feedback
that is tailored to their mother tongue (Malmasi and
Dras, 2014b).

Although researchers have employed tens of fea-
ture types, no effort has been made to measure the
overlap of information they capture. Results from
previous studies show that while some feature types
yield similar accuracies independently, combining
them can improve performance (Brooke and Hirst,

2012). This indicates that the information they cap-
ture is diverse, but how diverse are they and how can
we measure the level of independence between the
feature types?

This is a question that has not been tackled in NLI,
despite researchers having examined numerous fea-
ture types to date. We examine one approach to mea-
suring the degree of diversity between features and
perform several analyses based on the results.

2 Data and Methodology

We use the TOEFL11 corpus (Blanchard et al., 2013)
released with the 2013 NLI shared task (Tetreault et
al., 2013). It includes 12,100 learner texts from 11
L1 groups, divided into train, dev. and test sets.

We use a linear Support Vector Machine1 to per-
form multi-class classification in our experiments.

We experiment with a wide range of previ-
ously used syntactic and lexical features: Adap-
tor Grammars (AG) (Wong et al., 2012), charac-
ter n-grams (Tsur and Rappoport, 2007),2 Func-
tion word unigrams and bigrams (Malmasi et al.,
2013), Lemma and Word n-grams, CFG Produc-
tion Rules (Wong and Dras, 2011), Penn Tree-
bank (PTB) part-of-speech n-grams, RASP part-of-
speech n-grams (Malmasi et al., 2013), Stanford De-
pendencies with POS transformations (Tetreault et
al., 2012), and Tree Substitution Grammar (TSG)
fragments (Swanson and Charniak, 2012). The in-
dividual feature accuracies3 are shown in Figure 1.4

1We use LIBLINEAR. Additional preliminary experiments
with alternative learners yielded similar results.

2We treat character n-grams as lexical features in this work
but restrict our investigation to 1–3-grams. Recent work has
also shown improvements from longer sequences (Jarvis et al.,
2013; Ionescu et al., 2014).

3Obtained by training on the TOEFL11 train and develop-
ment sets and evaluating on the test set.

4Listed in alphabetical order.
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Figure 1: Individual classification accuracy for each one
of our features on the TOEFL11 test set.

3 Measuring Feature Diversity
An ablation study is a common approach in machine
learning that aims to measure the contribution of
each feature in a multi-component system. This ab-
lative analysis is usually carried out by measuring
the performance of the entire system with all com-
ponents (i.e. features) and then progressively remov-
ing the components one at a time to measure how the
performance degrades.5

While useful for estimating the potential contri-
bution of a component, this type of analysis does
not directly inform us about the pairwise relation be-
tween any two given components. This shortcoming
has been noted by other researchers, e.g. Wellner et
al. (2009, p. 122), and highlights the need to quan-
tify the overlap between any two given components
in a system. Our approach to quantifying the diver-
sity between two feature types is based on measuring
the level of agreement between the two for predict-
ing labels on the same set of documents. Here, we
aim to examine feature differences by holding the
classifier parameters and data constant.

Past research suggests that Yule’s Q-coefficient
statistic (Yule, 1912) is a useful measure of pair-
wise dependence between two classifiers (Kuncheva
et al., 2003). This notion of dependence relates to
complementarity and orthogonality, and is an impor-
tant factor in combining classifiers (Lam, 2000).

Yule’s Q statistic is a correlation coefficient for
binary measurements and can be applied to classi-

5Other variations exist, e.g. compare Richardson et al.
(2006) and Wellner et al. (2009)

fier outputs for each data point where the output val-
ues represent correct (1) or incorrect (0) predictions
made by that learner. Each classifier Ci produces a
result vector yi = [yi,1, . . . , yi,N ] for a set of N doc-
uments where yi,j = 1 if Ci correctly classifies the
jth document, otherwise it is 0. Given these output
vectors from two classifiers Ci and Ck, a 2×2 con-
tingency table can be derived, as shown in Table 1.

Ck Correct Ck Wrong
Ci Correct N11 N10

Ci Wrong N01 N00

Table 1: Contingency table for two classifiers.

Here N11 is the frequency of items that both
classifiers predicted correctly, N00 where they were
both wrong, and so on. The Q-coefficient for the two
classifiers can then be calculated as:

Qi,k =
N11N00 −N01N10

N11N00 + N01N10
.

This distribution-free association measure6 is
based on taking the products of the diagonal cell fre-
quencies and calculating the ratio of their difference
and sum. Q ranges between −1 to +1, where −1
signifies negative association, 0 indicates no associ-
ation (independence) and +1 means perfect positive
correlation (dependence).

Here our classifiers are always of the same type, a
linear SVM, but they are trained with different fea-
tures on the same data, allowing us to measure the
dependence between feature types themselves.

4 Results
The matrix of the Q-coefficients for all features is
shown graphically in Figure 2. The most discernible
feature is the red cluster in the bottom left of the
matrix. This region covers the correlations between
syntactic and lexical features, showing that they dif-
fer the most.

Another interesting aspect is the strong correla-
tions between the lexical features, shown by the
clustering of high values in the bottom right corner.
It also shows that character n-grams capture similar
information to word unigrams and bigrams. Even
character unigrams – the lowest performing lexical
feature – show much stronger dependence with word
unigrams than other syntactic features. Addition-
ally, the high values in the bottom middle section

6This is equivalent to the 2×2 version of Goodman and
Kruskal’s gamma measure for ordinal variables.
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Figure 2: The Q-coefficient matrices of our feature set. The matrices are displayed as heat maps.

of the matrix show that Stanford Dependencies and
TSG fragments largely capture the same information
as Word and Lemma bigrams. These issues are ex-
plored further in §5.

In contrast to the lexical features, the syntactic
ones show much lower inter-correlation levels, ev-
idenced by lower values in the top left corner and
absence of a visible cluster. This seems to indicate
that there is greater diversity among these features.

Such analyses can help us better understand the
linguistic properties of features and guide interpre-
tation of the results. This knowledge can also be
useful in creating classifier ensembles. One goal
in creating such committee-based classifiers is the
identification of the most diverse independent learn-
ers and this method can be applied to that end. To
assess this, we also measure the accuracy for all 171
possible feature pair combinations fi and fj in our
feature set. Each pair is combined in a weighted
sum ensemble classifier (Malmasi et al., 2013) and
run against the TOEFL11 test set. For each pair we
also calculate the relative increase over only using
the more accurate feature of the two;7 this measures

7The relative increase is defined as:
Accuracyfi+fj −max(Accuracyfi , Accuracyfj )
An alternative metric here for this could be the “Oracle” base-

line used by Malmasi et al. (2015).
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Figure 3: Scatterplot of the Q-coefficient vs relative in-
crease in accuracy for all 171 feature pairs.

the net effect of combining the two: positive for im-
provements and negative for degradation.

The increase for each pair is compared against the
Q-coefficient, and Pearson’s correlation for the two
variables shows a medium, statistically significant
negative correlation (r = −.303, p = .000). A scat-
terplot is shown in Figure 3, where we observe that
almost all feature pairs with Q < 0.5 yielded a net
increase while many pairs with Q > 0.6 resulted in
performance degradation.

The measure is particularly useful when compar-
ing features with similar individual accuracy to iden-
tify sets with the highest diversity. This is because
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Figure 4: The Q-coefficient matrix for dependencies,
word n-grams and skip-grams.

diversity itself cannot be the sole criterion for fea-
ture selection; a weak feature such as character uni-
grams will be very diverse to a strong one like POS
n-grams but this does not ipso facto make it a good
feature and we must also consider accuracy.

5 Analyzing Words and Dependencies
Grammatical dependencies have been found to be
a very useful NLI feature and thought to capture
a “more abstract representation of syntactic struc-
tures” (Tetreault et al., 2012; Bykh and Meurers,
2014). Accordingly, we were initially surprised to
find the high correlation between dependencies and
word bigrams (Q = 0.93). However, this relation
may not be unexpected after all.

One source of supporting evidence comes from
examining dependency distances. Using English
data,8 Liu (2008) reports a Mean Dependency Dis-
tance (MDD) of 2.54 with 51% of the dependencies
being adjacent and thus also captured by word bi-
grams. This also suggests that we can capture more
of this information by considering non-adjacent to-
kens. We test this hypothesis by using k-skip word
bigrams (Guthrie et al., 2006) as classification fea-
tures, with k = 1–3.

The 1-skip bigrams yield an accuracy of 79.3%
on the TOEFL11 test set, higher than either word
bigrams or Stanford Dependencies. The 2- and 3-
skip grams achieve 78.4% and 77.9%. The matrix
of Q-coefficients for these features is shown in Fig-
ure 4, showing that the 1-skip word bigrams feature
is the closest to the dependencies feature with a Q-

8120k sentences averaging 21 tokens each.

coefficient of 0.96. It is also the closest to standard
word unigrams and bigrams with Q-coefficients of
0.91 and 0.97, respectively.

These results suggest that skip-grams are a very
useful feature for NLI.9 They could also be used
as a substitute for dependencies in scenarios where
running a full parser may not be feasible, e.g. real-
time data processing. Moreover, with NLI being in-
vestigated with other languages (Malmasi and Dras,
2014a), this feature can be a good approximation
of the dependencies feature for low-resourced lan-
guages without an accurate parser. However, re-
sults may vary by language and possibly genre (Liu,
2008). We also note that the skip-gram feature space
grows prodigiously as k increases.

Another related issue is whether sub-lexical char-
acter n-grams are independent of word features.
Previously, Tsur and Rappoport (2007) hypothe-
sized that these n-grams are discriminative due to
writer choices “strongly influenced by the phonol-
ogy of their native language”. Nicolai and Kon-
drak (2014) also investigate the source of L1 dif-
ferences in the relative frequencies of character bi-
grams. They propose an algorithm to identify the
most discriminative words and subsequently, the bi-
grams corresponding to these words. They found
that removing a small set of highly discriminative
words greatly degrades the accuracy of a bigram-
based classifier. Based on this they conclude that bi-
grams capture differences in word usage and lexical
transfer rather than L1 phonology. Evidence from
our analysis also points to a similar pattern with the
predictions of character bigrams and trigrams being
strongly correlated with word and lemma unigrams.

Such lexical transfer effects have been previously
noted by others (Odlin, 1989). The effects are me-
diated not only by cognates and word form similar-
ities, but also semantics and meanings. We also ex-
amine the link between L1 and word usage.

Using the Etymological WordNet10 database (de
Melo, 2014), we extracted two lists of English words
with either Old English (508 words) or Latin origins
(1,310 words). These words were used as unigram
features to train two classifiers. The F1-scores for
classification on TOEFL11 are shown in Figure 5.
The Old English words, with their West Germanic
roots, yield the best results for classifying German
data. Conversely, the Latinate features achieve the

9Hladka et al. (2013) and Henderson et al. (2013) previ-
ously used a skip-gram variant that did not include 0 skips as
per (Guthrie et al., 2006) and did not improve accuracy.

10http://www1.icsi.berkeley.edu/%7edemelo/etymwn/
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best results for Italian followed by French, both lan-
guages descended from Latin.

This experiment, albeit limited in scope, provides
some empirical evidence suggesting that small sets
of words can capture lexical transfer effects poten-
tially mediated by L1 similarity and cognates.

6 Parent-Annotated CFG Rules
As demonstrated by our results, CFG production
rules are a diverse syntactic feature with good ac-
curacy. This feature type is processed by first gener-
ating constituent parses for each sentence and then
extracting its production rules,11 excluding lexical-
izations. Each rule is then used as a feature. Figure
6 illustrates this with an example tree and its rules.
They have been successfully used in NLI (Wong and
Dras, 2011) and in this section we experiment with
a new extension of this feature type previously not
applied to NLI.

Parent-annotated PCFG models have previously
been applied in parsing and shown to yield improved

11These are the phrase structure rules used to generate con-
stituent parts of sentences, such as noun phrases.

ROOT → S^<ROOT>

S^<ROOT> → NP^<S> VP^<S> .

NP^<S> → DT JJ JJ NN

VP^<S> → VBD PP^<VP>

PP^<VP> → IN NP^<PP>

NP^<PP> → DT JJ NN

Figure 7: Parent-annotated CFG rules from Fig. 4.

results over other models (Johnson, 1998). In this
experiment we apply this feature to NLI and eval-
uate whether it can provide any improvement over
standard production rule models.

This feature involves a modification of the lin-
guistic tree representation, appending the category
of each node’s parent as additional contextual in-
formation (Johnson, 1998, p. 623). This transfor-
mation can be described as adding “pseudo context-
sensitivity” (Charniak and Carroll, 1994). Figure 7
shows the parent-annotated CFG rule features ex-
tracted from the tree shown in Figure 6.

Testing this feature on the TOEFL11 test set, we
achieve an accuracy of 55.6%, a +1.3% increase
over the standard CFG rules feature. Analyzing fea-
ture diversity, we observe a Q-coefficient of 0.92 be-
tween the two CFG rule based features. These re-
sults show that parent annotation leads to a sizeable
increase in accuracy and also a notable change in di-
versity levels.

Although these initial results suggest that this is
a useful feature, more testing with other data can
help determine if these patterns hold across corpora
(Malmasi and Dras, 2015). This additional informa-
tion could also help in other tasks such as language
transfer hypothesis formulation (Malmasi and Dras,
2014b) through the examination of more specific en-
vironmental contexts for features.

We leave to future work the investigation of im-
proved ensemble classifiers that would be informed
by the results of this study. The exploration of other
linguistic tree representations and transformations,
including Chomsky Normal Form, is another avenue
for future work.

7 Conclusion

In this work we examined a method for measuring
feature diversity in NLI and highlighted several in-
teresting trends. We demonstrated how this analy-
sis can be used to better understand the information
captured by features and used it to examine the re-
lationship between lexical features. We show that a
variant of 1-skip bigrams can in fact be a useful fea-
ture and also proposed a new NLI feature, parent-
annotated CFG rules, showing how feature diversity
can guide feature engineering.
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Abstract

The goal of the Automated Evaluation of Sci-
entific Writing (AESW) Shared Task is to an-
alyze the linguistic characteristics of scientific
writing to promote the development of auto-
mated writing evaluation tools that can assist
authors in writing scientific papers. The pro-
posed task is to predict whether a given sen-
tence requires editing to ensure its “fit” with
the scientific writing genre. We describe the
proposed task, training, development, and test
data sets, and evaluation metrics.

Quality means doing it right when no one is looking.
– Henry Ford

1 Introduction

De facto, English is the main language for writ-
ing and publishing scientific papers. In reality, the
mother-tongue of many scientists is not English.
Writing a scientific paper is likely to require more
effort for researchers who are nonnative English
speakers compared to native speakers. The lack
of authoring support tools available to nonnative
speakers for writing scientific papers in English is
a formidable barrier nonnative English-speaking au-
thors who are trying to publish, and this is becoming
visible in academic community. Many papers, af-
ter acceptance to journals, require improvement in
overall writing quality which may be addressed by
publishers. However, this is not the case with most
conference proceedings.

The vast number of scientific papers being au-
thored by nonnative English speakers creates a large
demand for effective computer-based writing tools

to help writers compose scientific articles. Several
shared tasks have been organized (Dale and Kil-
garriff, 2011; Dale et al., 2012; Ng et al., 2013;
Ng et al., 2014) which constituted a major step
toward evaluating the feasibility of building novel
grammar error correction technologies. English lan-
guage learner (ELL) corpora were made available
for research purposes (Dahlmeier et al., 2013; Yan-
nakoudakis et al., 2011). An extensive overview of
the feasibility of automated grammatical error de-
tection for language learners was conducted by Lea-
cock et al. (2010). While these achievements are
critical for language learners, we also need to de-
velop tools that support genre-specific writing fea-
tures. The shared task proposed here focuses on the
genre of scientific writing.

Above and beyond correct use of English conven-
tions, the genre of scientific writing is characterized
by features, including, but not limited to declara-
tive voice, and appropriate academic and discipline-
specific terminology. There are many issues for
writers that are not necessarily related to grammar
issues such as, vocabulary usage, and correct word
and phrase order among other issues. In addition,
many ELL writers have a different way of thinking
and reasoning in their native language which may be
reflected in their writing. For instance, it is likely
that ELLs and native English (EN) writers would
write the same text in different ways:

1. ELL ”Completely different role of elastic inter-
action occurs due to local variations in the
strain field...”

EN ”Elastic interaction takes on a completely
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different role with local variations in the
strain field...”

2. ELL ”The method is straightforward and concise,
and its applications is promising.”

EN ”The method is straightforward and concise,
and it holds promise for many applications.”

The difference in the readability and the fluency of
texts due to grammatical errors is apparent.

The task of automated writing evaluation applied
to scientific writing is critical, but it is not well stud-
ied because no data for research have been avail-
able until recently when the dataset of language ed-
its of scientific texts was published (Daudaravicius,
2014).

On the other hand, some scientists propose to
use Scientific Globish versus scientific English (Ty-
chinin and Kamnev, 2013). The term ‘Globish’ de-
notes the international auxiliary language proposed
by Jean-Paul Nerrière, which relies on a vocabulary
of 1500 English words and a subset of standard En-
glish grammar1. The proposed adoption of ‘scien-
tific Globish’ as a simplified language standard may
appeal to authors who have difficulty with English
proficiency. However, Globish might lead to further
deterioration of the quality of English-language sci-
entific writing, and, in general, it cannot be a reason-
able direction. Therefore, we propose the automated
evaluation of scientific writing shared task.

2 Language Quality in Scientific Discourse

In this section, we define the concept of language
quality and provide examples of previous work that
has evaluated scientific writing.

2.1 Definition

While writers may have proficiency in English, they
may still struggle to be effective writers in the genre
of scientific writing. The concept of ‘quality’ in
scientific discourse is ill-defined. For instance, a
student in a seventh-grade science classroom asked
a question ‘Maestro, what is quality?’ during an
experiment engaging students to address two ques-
tions: “What is the quality of air in my community?”
and “What is the quality of water in our river?”

1See: http://en.wikipedia.org/wiki/Globish (Nerriere)

(Moje et al., 2001). The student was asking, “What
do you mean when you talk about quality?” As a
result of this question, Maestro Tomas spent a class
period working on what it meant to refer to quality,
especially in science, and how scientists determined
quality. In the most explicit discussion, Maestro
Tomas told the students that quality differs depend-
ing on one’s purpose, one’s background, and one’s
position (e.g., as a scientist, an activist, an industri-
alist, a community member).

We find that the concept of academic language
and the concept of the language of academic writ-
ing are different at a conceptual level. Krashen and
Brown (2007) discuss the concept of academic lan-
guage proficiency. They argue that academic lan-
guage proficiency consists of the knowledge of aca-
demic language and specialized subject matter. The
academic language concept can be described as a
proper use of discipline-specific and academic vo-
cabulary to express topic and discourse structure.

2.2 Previous work: Scientific Writing
Evaluation

Natural language software requirements are the
communication medium between users and software
developers. Ormandjieva et al. (2007) addressed a
problem of writing evaluation of natural language
software requirements, and applied a text classifica-
tion technique for automatic detection of ambigu-
ities in natural language requirements. Sentences
were classified as “ambiguous” or “unambiguous”,
in terms of surface understanding. Fabbrini et al.
(2001) present a tool called QuARS (Quality An-
alyzer of Requirements Specification) for the anal-
ysis of textual software requirements. The Qual-
ity Model aims at providing a quantitative, correc-
tive and repeatable evaluation of software require-
ment documents. Berrocal Rojas and Sliesarieva
(2010) examine the automated detection of language
issues affecting accuracy, ambiguity and verifiabil-
ity in natural language software requirements. Lex-
ical analysis, syntactic analysis, WordNet (Miller et
al., 1993) and VerbNet (Schuler, 2005) were used
for the automated quality evaluation. Burchardt et
al. (2015) provided practical guidelines for the use
of the Multidimensional Quality Metrics (MQM)
framework for assessing translation quality in sci-
entific research projects. MQM provide detailed
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The boundary problem for V (t, x) is of the form

(∂t + L− r)V (t, x) = 0, x > h, t < T ; (1)

V (t, x) = 0, x ≤ h, t ≤ T ; (2)

V (T, x) = G(x), x > h. (3)

Boyarchenko and Levendorskiǐ (BLbook; BLAAP02) derived the generalization of the Black–
Scholes equation 1 under a weak regularity condition: the process (t, Xt) in 2D satisfies the (ACP) condition (for
the definition, see e.g. (Sa)). Note that the (ACP) condition is satisfied if the process X has a transition density. Equation 1
is understood in the sense of the theory of generalized functions: for any infinitely smooth function u with compact support
supp u ⊂ (−∞, T )× (h, +∞),

(V, (−∂t + L̃− r)u)L2 = 0, (4)

where L̃ is the infinitesimal generator of the dual process.

Figure 1: A short example of common academic text writing (from (Kudryavtsev and Levendorskiı̌, 2009)).

The boundary problem for MATH is of the form MATHDISP . Boyarchenko and Levendorskii CITE derived the C

generalization of the Black–Scholes equation ( REF ) under a weak regularity condition: the process MATH in 2D C

satisfies the (ACP) condition (for the definition, see e.g. CITE ). Note that the (ACP) condition is satisfied if the C

process MATH has a transition density. Equation ( REF ) is understood in the sense of the theory of generalized C

functions: for any infinitely smooth function MATH with compact support MATH , MATHDISP , where C

MATH is the infinitesimal generator of the dual process.

Figure 2: The transformation of the text in Fig 1 using named entities.

insights about translation issues/errors on different
levels of granularity up to the word or phrase level as
input for systematic approaches to overcome trans-
lation quality barriers. MQM framework does not
provide a translation quality metric, but rather pro-
vides a framework for defining task-specific transla-
tion metrics. MQM describes three typical layers of
annotation in MT development:

– the phenomenological level (target errors/is-
sues);

– the linguistic level (source or target POS,
phrases, etc.);

– the explanatory level (source/system-related
causes for certain errors).

A wide range of translation quality evaluation as-
pects show that the field is growing, and more efforts
needed to solve many issues of translation quality
evaluation.

3 The Language of Scientific Texts

Some elements of scientific writing that are distinct
from other genres of writing, include, but are not
limited to the following:

– Formal notations, e.g. f(x) = cos(x).

– Extensive mathematical expressions which can
be independent sentences or a continuation of a
preceding sentence, see example in Fig 1.

– Discipline-specific terminology.

– Citations.

– Section headers.

– References to other elements of a paper, which
are of logical relation only. The scientific writ-
ing is highly multidimensional compared to lin-
ear daily language.

– Lists and enumerations.

– Bibliography elements.
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Domain The Number of Paragraphs The Number of Edits
Physics 41,188 164,813
Mathematics 32,981 79,019
Engineering 14,968 43,551
Statistics 12,115 35,988
Computer Science 7,028 16,013
Astrophysics 4,278 15,594
Business and Management 3,454 8,262
Psychology 2,604 6,189
Finance 2,241 6,016
Economics 185 314
Total 121,042 375,759

Table 1: Main characteristics of the training dataset.

– Figures are also used as the continuation of sen-
tences, though not so frequently.

– Hypertext references.

4 The Task Objectives and Definition

The objectives of the AESW Shared Task are to pro-
mote the use of NLP tools to help ELL writers the
quality of their scientific writing.

In the scope of the task, the main goals are:

– to identify sentence-level features that are
unique to scientific writing;

– to provide a common ground for development
and comparison of sentence-level automated
writing evaluation systems for scientific writ-
ing;

– to establish the state-of-the-art performance in
the field.

Some interesting uses of sentence-level quality eval-
uations are the following:

– automated writing evaluation of submitted sci-
entific articles;

– authoring tools in writing English scientific
texts;

– filtering out sentences that need quality im-
provement.

The task will examine automated evaluation of
scientific writing at the sentence-level by using the
output of the professionally edited scientific texts,

which are text extracts before and after editing (by
native English speakers).

The goal of the task is to predict whether a given
sentence needs for any kind of editing to improve it.
The task is a binary classification task. Two cases
of decisions are examined: binary decision (False
or True) and probabilistic estimation (between 0 and
1).

5 Data

5.1 The Editing Process

This section describes the role of the professional
language editors who completed the data editing de-
scribed in Section 5.3. Language editors are defined
as individuals who perform proofreading (see Smith
(2003)). There are no standards that define language
quality. The language editors use best practices, for
instance (see Society for Editors and Proofreaders
(2015)).

Language editors edited selected papers as part of
publishing service. Each edited paper has two ver-
sions: text before and after editing. Language edi-
tors do their best to improve writing quality within
the limited time span. In this data set, however, there
was no double-annotation for quality control. We es-
timate that approximately 20% of the data may still
contain errors, and also that there may be errors in
the editors edits.

5.2 Tex2TXT

We use the open-source tool tex2txt2 for the con-
version from LATEX to text, which was developed

2See: http://textmining.lt:8080/tex2txt.htm
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<par pid=”9” domain=”Physics”>
<edits>

<edit originalParOffset=”7” editedParOffset=”7” type=”replaced”>
<original>ultimately</original>
<edited>finally</edited>

</edit>
</edits>
<sentence type=”original” sid=”9.0”>Let us ultimately insist on the fact that the expression in the right hand side MATH

is a function of MATH due to the action of the shift and is therefore a different
function than MATH . </sentence>

<sentence type=”edited” sid=”9.1”>Let us finally insist on the fact that the expression in the right hand side MATH
is a function of MATH due to the action of the shift and is therefore a different
function than MATH . </sentence>

<sentence type=”nonedited” sid=”9.2”>Only the expectations of both expressions of Eq. ( REF ) are equal.</sentence>
</par>

Figure 3: Training data example of the paragraph annotation with data before language editing, after language editing,
and the difference.

<par pid=”9” domain=”Physics”>
<sentence sid=”9.0”>Let us ultimately insist on the fact that the expression in the right hand side MATH is a func-

tion of MATH due to the action of the shift and is therefore a different function than MATH .
</sentence>

<sentence sid=”9.1”>Only the expectations of both expressions of Eq. ( REF ) are equal.</sentence>
</par>

Figure 4: A sample from the test data.

specifically for this task. The tool is stand-alone and
does not require any other LATEX processing tools or
packages. The primary goal was to extract the cor-
rect textual information.

5.3 The Data Set

The data set is the collection of text extracts from
more than 4,000 published journal articles (mainly
from physics and mathematics) before and after lan-
guage editing. The data were edited by profes-
sional editors (per above) who were native English
speakers3. Editing includes grammar error correc-
tions, text cleaning, rephrasing, spelling correction,
stylistics, and sentence structure corrections. Each
extract is a paragraph which contains at least one

3VTeX provides LATEX-based publishing solutions and data
services to the scientific community and science publishers.
Publishers often request language editing services for papers ac-
cepted for publication. The data of our proposed shared task are
based on selected papers published in 2006–2009 by Springer
publishing company and edited at VTeX by professional lan-
guage editors.

edit done by language editor. All paragraphs in the
dataset were randomly ordered for the source text
anonymization purpose. The distribution of para-
graphs and edits are presented in Table 1.

Sentences were tokenized automatically, and then
both versions – texts before and after editing – auto-
matically aligned with a modified diff algorithm.
Each sentence is annotated as either ‘original’, or
‘edited’, or ‘nonedited’. Non-edited sentences con-
tained no errors. The original text – the text before
language editing – can be restored simply by delet-
ing sentences that are annotated as ‘edited’. Also,
the edited text can be restored simply by deleting
sentences that are annotated as ‘original’.

The training data: The training data will be
at least 121,000 paragraphs with 375,000 edits.
The number of edited sentences will be at least
235,000, and the number of original sentences
will be at least 234,000. There will be 335,000
sentences that were non-edited. These numbers
show that 41% of all sentences were edited. See
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Figure 3 for an example of annotated training
data.

The training data will include annotations to
show differences between the ‘original’ and
‘edited’ texts. The ‘edits’ data are used for a
quick reference to what the changes are.

The development data: An additional 5,000
paragraphs similar to test data will be provided.
The development data set will be comprised of a
set of articles that are independent from articles
used for compiling the training and test sets. The
development data will be distributionally similar
to training data and test data with regard to edited
and non-edited sentences, and domain.

The test data: An additional 5,000 paragraphs
will be provided for testing the registered sys-
tems of the AESW Shared Task. The test data
set will be comprised of a set of articles that
are independent from articles used for compil-
ing the training and development sets. Test para-
graphs will retain ‘original’ and ‘nonedited’ ver-
sions only. The ‘edited’ sentence version will be
removed. The test data anotation will be similar
to training and development data. However, no
data about edits and sentence class will be pro-
vided until submission of system results. See an
example in Figure 4.

Shared Task participating teams will be allowed to
use external data that are publicly available. Teams
will not be able to use proprietary data. Use of ex-
ternal data should be specified in the final system
report.

6 The Task and Evaluation

The task is to predict the class of a test sentence:
‘original’ or ‘edited’. In Section 2, we saw that both
Boolean and probabilistic prediction are used for
various tasks. Therefore, there will be two tracks
of the task:

Boolean Decision: The prediction of whether a
test sentence is edited (TRUE), or before editing
and corrections are needed (FALSE).

Probabilistic Estimation: The probability esti-
mation of whether a test sentence is edited (P =

0), or before editing and corrections are needed
(P = 1).

Participating teams will be allowed to submit up
to two system results for each track. In total, a max-
imum of four system results will be accepted. All
participating teams are encouraged to participate in
both tracks.

The primary goal of the task is to predict ‘origi-
nal’ sentences with poor writing quality. Each reg-
istered system will be evaluated with a Detection
score, which is described below.

6.1 Detection score
The score will be an F-score of ‘original’ class pre-
diction. The score will be computed for both tracks
individually. For the Boolean decision track, a gold
standard sentence Gi is considered detected if there
is an alignment in the set that contains Gi. We calcu-
late Precision (P) as the proportion of the sentences
that were ‘original’ in the gold standard:

Pbool =
# Sentencedetected

# Sentencespurious + # Sentencedetected
.

Similarly, Recall (R) will be calculated as:

Rbool =
# Sentencedetected

# Sentencegold
.

The detection score is the harmonic mean (F-score):

DetectionScorebool = 2 · Pbool · Rbool

Pbool + Rbool
.

For the probabilistic estimation track, the Mean
squared error (MSE) will be used. A gold standard
sentence Gi is assigned to 1 if it is ‘original’, and to
0 if it is ’nonedited’. A gold standard sentence Gi is
considered detected if there is correlation in the set
that contains Gi. We calculate Precision as the MSE
of the sentences Ei that were estimated as ‘original’,
i.e., their estimated probability is above 0.5:

Pprob = 1 − 1
n

n∑
i=1

(Ei , >0 .5 − Gi)2.

The higher the Pprob the better the system is. Sim-
ilarly, we calculate Recall as the MSE of the sen-
tences Gi that were ‘original’ in the gold standard:

Rprob = 1 − 1
n

n∑
i=1

(Ei − Gi ,original )2.
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ID Type Gbool Gprob
Boolean Decision Track Probabilistic Estimation Track

TEAM1 TEAM2 TEAM3 TEAM1 TEAM2 TEAM3
1 original F 1 F T F 0.7 0 1
2 original F 1 F T F 0.8 0 1
3 nonedited T 0 T T F 0.1 0 1
4 nonedited T 0 F T F 0.6 0 1
5 nonedited T 0 T T F 0.2 0 1
6 nonedited T 0 T T F 0.4 0 1
7 original F 1 F T F 0.9 0 1
8 nonedited T 0 T T F 0.1 0 1
9 nonedited T 0 T T F 0.4 0 1
P 0.75 0 0.33 0.875 0 0.33
R 0.67 0 1 0.953 0 1

DetectionScore 0.71 0 0.5 0.912 0 0.5

Table 2: DetectionScore calculation example.

The harmonic mean DetectionScoreprob is calcu-
lated similarly as DetectionScorebool. The higher
the DetectionScoreprob the better the system is. An
example of score calculation is shown in Table 2.

7 Report submission

The authors of participant systems are expected to
submit a shared task paper describing their system.
The task papers should be 4-8 pages long and con-
tain a detailed description of the system and any fur-
ther insights.
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Abstract

In this work, we investigate whether the analy-
sis of opinion expressions can help in scoring
persuasive essays. For this, we develop sys-
tems that predict holistic essay scores based on
features extracted from opinion expressions,
topical elements, and their combinations. Ex-
periments on test taker essays show that essay
scores produced using opinion features are in-
deed correlated with human scores. Moreover,
we find that combining opinions with their tar-
gets (what the opinions are about) produces
the best result when compared to using only
opinions or only topics.

1 Introduction

In a persuasive essay, test takers are asked to take
a stance on a given topic and to write an essay
supporting their stance. Consider for example the
following essay question, also known as the prompt:

“A teacher’s ability to relate well with students
is more important than excellent knowledge of the
subject being taught.”

Test takers have to write an essay describing
whether they agree or disagree with the given
prompt, using language expressing clear opinions.
The scores for these essays are typically influenced
by many factors, such as grammar, spelling errors,
style and word usage, as well as the persuasiveness
component: how well does the writer argue in fa-
vor of that writer’s position on the subject? In this
work, we try to tackle this last aspect, by studying

how the expression of opinions influences the scores
of expert human graders.

A number of essay scoring systems which rely
on Natural Language Processing methods have been
developed for automatically scoring persuasive es-
says, most notably (Page, 1966; Foltz et al., 1999;
Burstein, 2003; Rudner and Liang, 2002; Attali and
Burstein, 2006). The principal features for auto-
matic essay-scoring have traditionally been based
on grammar, usage, mechanics, and style, and have
additionally included content-based features such as
discourse and topic, as in Attali and Burstein (2006).
These kind of features have been shown to have very
strong performance in scoring holistic essay scores,
and are very highly correlated with expert human
scores (Bridgeman et al., 2012). However, in spite of
their powerful predictive capability, these automated
scoring systems have been criticized for limited cov-
erage of the construct (Deane, 2013; Ben-Simon and
Bennett, 2007; Williamson et al., 2012).

Our work addresses this concern by developing
features specific to the persuasive construct. In-
corporating knowledge of the persuasiveness factor
into essay-scoring models can allow us to add fea-
tures directly related to the scoring construct and to
the writing task, which typically asks test takers to
state and defend their opinion. Additionally, our
linguistically motivated features encode intuitions
which could allow for interpretable, useful and ex-
plicit feedback to students, test takers and educators
regarding the persuasive aspect of the essays.

We build simple essay scoring systems which
incorporate persuasiveness by engineering features
based on the analysis of opinions expressed in the
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essay and whether these opinions are being ex-
pressed about relevant topics. Specifically, the de-
veloped systems are based on simple features cap-
turing (1) Opinion expressions, (2) Topics, and (3)
Opinion-Target pairs which combine opinions with
what they are about. We consider different methods
for finding opinion-target pairs, and extract features
which assess if the opinions in the essay are indeed
relevant to the persuasion, and if the stance taken in
the essay is consistently maintained. We find that
our system predictions are indeed correlated with
human scores, and the system using opinion-target
information is the best.

The rest of the paper is organized as follows. Sec-
tion 2 describes related work. In Section 3 we de-
scribe how we find opinions, topics and opinion-
targets in essays, and Section 4 describes the fea-
tures used accordingly to build the persuasive es-
say scoring systems. Section 5 describes our experi-
ments, Section 6 presents analysis, and we conclude
in Section 7.

2 Related Work

Automated essay scorers rely on a number of fea-
tures based on grammar, usage, and content. No-
table systems are Project Essay Grader (Page, 1966)
which grades essays based on fluency and gram-
mar; IEA (Foltz et al., 1999) which uses both con-
tent and mechanics-based features and relies on LSA
word vector representations; e-rater (Burstein, 2003;
Attali and Burstein, 2006) which combines syn-
tactic, discourse, and topical components; and the
Bayesian Essay Test Scoring System (Rudner and
Liang, 2002). For a comprehensive description of
these automatic essay scoring systems, the reader
is referred to Dikli’s survey (Dikli, 2006). Re-
cently, there have been attempts to incorporate more
non-traditional features for essay scoring; such as
Beigman Klebanov and Flor (2013) who examined
the relationship between the quality of essay writing
and the use of word associations, and accordingly
built a system to improve the prediction of holistic
essay scores; and Somasundaran et al. (2014) who
predicted discourse coherence quality of persuasive
essays using lexical chaining techniques.

There has also been work on the study of argu-
mentation in essays. Stab and Gurevych (2014a)

propose an annotation scheme and a corpus for an-
notating different components of arguments and ar-
gumentative relations in persuasive essays. In ad-
dition, Stab and Gurevych (2014b) propose models
for automatically recognizing arguing components
in persuasive essays, and identifying whether the
arguing components reflect support or non-support.
Madnani et al. (2012) proposed a system for distin-
guishing the “shell” organizational elements of argu-
ing expressions from actual argumentative content.
Beigman Klebanov et al. (2013a) identify sentence-
level sentiment in persuasive essays by considering
the sentiment of multi-word expressions. In our
work, we have used lexicons for identifying opin-
ion expressions; however, our methods can be aug-
mented by using such systems.

Opinion analysis has been applied to a number of
natural language processing tasks and domains, such
as sentiment in movie reviews (Turney, 2002; Pang
and Lee, 2004), product reviews (Hu and Liu, 2004;
Liu et al., 2005), social media (Go et al., 2009; Agar-
wal et al., 2011; Bollen et al., 2011), news, blogs,
and political and online debates (Mullen and Mal-
ouf, 2006; Godbole et al., 2007; Somasundaran and
Wiebe, 2009). The use of opinion and sentiment in-
formation to predict holistic essay scores, however,
has remained unstudied.

Targets of sentiment have been studied in the form
of finding features in product reviews (Qiu et al.,
2011; Liu et al., 2014) and for classifying online
debates (Somasundaran and Wiebe, 2010). The re-
cent 2014 SemEval Task on aspect-based sentiment
analysis (Pontiki et al., 2014) was concerned with
identifying targets of sentiment in reviews of restau-
rants and laptops. Jiang et al. (2011) and (Dong et
al., 2014) have explored target-dependent classifica-
tion of sentiment in Twitter. In our work, we take
a simple approach to finding targets of opinion ex-
pressions, since our focus is on determining whether
opinion analysis is useful for persuasive essay scor-
ing, even when using approximate opinion-targets.

3 Opinions and Topics in Persuasive
Essays

Intuitively, well-written persuasive essays will
clearly state the opinion of the writer and build sup-
port for their stance by evoking ideas and concepts
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that are relevant for the argument. Thus, we inves-
tigate the role of opinions, topics, and their interac-
tions in determining overall persuasive essay scores.

3.1 Opinion Expressions
We consider two distinct types of opinions important
for persuasion: Sentiment and Arguing. Much work
has been done on defining these two types of opin-
ions (Wilson, 2008; Ruppenhofer et al., 2008). We
focus on sentiment and arguing because we expect
these types of expressions to be common in essays
which require persuasion.

Sentiment Expressions Sentiment expressions
reveal a writer’s judgments, evaluations and feel-
ings, and are likely to be employed to express a
preference for a particular position, or to point out
the shortcomings of an alternative position. In the
following sentence, we see the sentiment expression
in bold, and the target in brackets. The writer
has a positive evaluation (“learning the most”) of
teachers’ encouragement.

Example 1
At school, I always learned the most from [teachers
who encouraged me].

Arguing Expressions Arguing expressions reveal
the writer’s beliefs and strong convictions, and is
seen in the form of reasoning, justification, strong
assertions, emphasis, and use of imperatives, neces-
sities and conditionals (Wilson, 2008; Ruppenhofer
et al., 2008). In the following sentence, we see
the arguing expression in bold, and the target in
brackets. Here, the writer clearly emphasizes the
position taken with respect to the topic.

Example 2
For these reasons, I claim with confidence that [excel-
lent knowledge of the subject being taught is secondary
to the teacher’s ability to relate well with their students].

We expect that persuasive essays where test takers
clearly state their opinions will get better scores than
the ones that do not.

3.2 Topical Elements
We define topical elements as words or concepts that
are relevant to the topic of the essay, and which

usually get invoked in the process of stance-taking.
They essentially correspond to “common topics”
that test takers are expected to write about when
presented with a prompt. For example, given the
prompt in Section 1, while words which appear in
the prompt (prompt words), such as ‘teacher’, ‘stu-
dent’, ‘subject’, and ‘knowledge’ are naturally ex-
pected, we also expect general topical words such
as ‘class’ and ‘school’ to occur in response essays.
Intuitively, we would expect essays containing suffi-
cient topical elements to get higher scores.

3.3 Opinion Relevancy and Consistency
We expect that well-written persuasive essays will
not only express opinions and evoke common topics,
but in fact express opinions about relevant topical el-
ements. Specifically, we hypothesize that the opin-
ions should be about artifacts relevant to the theme
of the essay, and not about irrelevant topics. For
example, for the prompt described in Section 1, it
is important that there be opinions expressed about
topics such as teachers, school, learning, and so on.
In addition, the essay also has to reflect a clear at-
tempt at persuasion and stance-taking in relevance
to the prompt statement and the underlying theme.
We call this opinion relevancy.

We also expect that once a stance is taken, there
should be sufficient elaboration and development
such that the stance is consistently maintained. We
hypothesize that essays where test takers support
their stance will achieve higher scores than essays
where they vacillate between options (for instance,
in the example prompt in Section 1, the test taker
is unable to decide whether the teachers’ ability to
relate well is more important or not). We call this
opinion consistency.

These expectations are more stringent than those
discussed in Sections 3.1 and 3.2, and we expect that
a scoring system which captures these requirements
will likely perform better.

4 Essay Scoring Systems

In order to test the intuitions described in Section
3, we build essay scoring systems based on features
extracted from opinions, topics, and opinion-target
pairs. We construct three separate systems:

1. Opinion This system uses features based on
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opinion expressions only, and tests whether ex-
pressing opinions influences the essay score.

2. Topic This system uses features based on top-
ical expressions alone, and tests whether evok-
ing relevant topics associated with the prompt
influences the essay score.

3. Opinion-Target This system uses features
based on the combination of opinions and their
targets, with the goal of measuring opinion rel-
evancy and consistency. This system tests how
well the essay score can be predicted based on
the interactions of opinions with their targets.

4.1 Opinion System
4.1.1 Finding sentiment and arguing

expressions
In order to find sentiment expressions in the es-

says, we used a combination of two lexicons: the
MPQA subjectivity lexicon (Wilson et al., 2005)
(Lexicon 1), and the sentiment lexicon developed by
Beigman Klebanov et al. (2013b) (Lexicon 2). Each
of these lexicons provides for each word, a senti-
ment polarity (positive, negative, or neutral), along
with an indicator of sentiment intensity: strongly or
weakly subjective (Lexicon 1) or a probability dis-
tribution over the polarity (Lexicon 2). For Lexicon
2, the sentiment polarity for a word is obtained by
choosing the polarity corresponding to the highest
probability score.

For identifying arguing expressions in the essays,
we used an Arguing lexicon developed as part of a
discourse lexicon (Burstein et al., 1998). The origi-
nal lexicon has annotations for different types of ex-
pressions, including claim initializations and devel-
opment, structure, rhetoric, among others. For this
work, since we are concerned with arguing expres-
sions that specifically reveal support for or against
an idea, we used only lexicon entries which label an
expression as arguing-for or arguing-against. For
instance, in Example 2, the writer argues for teach-
ers’ ability to relate well with their students.

4.1.2 Features
We extract three (global) features based on opin-

ion expressions:

1. The total count of sentiment words in the es-
say that are found in Lexicon 1 and Lexicon 2

respectively. These counts also include words
with subjective neutral polarity.

2. The total count of words in the essay found in
the arguing lexicon.

4.2 Topic System

4.2.1 Finding topical elements

In order to determine topical elements, we com-
pute topic signatures (Lin and Hovy, 2000) over each
prompt. Topic Signatures are defined as

TS = {topic, signature}

= {prompt,< (t1, w1), (t2, w2)...(tn, wn) >}
where topic in our case is the prompt. The signa-
ture comprises a vector of related terms, where each
term ti is highly correlated with the prompt with an
association weight wi.

For each prompt, we use a corpus of high-scoring
essays (that was separate from our training and test-
ing data) to find its topic signature1. The top 500
words with the highest signature scores are consid-
ered as topical elements for that prompt.

For a given essay, we annotate all prompt words
and topic signature words. Note that our topical ele-
ments consist entirely of unigrams, but this need not
necessarily be the general case (as seen in examples
1 and 2); extending the scope of topical elements to
multi-word concepts is a direction for future work.

4.2.2 Features

Based on the prompt words and topical words we
extract the following features:

1. The total count of topical words in the essay

2. The total count of actual prompt words

We distinguished between prompt words and topi-
cal words as the former measures whether the essay
is clearly responding to the prompt, while the latter
measures if thematic elements are indeed present in
the essay and its arguments.

1We used the topic signatures code provided at
http://homepages.inf.ed.ac.uk/alouis/topicS.html
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4.3 Opinion-Target System
The opinion-target system relies on the extraction of
features based on the opinion-target pairs found in
the essay. The first step towards building this sys-
tem is the identification of opinion-target pairs, af-
ter which we construct features which measure opin-
ion relevancy and consistency. We investigated sim-
ple heuristic-based approaches for finding targets of
opinions, described below.

4.3.1 Finding sentiment-target pairs
We explored three methods for finding targets of

sentiment expressions. Our simplest approach, all-
sentence, finds all sentiment expressions in the sen-
tence and assumes that all words are targets of each
expression. This method introduces some noise as it
results in some words becoming targets of multiple
opinions with possibly conflicting polarities.

Our second approach, resolve-sentence, resolves
the sentiment at the sentence-level to a single po-
larity, as in (Somasundaran and Wiebe, 2010), and
then assumes that all nouns, verbs, and adjectives
in the sentence are targets. If we consider Exam-
ple 1, suppose the sentiment of the sentence is re-
solved to positive, (due to the positive opinion words
learned, most, and encouraged) then the words
school, teachers, learned and encouraged would be
considered as the targets. Ideally, we would like
only the words teachers and encouraged to be tar-
gets. We note here that in our task a target can ac-
tually be a sentiment-containing word such as en-
couraged, which is why we don’t disregard senti-
ment words when finding targets.

Our third method, resolve-constituent, resolves
sentiment at the syntactic constituent level instead of
the sentence level, and assumes that all nouns, verbs
and adjectives in the constituent phrase are targets.
For obtaining the phrases, we used the regular ex-
pression parser from the Python NLTK toolkit (Bird,
2006) to define a custom grammar that describes
noun, verb, and prepositional phrases. The parser
uses regular expression rules for grouping words to-
gether based on their part of speech tags. Consider-
ing our example with this scenario, the phrases “at
school”, “I always”, and “learned the most from...”
will be considered separately in our grammar, so the
word school will likely not end up as a target.

To resolve sentence-level or constituent-level po-

larity, we use a heuristic that aggregates polarity
scores from both sentiment lexicons, and chooses
the final polarity corresponding to the word with the
maximum sentiment intensity.

While these methods are not exact and may lead
to over-generating targets, for the purposes of this
work (which is to determine whether a basic opin-
ion system is effective in predicting essay scores),
we are more interested in high recall of targets then
high precision because they will be aggregated at the
essay level.

4.3.2 Finding arguing-target pairs

For resolving arguing-target pairs, we use the all-
sentence method. Resolving the dominant arguing
polarity at the sentence level would be less straight-
forward than for sentiment, given that the argument
lexicon does not provide us with scores for arguing
intensity. Moreover, arguing targets are generally
longer (Ruppenhofer et al., 2008); we would expect
their spans to extend beyond constituent phrases. Fi-
nally, we observed that sentences generally do not
contain multiple arguing expressions, thus alleviat-
ing the problem of spurious combinations.

4.3.3 Features

The features for the opinion-target system are
based on measuring relevancy and consistency of
opinions.

Relevancy Relevancy is measured by taking into
account how many opinions (or proportion of opin-
ions) are about prompt or topical elements. These
include global engineered features as follows:

1. The number of times that topical elements
(topic and prompt words) appear as a target in
the essay’s opinion-target pairs.

2. The ratio of topic targets (opinion-topic pairs)
to all opinion-target pairs.

We distinguished between topic targets and
prompt targets and also between sentiments which
included subjective neutral versus only positive or
negative sentiments. We had separate features for
sentiment-target pairs and arguing-target pairs, re-
sulting in 13 relevancy features.
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Consistency Consistency is measured by deter-
mining how often the writer switches opinion polar-
ity when referring to the same target. The consis-
tency features included the following:

1. A binary feature indicating the presence of a
reversal (‘flip’) of opinion towards any target.

2. The number of unique targets which get
flipped.

3. The proportion of all flips where the target is a
topical element.

4. The proportion of all topical elements which
get flipped.

5. Statistics including max, mean, and median
number of flips over all targets.

We also separated sentiment-target and arguing-
target features, as well as prompt word targets and
topic word targets, resulting in a total of 17 consis-
tency features. We note that these features can only
capture an approximate picture of consistency, be-
cause it is well-known (Aull and Lancaster, 2014)
that mature writers tend to state and describe oppos-
ing arguments as well as their own.

5 Experiments

5.1 Data
The data used for this study consists of 58K es-
says, covering 19 different prompts, obtained from
the TOEFL® (Test of English as a Foreign Lan-
guage) persuasive writing task which pertains to es-
says written by undergraduate and graduate school
applicants who are non-native English speakers. All
essays are holistically scored by experts on an in-
teger scale 0-5, with score point 5 assigned to ex-
cellent essays. Detailed studies of human-human
agreement for this dataset can be found in Bridge-
man et al. (2012). The holistic scores are assigned to
essays based on English proficiency, and account for
the quality of (and errors in) grammar, language use,
mechanics, style, in addition to quality of the persua-
sive task. The scores for these essays are thus influ-
enced by a number of factors other than the quality
of persuasion (essays can get a low score if they use
incorrect grammar, even if they make good persua-
sive arguments). However, we would like to test the

extent to which our hypothesis holds when predict-
ing such holistically graded essays.

We split this dataset randomly into a training and
test set with proportions of 80% (46,404 essays) and
20% (11,603 essays) respectively. Table 1 shows
the score distribution of essays for different score
points, in the training and test set respectively. We
note that the distribution of scores is unbalanced,
with essays having scores 3, 4, and 2 occupying the
majority in that order.

5.2 Setup

We modeled the system with a number of differ-
ent regression learners, which have generally been
shown to do well on the essay scoring task. We
used a number of learners available from the Python
Scikit-learn toolkit (Pedregosa et al., 2011) and the
Scikit-learn-Laboratory (Blanchard et al., 2013): the
Logistic Regression classifier (LO), which uses 6-
way classification to predict integer essay scores in
the range 0-5, the Linear Regression learner (LR),
which predicts real-valued scores that are rounded to
integers, and the Rescaled Linear Regression learner
(RR), which rescales the predicted scores based on
the training data distribution. Given an input essay,
the learners predict essay scores in the range 0-5,
based on the features described in Section 4.

We considered a number of evaluation metrics to
test for the predictive ability of opinion, topic, and
opinion-target information in scoring the essays. We
tested if our proposed systems’ score predictions are
correlated with human scores, by computing the hu-
man score correlation (HSC) using Pearson’s coeffi-
cient. As essay length is highly correlated with the
human score (Attali and Burstein, 2006; Chodorow
and Burstein, 2004), and as many of our features are
based on counts, they can be influenced by essay
length; so we also compute the partial correlations
(HSC-Part) accounting for length, by partialing out
the length of the essay in words. For measuring
the performance of the system, we report Accuracy,
F-measure – where we computed the weighted f-
score (F-w) over the six score points – and Quadratic
Weighted Kappa (QWK) (Cohen, 1968), which is
the standard metric for essay scoring. Accuracy and
F-measure are standard NLP metrics and provide a
direct, interpretable measure of system performance
which reflects the precision and recall of different
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Train Test
Score # Essays Distribution(%) # Essays Distribution(%)
0 278 0.6 65 0.6
1 1,177 2.5 304 2.6
2 6,812 14.7 1,668 14.4
3 27,073 58.3 6,714 57.9
4 8,902 19.2 2,305 19.9
5 2,162 4.7 546 4.7
Total 46,404 100 11,602 100

Table 1: Score distribution of essays in our dataset

score points. QWK corrects for chance agreement
between the system prediction and the human pre-
diction, and it also takes into account the extent of
the disagreement between labels.

We compared all systems to a baseline Length,
that predicts an essay score based solely on the
length of the essay in words. Due to the strong corre-
lation between length and essay scores, we consider
this to be a strong (albeit simple) baseline. Another
simple baseline was Majority, which always predicts
the majority class (score point 3).

5.3 Results

We evaluate each of the Opinion, Topic, and
Opinion-Target systems separately, to determine the
effect of each and to test the hypotheses described in
Section 3.

For the Opinion-Target system, we found that
both the resolve-sentence and resolve-constituent
methods (Section 4.3.1) consistently and signifi-
cantly outperformed the all-sentence approach. The
difference between resolve-sentence and resolve-
constituent was not statistically significant. Thus
we report results for the resolve-sentence approach,
which had the best performance.

Table 2 shows the results of the correlation ex-
periments for each system and for each of the three
learners. We find that predictions based on opin-
ions and topics are positively correlated with human
scores. Furthermore, combining opinions with their
targets produced the best correlation for all learners,
with the Linear Regression predictor achieving the
best result (0.53). This result supports our hypoth-
esis that the relevancy and consistency of opinions
is more informative than simply measuring whether

opinions are expressed or topics are invoked. Our
results are particularly promising when considering
the fact that the features only capture the persua-
sivenes component of the holistic score. As noted
previously, the holistic score of this English profi-
ciency test depends on a number of factors such as
grammar, language usage, mechanics and style: ef-
fective persuasion is but one aspect of the score.

When partialing out the effect of length, we find
that the partial correlation scores drop, but it is still
strong for the Opinion-Target system (0.21 for LR).
This drop is unsurprising, as human scores are in-
fluenced by the length of the essay, and so are the
count-based features. We also note that the correla-
tion results differ between the linear regression pre-
dictors (LR and RR) and the LO classifier. This is
also expected because LR and RR report the correla-
tion of real numbers while LO reports the correlation
of an integer classification.

Next, Table 3 reports the performance for all sys-
tems in terms of Accuracy, F-measure, and QWK.
For each system and for each metric, we present the
results from all learners. For each learner, the results
comparing the opinion-target system with the base-
lines are all statistically significant (p < 0.0001);
we computed significance for each of the three met-
rics using the bootstrap sampling method described
in (Berg-Kirkpatrick et al., 2012) with a subset size
of n = 11, 000 and b = 104 subset samples.

When considering the Linear Regression and Lo-
gistic Regression classifiers, we observe that the
Opinion-Target system significantly outperforms the
majority baseline and our other systems across all
metrics. On the other hand, when using the Rescaled
Regression predictor, the Opinion-Target system is
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LR RR LO
System HSC HSC-Part HSC HSC-Part HSC HSC-Part
Opinion 0.29 0.10 0.28 0.10 0.33 0.07
Topic 0.29 0.081 0.30 0.086 0.33 0.15
Opinion-Target 0.53 0.21 0.53 0.21 0.39 0.16

Table 2: Correlation of System Predictions with Human Scores. The best system correlation is shown in bold.

outperformed by the majority baseline (for Accu-
racy) and the length baseline (for F-measure and
QWK). The best QWK score of 0.553 is obtained by
the length predictor using the Rescaled Linear Re-
gression predictor, followed by the Opinion-Target
system which gets a QWK score of 0.496. We sus-
pect that the rescaling of the training data by the RR
learner significantly alters the scores. We note for
example that when using the LR predictor, all the
predictions of the Length system fall in the range
(3,3.5), and hence get rounded to score 3; thus it al-
ways predicts the majority class (3) and essentially
functions as a majority predictor. This explains why
it has a QWK of 0 and an F-measure equal to the ma-
jority baseline. On the other hand, when the data is
rescaled to match the training data, the Length sys-
tem predictions are stretched to match the distribu-
tion of scores observed in the training data, and the
percentage of score 3 predictions drops to 56% of
predictions, while the percentage of score 4 predic-
tions jumps to 20%, and the recall of all other score
points increases. This makes sense when consider-
ing that length predictions are highly correlated with
human scores, and thus its linear regression predic-
tions will be correlated with the human score irre-
spective of the training data distribution. On the
other hand, the Opinion-Target system is able to pro-
duce more predictions across different score labels
even when the test data is not rescaled.

6 Feature Analysis

To explore the impact of the different opinion-target
features on essay scores, we tested the performance
of individual features in predicting scores for our test
set. We evaluated the features based on both accu-
racy and QWK. Table 4 shows the results, where we
show the top 15 features ranked in order of QWK.

We observe that the best feature is the frequency
of topic-relevant sentiment-target pairs, counting
only positive and negative words (as opposed to neu-

tral lexicon words). This indicates that expressing
sentiment clearly in favor of or against the topical
words is important for persuasion in this data.

We notice that most of the top-scoring features
are sentiment rather than arguing features. This
may be because our sentiment-target pairing sys-
tem was more concise and precise than the arguing-
target system. Additionally, our arguing features in-
clude strong modal words such as ‘must’, ‘clearly’
and ‘obviously’. Previous research has shown that
while writers with intermediate proficiency use such
terms, they are used less often by the most profi-
cient writers (Vázquez Orta and Giner, 2009; Aull
and Lancaster, 2014). Thus it is possible that these
features would not be found in essays with very high
scores, whose writers would likely employ more
subtle and sophisticated forms of argumentation.

We also observed that count-based features tend
to perform better than their ratio-based counterparts,
except in the case of the prompt word adherence
feature (10), where the ratio feature actually outper-
forms the frequency feature (12). It is likely that the
length effect is at play here. However, the fact that
significant correlations exist, even after accounting
for length (as seen in Table 2), indicates that these
features are capturing meaningful information.

7 Conclusions

In this work, we investigated features for improving
the persuasive construct coverage of automated scor-
ing systems. Specifically, we explored the impact of
using opinion and topic information for scoring per-
suasive essays. We hypothesized that essays with
high scores will show evidence of clear and consis-
tent stance-taking towards relevant topics. We built
systems using features based on opinions, topics,
and opinion-target pairs, and performed experiments
with holistically scored data using different learners.

Our results are encouraging. We found that, in
spite of the fact that the persuasive component is
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LR RR LO
System Acc% F-w% QWK Acc% F-w% QWK Acc% F-w% QWK
Majority 57.87 42.43 57.87 42.43 57.87 42.43
Length 57.87 42.43 0 53.88 54.11 [0.553] 58.39 44.53 0.141
Opinion 57.85 43.84 0.032 41.33 42.47 0.275 58.38 44.71 0.169
Topic 58.39 43.83 0.0013 40.75 42.00 0.284 58.39 43.83 0.168
Opinion-Target 59.44 [54.20] 0.38 50.31 50.87 0.496 [59.58] 47.35 0.249

Table 3: Performance of different systems measured by accuracy, weighted F-score, and QWK. The best system for
each learner is in bold. The best overall system for each metric is bracketed. For each learner, the results comparing
the different systems are statistically significant (p < 0.0001).

Feature Name Desc QWK Acc %
(1) Freq of pos and neg sentiment-topic pairs Rel 0.418 33.3
(2) Freq of all sentiment-topic pairs Rel 0.411 32.1
(3) Freq of arguing-topic pairs Rel 0.273 25.7
(4) Mean # of sentiment flips Con 0.205 37.3
(5) Unique # of sentiment flips Con 0.204 19.2
(6) Ratio of sentiment-topic flips to all topic words Con 0.202 19.7
(7) Ratio of pos and neg sentiment-topic pairs to all sentiment-target pairs Rel 0.197 22.9
(8) Freq of all sentiment-prompt pairs Rel 0.185 21.8
(9) Median # of sentiment flips Con 0.178 21.6
(10) Ratio of pos and neg sentiment-prompt pairs to all sentiment-target pairs Rel 0.165 23.5
(11) Max # of sentiment flips Con 0.162 19.8
(12) Freq of pos and neg sentiment-prompt pairs Rel 0.160 24.4
(13) Freq of arguing-prompt pairs Rel 0.159 20.9
(14) Flip presence Con 0.155 21.2
(15) Ratio of sentiment-topic flips to all sentiment-target flips Con 0.150 20.7

Table 4: Feature Analysis. A feature is described as ’Rel’ if it assesses relevancy and ’Con’ if it assesses consistency.
Sentiment-topic, Arguing-topic, Sentiment-prompt, and Arguing-prompt refer to the opinion-target pairs where the
target is a topic word or prompt word respectively. Ratios are all measured with respect to total number of sentiment-
target pairs or arguing-target pairs, except for feature (6) where the ratio is measured against all topic words. This
experiment was performed using the Logistic Regression (LO) classifier.

one of many factors influencing the holistic score,
our system’s predictions were positively correlated
with the essay scores. Moreover, combining opin-
ions with their targets, and assessing their relevancy
and consistency, resulted in a higher correlation than
using only topics or only opinions. We also found
that, for most learners, the opinion-target predictor
performs better than a system which predicts essay
scores based on the length of the essay.

Our initial feature analysis shows that opinion-
target features seem to reasonably reflect the impor-
tance of persuasion information found in the essays,
and that the co-occurrence of polar sentiment words

with topic targets is particularly important.

Having demonstrated the viability of the approach
using simple methods, our next step is to explore
more precise ways of finding opinion-target pairs
and topical elements, including resolving negations
and co-references, exploring syntactic dependen-
cies, as well as targets spanning multiple words. We
also plan to validate our experiments with data from
different writing exams. Future work will also in-
volve exploring ways to combine our features with
those of other automated scoring systems – such as
grammar, usage and mechanics – in order to obtain
more robust holistic scoring.
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Abstract

A key aspect of cognitive diagnostic models
is the specification of the Q-matrix associat-
ing the items and some underlying student
attributes. In many data-driven approaches,
test items are mapped to the underlying, la-
tent knowledge components (KC) based on
observed student performance, and with little
or no input from human experts. As a result,
these latent skills typically focus on model-
ing the data accurately, but may be hard to
describe and interpret. In this paper, we fo-
cus on the problem of describing these knowl-
edge components. Using a simple probabilis-
tic model, we extract, from the text of the
test items, some keywords that are most rel-
evant to each KC. On a small dataset from the
PSLC datashop, we show that this is surpris-
ingly effective, retrieving unknown skill labels
in close to 50% of cases. We also show that
our method clearly outperforms typical base-
lines in specificity and diversity.

1 Introduction

Recent years have seen significant advances in auto-
matically identifying latent attributes useful for cog-
nitive diagnostic assessment. For example, the Q-
matrix (Tatsuoka, 1983) associates test items with
skills of students taking the test. Data-driven meth-
ods were introduced to automatically identify latent
knowledge components (KCs) and map them to test
items, based on observed student performance, cf.
Barnes (2005) and Section 2 below.

A crucial issue with these automatic methods is
that latent skills optimize some well defined objec-

tive function, but may be hard to describe and in-
terpret. Even for manually-designed Q-matrices,
knowledge components may not be described in
detail by the designer. In that situation, a data-
generated description can provide useful informa-
tion. In this short paper, we show how to extract
keywords relevant to each KC, from the textual con-
tent corresponding to each item. We build a simple
probabilistic model, with which we score possible
keywords. This proves surprisingly effective on a
small dataset obtained from the PSLC datashop.

After a quick overview of the automatic extrac-
tion of latent attributes in Section 2, we describe our
keyword extraction procedure in Section 3. The data
is introduced in Section 4, and we present our exper-
imental results and analysis in Section 5.

2 Extraction of Knowledge Component
Models

The Rule Space model (Tatsuoka, 1983; Tatsuoka,
1995) was introduced to statistically classify stu-
dent’s item responses into a set of ideal response
patterns associated with different cognitive skills. A
major assumption of Rule Space is that students only
need to master specific skills in order to successfully
complete items. Using the Rule Space model for
cognitive diagnostics assessment requires experts to
build and reduce an incidence or Q matrix encoding
the combination of skills, a.k.a. attributes, needed
for completing items (Birenbaum et al., 1992) and
generating ideal item responses based on the re-
duced Q matrix (Gierl et al., 2000). The ideal re-
sponse patterns can then be used to analyze student
response patterns.

75



The requirement for extensive expert effort in the
traditional Q matrix design has motivated attempts
to discover the Q matrix from observed response
patterns, in effect reverse engineering the design
process. Barnes (2005) proposed a multi-start hill-
climbing method to create the Q-matrix, but experi-
mented only on limited number of skills. Desmarais
et al. (2011; 2014) refined expert Q matrices using
matrix factorization, Although this proved useful to
automatically improve expert designed Q-matrices,
non-negative matrix factorization is sensitive to ini-
tialization and prone to local minima. Sun et al.
(2014) generated binary Q-matrices using an alter-
nate recursive method that automatically estimates
the number of latent attributes, yielding high ma-
trix coverage rates. Others (Liu et al., 2012; Chen
et al., 2014) estimate the Q-matrix under the setting
of well known psychometric models that integrate
guess and slip parameters to model the variation be-
tween ideal and observed response patterns. They
formulate Q-matrix extraction as a latent variable
selection problem solved by regularized maximum
likelihood, but require to know the number of latent
attributes. Finally, Sparse Factor Analysis (Lan et
al., 2014) was recently introduced to address data
sparsity in a flexible probabilistic model. They re-
quire setting the number of attributes and rely on
user-generated tags to facilitate the interpretability
of estimated factors.

These approaches to the automatic extraction of
a Q-matrix address the problem from various angles
and an extensive comparison of their respective per-
formance is still required. However, none of these
techniques address the problem of providing a tex-
tual description of the discovered attributes. This
makes them hard to interpret and understand, and
may limit their practical usability.

3 Probabilistic Keyword Extraction

We focus on the textual content associated with each
item in order to identify the salient terms as key-
words. Textual content associated with an item may
be for example the body of the question, optional
hints or the text contained in the answers (Figure 1).

For each item i, we denote by di its textual content
(e.g. body text in Figure 1). We also assume a bi-
nary mapping of items to K skills ck, k = 1 . . . K.

Skills are typically latent skills obtained automati-
cally (unsupervised) from data. They may also be
defined by a manually designed Q-matrix for which
skill descriptions are unknown. In analogy with text
categorization, textual content is a document di and
each skill is a class (or cluster) ck. Our goal is to
identify keywords from the documents that describe
the classes.

For each KC ck, we estimate a unigram language
model based on all text di associated with that KC.
This is essentially building a Naive Bayes classifier
(McCallum and Nigam, 1998), estimating relative
word frequencies in each KC:

P (w|ck) =
∑

i,di∈ck
nwi∑

i,di∈ck
|di| , ∀k ∈ {1 . . . K}, (1)

where nwi is the number of occurrences of word w
in document di, and |di| is the length (in words) of
document |di|. In some models such as Naive Bayes,
it is essential to smooth the probability estimates (1)
appropriately. However more advanced multinomial
mixture models (Gaussier et al., 2002), or for the
purpose of this paper, smoothing has little impact.
Conditional probability estimates (1) may be seen
as the profile of ck. Important words to describe a
KC c ∈ {c1, . . . cK} have significantly higher prob-
ability in c than in other KCs. One metric to evalu-
ate how two distributions differ is the (symmetrized)
Kullback-Leibler divergence:

KL(c, /c) =
∑
w

(P (w|c)−P (w|/c)) log
P (w|c)
P (w|/c)︸ ︷︷ ︸

k(w)

,

(2)
where /c means all KCs except c, and P (w|/c) is esti-
mated similarly to Eq. 1, P (w|/c) ∝∑i,di 6∈c nwi.

Note that Eq. (2) is an additive sum of posi-
tive, word-specific contributions k(w). Large con-
tributions come from significant differences either
way between the profile of a KC, P (w|c), and the
average profile of all other KCs, P (w|/c). As we
want to focus on keywords that have significantly
higher probability for that KC, and diregard words
that have higher probability outside, we will use a
signed score:

sc(w) = |P (w|c)− P (w|/c)| log
P (w|c)
P (w|/c) , (3)
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Figure 1: Test item body text, hints and responses.

body hint response Total
# tokens 31,132 11,505 41,207 83,844

Table 1: Dataset statistics, (# tokens).

where the log ensures that the score is positive if and
only if P (w|c) > P (w|/c).

Figure 2 illustrates this graphically. Some words
(blue horizontal shading) have high probability in c
(top) but also outside (middle), hence s(w) close to
zero (bottom): they are not specific enough. The
most important keywords (green upward shading,
right) are more frequent in c than outside, hence a
large score. Some words (red downward shading,
left) are less frequent in c than outside: they do con-
tribute to the KL divergence, but are atypical in c.
They receive a negative score.

4 Data

In order to test and illustrate our method, we focus
on a dataset from the PSLC datashop (Koedinger et
al., 2010). We used the OLI C@CM v2.5 - Fall 2013,
Mini 1.1 This OLI dataset tests proficiency with the
CMU computing infrastructure. It is especially well
suited for our study because the full text of the items
(cf. Fig. 1) is available in HTML format and can be
easily extracted. Other datasets only include screen-
shots of the item, making text extraction more chal-
lenging.

There are 912 unique steps in that dataset, and less
than 84K tokens of text (Table 1), making it very

1https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=827
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Figure 2: KL score illustration: KC profile (top), profile
for all other KCs (middle) and scores (bottom).

small by NLP standards. We picked two KC models
included in PSLC for that dataset. The noSA model
has 108 distinct KCs with minimally descriptive la-
bels (e.g. “vpn”), assigning between 1 and 52 items
to each KC. The C75 model is fully unsupervised
and has the best BIC reported in PSLC. It contains
44 unique KCs simply labelled Cxx, with xx between
-1 and 91. It assigns 5 to 78 items per KC. In both
models there are 823 items with at least 1 KC as-
signed.

We use a standard text preprocessing chain. All
text (body, hint and responses) in the dataset is to-
kenized and lowercased, and we remove all tokens
appearing in an in-house stoplist, as well as tokens
not containing at least one alphabetical character.

5 Experimental Results

From the preprocessed data, we estimate all KC pro-
files using Eq. (1), on different data sources:

1. Only the body of the question (“body”),

2. Body plus hints (“b+h”),

3. Body, hints and responses (“all”).

For each KC, we extract the top 10 keywords ac-
cording to sc(w) (Eq. 3).
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KC label #items Top 10 keywords
identify-sr 52 phishing email scam social learned indicate legitimate engineering anti-phishing
p2p 27 risks mitigate applications p2p protected law file-sharing copyright illegal
print quota03 12 quota printing andrew print semester consumed printouts longer unused cost
vpn 11 vpn connect restricted libraries circumstances accessing need using university
dmca 9 copyright dmca party notice student digital played regard brad policies
penalties dmca 2 penalties illegal possible file-sharing fines 80,000 $ imprisonment high years
penalties bandwidth 1 maximum limitations exceed times long bandwidth suspended network access

Table 2: Top 10 keywords extracted from the body only of a sample of knowledge components of various sizes.

We first illustrate this on the noSA KC model, for
which we can use the minimally descriptive KC la-
bels as partial reference. Table 2 shows the top key-
words extracted from the body text for a sample of
knowledge components. Even for knowledge com-
ponents with very few items, the extracted keywords
are clearly related to the topic suggested by the label.

Although the label itself is not available when es-
timating the model, words from the label often ap-
pear in the keywords (sometimes with slight mor-
phological differences). Our first metric evaluates
the quality of the extraction by the number of times
words from the (unknown) label appear in the key-
words. For the model in Table 2, this occurs in 44
KCs out of the 108 in the model (41%). These KCs
are associated with 280 items (34%), suggesting that
labels are more commonly found within keywords
for small KCs. This may also be due to vague labels
for large KCs (e.g. identify, sr in Table 2), although
the overall keyword description is quite clear (phish-
ing, email, scam).

We now focus on two ways to evaluate keyword
quality: diversity (number of distinct keywords) and
specificity (how many KC a keyword describes). De-
sirable keywords are specific to one or few KCs. A
side effect is that there should be many different key-
words. We therefore compute 1) how many distinct
keywords there are overall, 2) how many keywords
appear in a single KC, and 3) the maximum number
of KCs sharing the same keyword. As a baseline,
we compare against the simple strategy that consists
in simply picking as keywords the tokens with max-
imum probability in the KC profile (1). This base-
line is common practice when describing probabilis-
tic topic models (Blei et al., 2003).

Table 3 compares KL score (“KL-*” rows) and
maximum probability baseline (“MP-*” rows) for

the two KC models. The total number of keywords
is fairly stable as we extract up to 10 keywords per
KC in all cases (some KCs have a single item and
not enough text). The KL rows clearly show that
our KL-based method generates many more differ-
ent keywords than MP, implying that MP extracts
the same keywords for many more KCs.

• With KL, we have up to 727 distinct keywords
(out of 995) for noSA and 372 out of 440 for
C75, i.e. an average 1.18 to 1.37 (median 1)
KC per keyword. With MP the keywords de-
scribe on average 3.1 KC of noSA, and 2.97 of
C75.

• With KL, as many as 577 (i.e. more than half)
keywords appear in a single noSA KC. By con-
trast, only as few as 221 MP keywords have
a unique KC. For C75, the numbers are 316
(72%) vs, 88 to 131.

• With KL, no keyword is used to describe more
than 9 to 19 noSA KCs and 6 to 12 C75 KCs.
With MP, some keywords appear in as many as
87 noSA KCs and all 44 C75 KCs. This shows
that they are much less specific at describing
the content of a KC.

These results all point to the fact that the KL-based
method provides better diversity as well as speci-
ficity in naming the different KCs.

Source of textual content: Somewhat surpris-
ingly, using less textual content, i.e. body only,
consistently produces better diversity (more distinct
keywords) and better specificity (fewer KC per key-
word). The hint text yields little change and the
response text seriously degrades both diversity and
specificity, despite nearly doubling the amount of
textual data available. This is because responses are
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model total diff. uniq. max
KL-body 995 727 577 9
KL-b+h 1005 722 558 10

noSA KL-all 1080 639 480 19
MP-body 995 534 365 42
MP-b+h 1005 521 340 34
MP-all 1080 352 221 87
KL-body 440 372 316 6

C75 KL-all 440 328 254 12
MP-body 440 203 131 33
MP-all 440 148 88 44
KL-body 440 377 325 4

C75 KL-all 440 332 261 11
(+sw) MP-body 440 76 43 43

MP-all 440 68 32 44

Table 3: Statistics on various keyword extraction meth-
ods. KL (Kullback-Leibler score) and MP (maximum
probability) are tested on body only, body+hints (b+h)
or all text. We report the total number of keywords ex-
tracted (Total), the number of different keywords (diff.),
keywords with unique KC (unique) and maximum num-
ber of KC per keyword (max). “+sw” indicates stopwords
are included (not filtered).

very similar across items. They add textual informa-
tion but tend to smooth out profiles. This is shown in
the comparison between “KL-body” and “MP-all”
in Table 4. The latter extracts “correct” and “incor-
rect” as keywords for most KCs in both models, be-
cause these words frequently appear in the response
feedback (Fig. 1). KL-based naming discards these
words because they are almost equally frequent in
all KCs and are not specific enough. Table 4 also
shows that MP selects the same frequent words for
both KC models. By contrast, the most used KL
keywords for noSA are not so frequently used to de-
scribe C75 KCs, suggeting that the descriptions are
more specific to the models.

Impact of stopwords: The bottom panel of table
3 (indicated by “(+sw)”) shows the impact of not
filtering stopword on the keyword extraction met-
rics (i.e. keeping stopwords). For KL the impact is
small: filtering out stopwords actually degrades per-
formance slightly. The impact on MP is massive:
there are up to three times less different keyword
(76 vs. 203), and most are high-frequency function
words (“to”, “of”, etc.). The extreme case is “the”,

KL-body MP-all
Keyword #no #C Keyword #no #C
use 9 1 incorrect 87 44
following 8 1 correct 67 41
access 7 - review 49 22
andrew 7 2 information 30 20
account 7 - module 29 9
search 7 2 course 26 9

Table 4: Keywords associated with most KCs in noSA,
with number of associated KC in noSA (#no) and C75
(#C). Left: KL score on item body; Right: max. proba-
bility on all text.

extracted for all 44 KCs. Results on noSA are simi-
lar and not included for brievity.

6 Discussion

We described a simple probabilistic method for
knowledge component naming using keywords.
This simple method is effective at generating de-
scriptive keywords that are both diverse and spe-
cific. We show that our method clearly outperforms
the simple baseline that focuses on most probable
words, with no impact on computational cost.

Although we only extract key words from the tex-
tual data, one straightforward improvement would
be to identify and extract either multiword terms,
which may be more explanatory, or relevant snip-
pets from the data. A related perspective would be to
combine our relevance scores with, for example, the
output of a parser in order to extract more compli-
cated linguistic structure such as subject-verb-object
triples (Atapattu et al., 2014).

Our data-generated descriptions could also be
useful in the generation or the refinement of Q-
Matrices. In addition to describing knowledge com-
ponents, naming KCs could offer significant infor-
mation on the consistency of the KC mapping. This
may offer a new and complementary approach to
the existing refinement methods based on functional
models optimization (Desmarais et al., 2014). It
could also complement or replace human input in
student model discovery and improvement (Stamper
and Koedinger, 2011).
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Abstract

Automatic evaluation of written responses to
content-focused assessment items (automated
short answer scoring) is a challenging educa-
tional application of natural language process-
ing. It is often addressed using supervised ma-
chine learning by estimating models to predict
human scores from detailed linguistic features
such as word n-grams. However, training data
(i.e., human-scored responses) can be difficult
to acquire. In this paper, we conduct exper-
iments using scored responses to 44 prompts
from 5 diverse datasets in order to better un-
derstand how training set size and other fac-
tors relate to system performance. We believe
this will help future researchers and practition-
ers working on short answer scoring to answer
practically important questions such as, “How
much training data do I need?”

1 Introduction

Automated short answer scoring is a challenging ed-
ucational application of natural language process-
ing that has received considerable attention in recent
years, including a SemEval shared task (Dzikovska
et al., 2013), a public competition on the Kaggle data
science website (https://www.kaggle.com/
c/asap-sas), and various other research papers
(Leacock and Chodorow, 2003; Nielsen et al., 2008;
Mohler et al., 2011).

The goal of short answer scoring is to create a pre-
dictive model that can take as input a text response to
a given prompt (e.g., a question about a reading pas-
sage) and produce a score representing the accuracy

∗Michael Heilman is now a data scientist at Civis Analytics.

or correctness of that response. One well-known ap-
proach is to learn a prompt-specific model using de-
tailed linguistic features such as word n-grams from
a large training set of responses that have been pre-
viously scored by humans.1

This approach works very well when large sets of
training data are available, such as in the ASAP 2
competition, where there were thousands of labeled
responses per prompt. However, little work has been
done to investigate the extent to which short answer
scoring performance depends on the availability of
large amounts of training data. This is important be-
cause short answer scoring is different from tasks
where one dataset can be used to train models for
a wide variety of inputs, such as syntactic parsing.2

Current short answer scoring approaches depend on
having training data for each new prompt.

Here, we investigate the effects on performance
of training sample size and a few other factors,
in order to help answer extremely practical ques-
tions like, “How much data should I gather and la-
bel before deploying automated scoring for a new
prompt?” Specifically, we explore the following re-
search questions:

• How strong is the association between train-
ing sample size and automated scoring perfor-
mance?

1Information from the scoring guidelines, such as exemplars
for different score levels, can also be used in the scoring model,
though in practice we have observed that this does not add much
predictive power to a model that uses student responses (Sak-
aguchi et al., 2015).

2Syntactic parsing performance varies considerably depend-
ing on the domain, but most applications use parsing models
that depend almost exclusively on the Penn Treebank.
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• If the training set size is doubled, how much
improvement in performance should we ex-
pect?

• Are there other factors such as the number of
score levels that are strongly associated with
performance?

• Can we create a model to predict scoring model
performance from training sample size and
other factors (and how confident would we be
of its estimates)?

2 Short Answer Scoring System

In this section, we describe the basic short answer
scoring system that we will use for our experiment.
We believe that this system is broadly representative
of the current state of the art in short answer scor-
ing. Its performance is probably slightly lower than
what one would find for a system highly tailored to a
specific dataset. Although features derived from au-
tomatic syntactic or semantic parses might also re-
sult in small improvements, we did not include such
features for simplicity.

The system uses support vector regression (Smola
and Schölkopf, 2004) to estimate a model that pre-
dicts human scores from vectors of binary indica-
tors for linguistic features. We use the implemen-
tation from the scikit-learn package (Pedregosa et
al., 2011), with default parameters except for the
complexity parameter, which is tuned using cross-
validation on the data provided for training. For fea-
tures, we include indicator features for the follow-
ing:

• lowercased word unigrams
• lowercased word bigrams
• length bins (specifically, whether the log of 1

plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set)

Note that word unigrams and bigrams include punc-
tuation.

3 Datasets

We conducted experiments using responses to 44
prompts from five different datasets. The data for
each of the 44 prompts was split into a training set

and a testing set. Table 1 provides an overview of
the datasets.

The ASAP 2 dataset is from the 2012 pub-
lic competition hosted on Kaggle (https://
www.kaggle.com/c/asap-sas) and is pub-
licly available.3 The Math and Reading 1 datasets
were developed as part of the Educational Test-
ing Service’s “Cognitively Based Assessment of,
for, and as Learning” research initiative (Bennett,
2010).4 The Reading 2 dataset was developed as
part of the “Reading for Understanding” framework
(Sabatini and O’Reilly, 2013). The Science dataset
was developed and scored as part of the Knowledge
Integration framework (Linn, 2006). Note that only
the ASAP 2 dataset is publicly available.

For all prompts, there are at least 359 training ex-
amples (at most 2,633).

4 Experiments

For each prompt, we trained a model on the full
training set for that prompt and evaluated on the test-
ing set. In addition, we trained models from ran-
domly selected subsamples of the training set and
evaluated on the full testing set. Specifically, we
created 20 replications of samples (without replace-
ment) of sizes 2n ∗ 100 (i.e., 100, 200, 400, . . . ) up
to the full training sample size. We trained models
on these subsamples and evaluated each on the full
testing set.

Following the ASAP 2 competition
(https://www.kaggle.com/c/asap-sas/
details/evaluation), we evaluated models
using quadratically weighted κ (Cohen, 1968).

For subsamples of the training data, we averaged
the results across the 20 replications before further
analyses. We used the Fisher Transformation z(κ)
when averaging because of its variance-stabilization
properties. The same transformation was also used

3For the ASAP 2 dataset, we used the “public leaderboard”
for the testing sets.

4The math data came from the 2012 multi-state administra-
tion of two multi-prompt tasks: Moving Sidewalks with 1 Rider
(prompts 2a, 4a, 4b, 4d, 10b) and Moving Sidewalks with 2
Riders (prompts 3a, 3b, 6a, 6b, 10, 12). The reading data from
the 2013 multi-state administration of the following prompts:
Ban Ads 1-B, 1-C, 2-C; Cash for Grades 1-B, 1-C, 2; Social
Networking 1-B, 1-C, 2; Culture Fair 3-1; Generous Gift 3-1;
and Service Learning 3-1. Zhang and Deane (under review) de-
scribe the reading data in more detail.
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Dataset No. of
Prompts

Score
Range

Domain(s) Task Type Response
Length

ASAP 2 10 0–2 or
0–3

Various (science,
language arts,
etc.)

Various (description of scientific
principles, literary analysis, etc.)

27-66
words

Math 11 0–2 Middle school
math

Explanation of how mathematical
principles apply to given situations
involving linear equations

9-16
words

Reading 1 12 0–3 or
0–4

Middle school
reading

Summarization or development of
arguments

51-79
words

Reading 2 4 0–3 or
0–4

Middle school
reading

Summarization and analysis of
reading passages

29-111
words

Science 7 1–5 Middle school
science

Explanations and arguments em-
bedded in inquiry science units that
call for students to use evidence to
link ideas

16-46
words

Table 1: Descriptions of the datasets. The Response Length column shows the range of average response lengths (in
number of words) across all prompts in a dataset.

N mean s.d. med. min. max.
100 .600 .095 .596 .343 .782
200 .649 .085 .638 .418 .810
400 .688 .085 .692 .473 .828
800 .730 .079 .742 .540 .851

1600 .747 .074 .761 .590 .863

Table 2: Descriptive statistics about performance in terms
of averaged quadratically weighted κ for different train-
ing sample sizes (N ), aggregated across all prompts.
“med.” = median, “s.d.” = standard deviation

by the ASAP 2 competition as part of its official
evaluation.

z(κ) =
1
2

ln
1 + κ

1− κ
(1)

κaverage = z−1(
∑

prompt

z(κprompt)) (2)

This gives us a dataset of averaged κ values for
different combinations of prompts and sample sizes.
Table 2 shows descriptive statistics.

For each data point, in addition to the κ value and
prompt, we compute the following:

• log2SampleSize: log2 of the training sam-
ple size,

Variable r

log2SampleSize .550
log2MinSampleSizePerScore .392

meanLog2NumChar -.365
numLevels .033

Table 3: Pearson’s r correlations between training set
characteristics and human-machine κ.

• log2MinSampleSizePerScore:log2 of
the minimum number of examples for a score
level (e.g., log2(16) if the least frequent score
level in the training sample had 16 examples),

• meanLog2NumChar: The mean, across train-
ing sample responses, of log2 of the number of
characters (a measure of response length),

• numLevels: The number of score levels.

For each of these variables, we first compute Pear-
son’s r to measure the association between κ and
each variable. The results are shown in Table 3.

Not surprisingly, the variable most strongly asso-
ciated with performance (i.e., κ) is the log2 of the
number of responses used for training. However,
having a large sample does not ensure high human-
machine agreement: the correlation between κ and
log2SampleSize was only r = .550. Perfor-
mance varies considerably across prompts, as illus-
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Figure 1: Plots of human-machine agreement versus sample size, for various prompts from different datasets.

trated in Figure 1.
Next, we tested whether we could predict human-

machine agreement for different size training sets
for new prompts. We used the dataset of κ val-
ues for different prompts and training set sizes de-
scribed above (N = 224). We iteratively held out
each dataset and used it as a test set to evaluate
performance of a model trained on the remaining
datasets. For the model, we used a simple ordinary
least squares linear regression model, with the vari-
ables from Table 3 as features.5 For labels, we used
z(κ) instead of κ, and then converted the models
predictions back to κ values using the inverse of the
z function (Eq. 1). We report two measures of corre-
lation (Pearson’s and Spearman’s) and two measures
of error (root mean squared error and mean absolute
error). The results are shown in Table 4.

5 Discussion and Conclusion

In response to the research questions we posed ear-
lier, we found that:

• The correlation between training sample size
and human-machine agreement is strong,
though performance varies considerably by
prompt (Table 2 and Figure 1).

5We prefer to use a simpler linear model instead of a more
complex hierarchical model for the sake of interpretability.

Dataset pearson spearman RMSE MAE
ASAP2 .650 .654 .080 .064
Math .558 .523 .095 .076
Reading 1 .708 .617 .039 .031
Reading 2 .497 .467 .070 .063
Science .438 .464 .173 .139

Table 4: Results for the predictive model of human-
machine κ.

• If the training sample is doubled in size, then
performance increases .02 to .05 in κ (Ta-
ble 2). This rate of increase was fairly consis-
tent across prompts. However, as with other
supervised learning tasks, there will likely be a
point where increasing the sample size does not
yield large improvements.

• Variables such as the minimum number of ex-
amples per score level and the length of typical
responses are also associated with performance
(Table 3), though not as much as the overall
sample size.

• A model for predicting human-machine agree-
ment from training sample size and other fac-
tors could provide useful information to devel-
opers of automated scoring, though predictions
from our simple model show considerable error
(Table 4). More detailed features of prompts,
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scoring rubrics, and student populations might
lead to better predictions.

In this paper, we investigated the impact of train-
ing sample size on short answer scoring perfor-
mance. Our results should help researchers and
practitioners of automated scoring answer the highly
practical question, “How much data do I need to get
good performance?”, for new short answer prompts.
We conducted our experiments using a basic sys-
tem with only n-gram and length features, though
it is likely that the observed trends (e.g., the rate of
increase in κ with more data) would be similar for
many other systems. Future work could explore is-
sues such as how much performance varies by task
type or by the amount of linguistic variation in re-
sponses at particular score levels.
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Abstract

We present a log-linear ranking model for in-
terpreting questions in a virtual patient dia-
logue system and demonstrate that it substan-
tially outperforms a more typical multiclass
classifier model using the same information.
The full model makes use of weighted and
concept-based matching features that together
yield a 15% error reduction over a strong lex-
ical overlap baseline. The accuracy of the
ranking model approaches that of an exten-
sively handcrafted pattern matching system,
promising to reduce the authoring burden and
make it possible to use confidence estimation
in choosing dialogue acts; at the same time,
the effectiveness of the concept-based features
indicates that manual development resources
can be productively employed with the ap-
proach in developing concept hierarchies.

1 Introduction

In this paper, we present a log-linear ranking model
for interpreting questions in a virtual patient dia-
logue system, along with initial experiments to de-
termine effective sets of features with this model.

Learning to take a medical history is fundamental
to becoming a successful physician. Most methods
for assessing history taking skills involve interaction
with Standardized Patients (SP) who are actors por-
traying real patients. SP interviews are effective,
but they require significant faculty effort and insti-
tutional support. As an alternative, virtual standard-
ized patients (VSPs) can be valuable tools that offer
a practical and accessible means of simulating stan-
dardized patient encounters. VSP simulations have

the potential to allow students to practice their com-
munication and history taking skills before working
with Standardized Patients. Students can rehearse
interviewing skills in a risk-free environment, pro-
viding additional opportunities for practice prior to
standardized or real-world patient encounters.

Our VSP system closely models the interaction
between doctors and patients. Our virtual patients
are avatars representing standardized patients that
students can interview and communicate with us-
ing natural language. Students take a medical his-
tory and develop a differential diagnosis of the vir-
tual standardized patient, much as they would a stan-
dardized or actual patient. As shown in Figure 1, the
dialogue system is embedded in an immersive learn-
ing environment designed to provide student doctors
with a sense of presence, allowing them to “suspend
disbelief” and behave as if the virtual patient is a real
patient. The virtual world platform can be run in a
variety of environments; here we focus on text-based
interaction for laptops and mobile devices.

The current task is a question matching paradigm
where user input is mapped to a set of predefined
questions, which have scripted answers created by
content authors, as in much previous work on ques-
tion answering systems (Leuski and Traum, 2011).
This approach allows for easier authoring than, for
example, systems that use deep natural language
understanding (Dzikovska et al., 2012; Dzikovska
et al., 2013) or semantic parsing (Artzi and Zettle-
moyer, 2013; Berant and Liang, 2014), and yet still
achieves the desired learning objectives of the vir-
tual patient system.

To date, the VSP system has been based on the
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ChatScript1 pattern matching engine, which offers a
low cost and straightforward approach for initial di-
alogue system development. In an evaluation where
a group of third-year medical students were asked
to complete a focused history of present illness of a
patient with back pain and develop a differential di-
agnosis, the VSP system answered 83% of the ques-
tions correctly. This level of accuracy sufficed for all
students to correctly identify the appropriate differ-
ential diagnosis, confirming that the virtual patient
can effectively communicate and answer complaint-
specific questions in a simulated encounter between
a doctor and a patient (Danforth et al., 2009; Dan-
forth et al., 2013).

A limitation of rule-based pattern matching ap-
proaches, however, is the need to create all patterns
manually and extensively test and refine the system
to allow it to answer questions correctly, with no
ability to use confidence estimation in making di-
alogue act decisions. With our log-linear ranking
model, we aim to substantially reduce the burden of
designing new virtual patients, as well as to make it
possible to use confidence estimation to decide when
the system should ask the user to clarify or restate
his or her question.

To create a corpus for developing our statistical
interpretation model, the ChatScript patterns were
refined to correct errors found during the evaluation
and then run on a set of 32 representative dialogues,
with the interpretation of all questions hand-verified
for correctness.2

The rest of the paper is organized as follows. In
Section 2, we discuss related work. In Section 3,
we present the log-linear ranking model formally,
comparing it to more typical multiclass classifica-

1http://chatscript.sourceforge.net/
2While the method by which we derived our corpus unfor-

tunately precludes a direct comparison with the ChatScript pat-
terns, since accuracy on the exact set of 32 dialogues in the
corpus was not calculated before the patterns were corrected,
we note that it is difficult in any case to fairly compare a pattern
matching system with a statistical one, as the performance of the
former is highly dependent on the time and effort spent refining
the patterns. We consider the qualitative differences between
the approaches to be of much greater importance, in particular
that the machine-learned system can output a useful confidence
measure and can be automatically improved with more train-
ing data, as discussed below and in Section 5. We are currently
gathering a larger corpus of hand-corrected dialogues that will
enable a direct comparison of accuracy in future work.

Figure 1: Example exam room and virtual patient avatar.
The avatars are programmed to display emotions and
movements that are appropriate for the nature of the ques-
tion, interaction, or condition of the patient.

tion models. In Section 4, we describe the features
we investigate in detail, with experimental results
and analysis appearing in Section 5. Finally, in Sec-
tion 6 we conclude with a summary and discussion
of avenues for future investigation.

2 Background and Related Work

In a dialogue system where user utterances are ex-
pected to have one of a fixed set of expected interpre-
tations, a straightforward way to implement the nat-
ural language understanding component is to map
utterances to their interpretations using a multiclass
classifier. DeVault et al. (2011) have pursued this ap-
proach with an interactive training system designed
to enable users to practice multi-party negotiation
skills by engaging with virtual humans. They em-
ploy a maximum entropy classification model with
unigrams, bigrams, skip bigrams and length as fea-
tures, reporting 87% accuracy in interpretation on
transcribed user input (they then go on to show
how acceptable accuracy can also be achieved in-
crementally with noisy ASR output). However, in
our domain we find that a similar baseline model—
using essentially the same information as the lexical
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What kind of medicine is that
u: (what kind of medicine is that) #must match exactly
u: ([kind type] * ˜medicines) #‘kind’ or ‘type’, then any word(s), then a ˜medicines concept
u: (what * ˜medicines * that) #‘what’, then any word(s), then a ˜medicines concept, then

any word(s), then ‘that’

Table 1: Example ChatScript patterns to match the canonical question, What kind of medicine is that? Brackets
indicate disjunctions of terms, asterisks match zero or more words, and ˜prefixes mark concepts, which are themselves
disjunctions of terms or other concepts. u indicates that the pattern will match a question or statement. See Figure 4
for an example of a ChatScript concept.

overlap baseline discussed below—only achieves a
mediocre 67% accuracy; presumably, this discrep-
ancy results from many of the questions the virtual
patient is expected to answer being more superfi-
cially similar to each other than is the case with De-
Vault et al.’s training system, thereby making the in-
terpretation task more challenging.

Another way to approach the interpretation task is
to view it as one of paraphrase identification, com-
paring user questions for the virtual patient to a set
of expected questions. Since the introduction of
the Microsoft Research Paraphrase Corpus (Dolan
et al., 2004), or MSRP, there has grown a consid-
erable body of research on paraphrase identifica-
tion reporting results on this corpus. We draw on
this research here, in particular for our baseline fea-
ture sets. In adapting these paraphrase identification
methods to our setting, however, the question arises
as to how to generalize beyond pairwise classifica-
tion: with the MSRP corpus, the task is to take a
pair of superficially similar sentences and classify it
as a paraphrase or not a paraphrase, while here the
goal is to identify which member of the set of ex-
pected questions provides the best match with the
user’s question. One way to find the best match
would be to continue to make use of a binary clas-
sifier, selecting the best matching question as the
one with the highest probability for the true para-
phrase class. Alternatively, one can train a model
to rank the competing alternatives, directly select-
ing the top-ranked option. In the context of ques-
tion answering, Ravichandran et al. (2003) com-
pared these two methods on the task of answer pin-
pointing and found that the ranking approach signifi-
cantly improved upon the pairwise classification ap-
proach even using the same features, suggesting that
with ranking models the alternatives compete more

effectively in training than with binary classifiers,
where the pairs are treated in piecemeal fashion.
Subsequently, Denis & Baldridge (2007; 2008) also
demonstrated a substantial performance improve-
ment using a ranking model for coreference, in com-
parison to a pairwise classification model. Conse-
quently, in this paper we have adopted the ranking
approach.3

A perhaps surprising lesson from the paraphrase
identification research based on the MSRP corpus
is the strong performance of lexical overlap base-
lines. In particular, Das and Smith (2009) de-
velop a lexical overlap baseline using 1- to 3-
gram precision/recall/F-score features over words
and stems, reporting 75.4% accuracy on the MSRP
corpus. This lexical overlap baseline substantially
exceeds many (and perhaps even most) published
results on the task, as well as the performance of
their own soft alignment model based on quasi-
synchronous grammar; moreover, using this much
fancier alignment model together with the lexical
overlap baseline, they are only able to achieve a
0.7% improvement to 76.1%. Das & Smith’s strong
results with a lexical overlap baseline echo Wan et
al.’s (2006) earlier results using features inspired by
the BLEU MT evaluation metric (Papineni et al.,
2002). More recently, Madnani et al. (2012) have
shown that BLEU can be combined with a variety
of newer MT evaluation metrics in classifier obtain-
ing 77.4% accuracy, until recently the best result
on the MSRP corpus. In particular, they showed

3Note that in general, ranking models allow for a variable
number of alternatives, as may be familiar from log-linear pars-
ing models; while allowing for a variable set of prediction op-
tions is not necessary in our setting, and thus our ranking model
is technically also a multiclass classification model, its feature
set is more like those found in typical ranking models than typ-
ical classification models, as explained further in Section 3.
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that just using BLEU (and two other base metrics
using only words, not stems, namely NIST and
TER) together with Meteor (Denkowski and Lavie,
2011)—which goes beyond BLEU in employing
stems, WordNet synonyms and a database of para-
phrases acquired using the pivot method (Bannard
and Callison-Burch, 2005)—yields 76.6% accuracy,
already one of the best results on this corpus.

Given the strong performance of Das & Smith’s
lexical overlap baseline, we use these features as
a starting point for our log-linear ranking model,
and we also combine them with Meteor to yield
two competitive baselines. On our corpus, the base-
lines deliver 75–76% accuracy, much higher than
the 67% accuracy of the DeVault et al. multiclass
classifier approach. We then add weighted variants
of the Das & Smith baseline features, using infor-
mation content estimated from the Gigaword corpus
and a task-specific measure of inverse document fre-
quency, yielding a nearly 3% absolute improvement.

The remaining features we investigate are in-
spired by our success to date in using handcrafted
ChatScript patterns for interpreting user questions.
Note that unlike with the MSRP corpus, where the
task is to identify unrelated, open domain para-
phrases, in our setting the task is to interpret re-
lated questions in a constrained domain. As such,
it is not overly onerous to arrange relevant words
and phrases into a domain-specific concept hierar-
chy to enhance ChatScript pattern matching. Using
the concept hierarchy already developed for use with
ChatScript, we are able to achieve a greater than 3%
absolute improvement in accuracy over the lexical
overlap baseline, indicating that developing such hi-
erarchies may be the most productive way to em-
ploy manual development resources. ChatScript ad-
ditionally makes use of a notion of topic to organize
the dialogue, which we incorporate into our model
using topic transition features. Finally, to fine tune
patterns, ChatScript allows words that should not be
matched to be easily specified; as such, we investi-
gate a general method of discovering useful lexically
specific features. Unfortunately, however, the topic
and lexical features do not yield appreciable gains.

Other approaches to paraphrase identification
with the MSRP corpus have been investigated. In
particular, vector space models of word meaning
have been employed to assess text similarity, rep-

resenting a rather different angle on the problem in
comparison to the methods investigated here, which
we plan to explore in future work in combination
with our current methods. For example, Rus et al.
(2011) make use of Latent Semantic Analysis, a
technique they have found effective in their work
on interpreting user input in intelligent tutoring sys-
tems; however, their results on MSRP corpus lag
several percentage points behind the Das & Smith
lexical overlap baseline. Socher et al. (2011) present
another vector space method making use of recur-
sive autoencoders, enabling vectors for phrases in
syntactic trees to be learned. Their method yielded
the best published result at the time, though perhaps
surprisingly their accuracy is nearly identical to us-
ing Meteor together with baseline MT metrics, trail-
ing Madnani et al.’s (2012) best MT metrics com-
bination by half a percentage point. More recently,
Ji and Eisenstein (2013) have obtained the best pub-
lished result on the MSRP corpus by refining ear-
lier distributional methods using supervised infor-
mation, in particular by discriminatively reweight-
ing individual distributional features and learning
the relative importance of the latent dimensions. Xu
et al. (2014) have also shown that an approach based
on latent alignments can improve upon Ji and Eisen-
stein’s methon on a corpus of Twitter paraphrases.

Finally, Leuski and Traum (2011) present a
method inspired by research on cross-language in-
formation retrieval that ranks the most appropriate
system responses by measuring the similarity be-
tween the user’s question and the system’s potential
answers. We have chosen to keep the formulation of
the virtual patient’s responses separate from ques-
tion interpretation, though that remains a potential
avenue for exploration in future research.

3 Log-Linear Ranking Model

In designing a virtual patient, the content author
devises a set of expected questions that the virtual
patient can answer. Each expected question has a
canonical form, and may additionally have variant
forms that have been collected during initial interac-
tions with the virtual patient4. Thus, considering the

4Variants are identified automatically from training data any
time two asked questions are annotated with the same canonical
question.
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canonical form of the question to be one of its vari-
ants, the task of the interpretation model is to predict
the correct canonical question for an input question
based on one or more known variants of each canon-
ical question.

Formally, we define the likelihood of a canon-
ical question c given an input question x using a
log-linear model that marginalizes over the observed
variants v of c:

P (c|x) =
1

Z(x)

∑
v∈c

exp
(∑

j

wjfj(x, v)
)

(1)

Here, the features fj(x, v) are intended to indicate
how well the input question x matches a variant v,
and Z(x) normalizes across the variants:

Z(x) =
∑
v

exp
(∑

j

wjfj(x, v)
)

(2)

In training, the objective is to choose weights that
maximize the regularized log likelihood of the cor-
rect canonical questions ci for each input xi:∑

i

logP (ci|xi)− λ
∑
j

w2
j (3)

The model is implemented with MegaM,5 using a
default value of λ = 1 for the Gaussian prior reg-
ularization parameter.6 We also experimented with
a linear ranking SVM (Joachims, 2002; Joachims,
2006), but did not observe a performance improve-
ment.

At test time, we approximate7 the most likely
canonical question c∗ for input question x as the
canonical question c(v∗) for the best matching ques-
tion variant v∗, i.e. the one with the highest score:

c∗ = c(v∗),where
v∗ = argmaxv

∑
j wjfj(x, v)

(4)

5http://www.umiacs.umd.edu/˜hal/megam/
6We used MegaM’s -explicit format option to imple-

ment the ranking model, where each question variant is consid-
ered a class, along with the -multilabel option to give a
cost of zero to all variants of the correct canonical question and
a cost of one to all other variants.

7A testing objective that more closely following the training
objective was also attempted. This testing method summed over
likelihoods of variants for a given canonical question, and then
took the argmax over canonical questions. This method did not
perform as well as the approximation.

In our ranking model, features can be defined that
are shared across all question variants. For example,
in the next section we make use of an unweighted
unigram recall feature, whose value is the percent-
age of words in v that also appear in x:

f1(x, v) = unigram recall(x, v)

In training, a single weight is learned for this fea-
ture (rather than one per class), indicating the rel-
ative contribution of unigram recall for predicting
the correct interpretation. We expect that the trained
weights for general features such as this one will
carry over reasonably well to new virtual patients,
aiding in the process of bootstrapping the collection
of training data specific to the new virtual patient.

It is also possible to define lexical- and class-
specific features. For example, the following feature
indicates a recall miss for a specific word (ever) and
canonical question (c27):

f2(x, v) =

{ 1, if ever in v but not x and
c(v) = c27

0, otherwise

Sparse features such as this one are intended to fine-
tune the predictions that can be made with the more
general, dense features like the one above. Note,
however, that class-specific features cannot gener-
ally be expected to carry over to predictions for new
virtual patients (except where the patients are de-
signed to answer some of the same questions).

While our ranking model allows us to make use
of features that are defined in terms of the words
in both the input question x and a variant question
v, it is worth pointing out that most implementa-
tions of log-linear classification models require fea-
tures to be defined only in terms of the input x,
with the class implicitly conjoined, and thus with
no features shared across classes. For example, De-
vault et al.’s (2011) maximum entropy classification
model—as well as our multiclass baseline model
below—makes use of class-specific features indicat-
ing n-grams found in the input, such as

f3(x, c) =

{ 1, if have you in x and
c = c27

0, otherwise

Here, the weight learned in training is indicative of
the relative importance of the bigram have you for
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predicting a specific class, i.e. the one for canonical
question c27. As noted above, such class-specific
features cannot generally be expected to carry over
to predictions for new virtual patients, and thus a
model consisting of only such features will be of lit-
tle value for new virtual patients.

4 Features

The features described below are used to create fea-
ture subsets evaluated as models. Precision and re-
call features are defined as being relative to either
the asked question or the compared question, respec-
tively. Precision n-gram features, for example, are
the ratio of matched n-grams to total n-grams in the
asked question. Matching can happen at the exact,
stem, concept, or Meteor alignment level.

AlignScore the overall Meteor alignment score

LexOverlap 1- to 3-gram exact/stem unweighted
precision/recall/F-score features inspired by
Das and Smith

Weighting 1- and 2-gram exact and stem lexical
overlap features weighted by IDF and InfoCon-
tent

Meteor 1- and 2-gram IDF/InfoContent weighted
precision/recall, matched on Meteor align-
ments

Concept paraphrase-type features based on stem n-
gram overlap, but using the concept hierar-
chy to add further equivalences. Includes 1-
and 2-gram precision/recall, weighted and un-
weighted.

Lex lexical exact match features, as well as
precision/recall miss and canonical question-
specific precision/recall misses

Topic topic start and transition features

Inverse document frequency weighting is imple-
mented by taking the canonical question and its vari-
ants as a document. A gram is weighted based on its
frequency in documents, where a gram that only oc-
curs in one or a few documents is more informative
than a word that occurs in many documents.

IDF(w) = log((N + 1)/(count(w) + 1))

concept: ˜medicines [˜drugs legal analgesia antibi-
otics antidote claritin drug drugs hormone hormonal
loratidine medication medications medicine meds
narcotic ‘pain killer’ ‘pain killers’ painkiller pill pre-
scription ‘prescription medication’ ‘prescription med-
ications’ remedy steroid tablet tums]

Figure 2: An example ChatScript concept. The
˜medicines concept is defined in the figure, where antibi-
otics is an instance of medicines, and ˜drugs legal is a
subconcept of ˜medicines. Each concept is defined as a
disjunction of terms, and can include subconcepts.

  

Asked: what kind of medicine is that
Compared: what type of tablet would that be

Asked: what ~anon of ~medicines is that
Compared: what ~anon of ~medicines would that be

Figure 3: Example sentence pair and derived concept
n-gram sequence. The words kind and type match in
an anonymous concept (indicated here as ˜anon) derived
from a ChatScript pattern, while the words medicine and
tablet match under the ˜medicines concept.

N is the total number of documents and count(w)
is the number of documents the gram w appears in.

InfoContent weighting uses negative log probabil-
ities of the Gigaword corpus. For bigrams, weight-
ing is calculated as the product of probabilities of a
unigram with the conditional probability of the sub-
sequent gram, using Katz backoff.

Concept features are lexical overlap features that
use domain-specific knowledge to allow for match-
ing on more words than the exact or stem level.
Concept matches occur when a stem matches an-
other stem in a ChatScript concept hierarchy, de-
fined by content authors as labeled classes of equiv-
alent words or phrases.

See Figure 4 for an example. Concepts are used in
Chatscript to increase generalizability of the match
patterns and reduce authoring burden. To calculate
concept features, stems are replaced with the con-
cept name if the stem in the question is listed under
a concept in the hierarchy.

Figure 3 shows an example sentence pair and its
resulting concept n-gram sequence, given concepts
that include kind and type in an anonymous con-
cept (i.e., an unlabeled disjunction) in one of the
ChatScript patterns, along with the words medicine
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Lex:::what
Lex:::of
Lex:::that
LexMissPrec:::kind
LexMissPrec:::medicine
LexMissRec:::type
LexMissRec:::tablet
LexMissRec:::would
LexMissRec:::be
LexMissRecClass:::what_kind_of_tablet_would_that_be:::tablet
LexMissRecClass:::what_kind_of_tablet_would_that_be:::would
LexMissRecClass:::what_kind_of_tablet_would_that_be:::be

Figure 4: Example lexical features. These binary features
fire in the presence (or absence, in the case of a Miss) of
a specific word. Prec and Rec miss features fire when
a word appears in one question, but not the other, and
is defined in both directions. Here, LexMissPrec:::kind
fires because kind appears in the asked question, but not
the compared question. Class miss features define lexical
misses that are specific to a canonical question, and are
similarly defined with Prec and Rec to refer to the asked
and compared question, respectively.

and tablet being included under the medicines topic.
Lexical overlap features are then computed on this
concept-level n-gram sequence.

Lexical features are binary features that include
an exact match or miss. A canonical question-
specific miss feature is implemented for precision
and recall. See Figure 4 for example lexical fea-
tures and descriptions, using the running example
sentence pair from the concept features.

Topic features keep track of the topic at each point
in the dialogue. They include binary transition fea-
tures that track the current and previous topic, or else
the current start topic in the case of the first line of a
dialogue. For example, Figure 5 shows the features
generated from three example training data. The
previous topics are taken from the gold annotation
during training and testing. If automatically classi-
fied values were used instead of this oracle setting,
performance would likely not suffer greatly, given
that these features were not found to be very infor-
mative and low weights were learned during train-
ing.

5 Experiments

The corpus consists of 32 dialogues, which include
918 user turns, with a mean dialogue length of 29
turns. For each turn, the asked question, canonical
question, current topic and a question response are

  

    Asked                                 Correct                             Topic
1. hello, mr. covington            hello                                  ~openingdialogue  
2. What brings you in today    what brings you in today  ~chiefcomplaint
3. Any health problems           what brings you in today  ~chiefcomplaint

1. TOPICSTART:::~openingdialogue
2. TOPICTRANS:::~openingdialogue:::~chiefcomplaint
3. SAMETOPIC

Figure 5: Example topic features

annotated. 193 total canonical questions were cre-
ated by content authors as the fixed set of classes.
Correct canonical questions were obtained by run-
ning ChatScript, then hand-correcting the output.
Any asked questions annotated with the same canon-
ical question are considered variants of that canon-
ical question. There are 787 variants, with a mean
of 4.1 variants (standard deviation 4.7) per canoni-
cal question. The median number of variants is 2.0,
and the maximum number is 34.0.

System accuracy is measured by outputting the
correct canonical question, given an input question.
Cross-fold validation is run on a per-dialogue ba-
sis.Total system accuracy is measured as the mean
over all individual cross-fold accuracies.

Results of system accuracy by model are shown
in Table 2. The weighted, concept-based, topic-
based, and lexical features model (Full-no-meteor)
shows a significant improvement over the LexOver-
lap baseline model, using a McNemar paired chi-
square test (chi-square=16.5, p=4.86e-05). At an
overall accuracy of 78.6%, this represents an er-
ror reduction of 15% over the baseline and ap-
proaches the performance of the handcrafted pat-
terns. Of interest, the LexOverlap+concept shows
a significant improvement over LexOverlap alone
(chi-square=18.3, p=1.95e-05). Meteor features do
not show a significant difference when comparing
the Full vs. Full-no-meteor model (chi-square=3.2,
p=.073), indicating that the concept-based features
largely suffice to supply the information provided
by WordNet synsets and pivot-method paraphrases
in Meteor.

Training with variants as acceptable matches is a
useful strategy for this domain, reducing error by
47%, as compared to training without variants. This
allows for comparison at test time to not only the
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Model Name Features Included % Accuracy
Align Meteor AlignScore feature alone 75.3
LexOverlap Das and Smith-style lexical overlap baseline 74.9
LexOverlap+lex adds lexical features 74.1
LexOverlap+topic adds topic features 75.1
LexOverlap+align adds Meteor AlignScore 75.8
LexOverlap+weighting adds weighting features 77.8
LexOverlap+concept adds concept features 78.1
LexOverlap+concept+weighting adds weighting and concept features 78.5
Full all features 77.0
Full-no-meteor full minus AlignScore and Meteor features 78.6

Table 2: Model results, with a description of their included features
Sheet1

Page 1

Full-no-meteor LexOverlap
92.5 98.5
95.5 98.5
95.5 94
86.6 85.1
82.1 82.1
74.6 59.7
59.7 47.8
53.7 50.7
43.3 38.8
41.1 24.7
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Figure 6: Percent accuracy shown by deciles of decreas-
ing confidence. The most confident deciles have the high-
est accuracy.

canonical version of a question, but also each cor-
rect variant of the canonical version. Matching the
correct canonical question or any of its variants re-
sults in a correct system response.

In addition, accuracy is higher in cases where
the model is most confident, suggesting that confi-
dence can be successfully employed to trigger use-
ful clarification requests, and that training with ques-
tion variants acquired in previous dialogues yields a
large reduction in error. Lastly, an error analysis re-
veals that many question interpretation errors yield
matches that are close enough for the purposes of
the dialogue, though some errors remain that reflect
misleading lexical overlap, lack of world knowledge
or the lack of a dedicated anaphora resolution com-
ponent.

A measure of system confidence can be obtained
from test items’ probabilities, and can be compared
to accuracy to show that higher confidence system
responses are more accurate. Confidence is defined

as follows:

P (v|x) =
exp

∑
j wjfj(x, v)∑

v exp
∑

j wjfj(x, v)
(5)

In Figure 6, test items’ answer probability is binned
by decile. Mean response accuracy is then calcu-
lated for each bin of test items. Future work will
use confidence to make discourse management de-
cisions, such as when to answer a question, ask
for clarification between close candidates, or give a
generic response. Additionally, higher system accu-
racy is possible if the system is limited to answering
higher confidence quantiles.

As an alternative to the log-linear ranking model
employed here, a baseline multiclass classifier8

trained on 1- to 3-gram word and stem indicator fea-
tures obtains an accuracy of 67%. The ranking sys-
tem performs better when trained on essentially the
same information (LexOverlap), with 75% accuracy.

A ranking model using SVMRank (Joachims,
2002; Joachims, 2006) was also tried, but perfor-
mance (not shown) was similar to the log-linear
model. Future work might explore other machine
learning models such as neural networks.

System errors largely fall into a few categories.
First, some responses are actually acceptable, but
reported as incorrect due to a topic mismatch. For
example, the same question have you ever had this
type of pain before could be labeled as have you ever
had this pain before or have you ever had back pain
before, depending on the topic. If the topic was cur-
rentbackpain or currentpain, the gold label could
differ. Topics, therefore, exist at varying levels of

8http://scikit-learn.org/
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specificity. Including nearly identical questions in
multiple topics promotes question reuse across vir-
tual patients but can be a source of error if the topic
is not tracked well.

A second class of errors comes from superficially
similar questions, where the most meaningful word
or words in the question are not matched. For exam-
ple does the pain ever go away vs. does rest make
the pain go away would have high lexical overlap,
but this does not reflect the fact that the most infor-
mative words do not match. Interestingly, we ex-
pect that questions that match primarily on common
n-grams and not on rarer n-grams have relatively
low confidence scores, since the common n-grams
would match multiple other questions. Using confi-
dence scoring could help mitigate this error class.

For the previous example, the correct question is
actually, is the pain constant, which highlights a
third kind of error, where some inference or world-
knowledge is necessary. Understanding that things
that go away are not constant is an entailment in-
volving negation and is more complicated to capture
than using a paraphrase resource.

While room exists for absolute improvement in
accuracy, the results are encouraging, given the rel-
atively small dataset and fact that the full model ap-
proaches ChatScript pattern-matching system per-
formance (83%). Larger datasets will likely improve
accuracy, but given the expense and limited avail-
ability of large corpora, we focus on exploring fea-
tures that maximize limited training data. Annota-
tion is in progress for a larger corpus of 100 dia-
logues with approximately 5500 user turns.

Qualitatively, the ranking system is less labor-
intensive than ChatScript and can use confidence
values to drive dialogue act decisions, such as ask-
ing the user to rephrase, or to choose between multi-
ple candidate question interpretations. Additionally,
the ranking system could potentially be combined
with ChatScript to provide ranking when multiple
ChatScript patterns match, or to provide a question
when no existing ChatScript pattern matches the in-
put.

Better anaphor resolution could help address er-
rors from uninformative pronouns that might not
match the canonical question form. Zero-anaphors
are missed by the current features and could occur
in a dialogue setting such as: What medications are

you taking, followed by ok, how often.

6 Conclusion

In this paper, we have presented a log-linear rank-
ing model for interpreting questions in a virtual pa-
tient dialogue system that substantially outperforms
a vanilla multiclass classifier model using the same
information. In the full model, the most effective
features turned out to be the concept-based match-
ing features, which make use of an existing con-
cept hierarchy developed for an extensively hand-
crafted pattern matching system, and play a similar
(but less error-prone) role as WordNet synsets and
pivot-based paraphrases in tools such as Meteor. To-
gether with weighted matching features, these fea-
tures led to a 15% error reduction over a strong lexi-
cal overlap baseline, approaching the accuracy of the
handcrafted pattern matching system, while promis-
ing to reduce the authoring burden and make it pos-
sible to use confidence estimation in choosing dia-
logue acts. At the same time, the effectiveness of
the concept-based features indicates that manual de-
velopment resources can be productively employed
in the ranking model by developing domain-specific
concept hierarchies.

The student-VSP interaction creates a compre-
hensive record of questions and the order in which
they are asked, which allows for student assessment
as well as the opportunity for focused practice and
improvement. Indeed, the primary goal of our cur-
rent research is to leverage the advantages of the
VSP system to provide for deliberate practice with
immediate feedback.

To better support student practice and assessment,
we plan to investigate in future work the impact of
more advanced methods for anaphora resolution, as
our error analysis suggests that questions contain-
ing anaphors are a frequent source of errors. In a
dialogue system that uses speech input, we expect
automatic speech recognition errors to hurt perfor-
mance. The exact impact is left as an empirical
question for future work. Finally, we also plan to in-
vestigate incorporating syntactically-informed vec-
tor space models of word meaning into our system,
which may help to boost accuracy, especially when
acquiring patient-specific training data during the
early phase of developing a new virtual patient.
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Abstract

Short answer scoring systems typically use
regular expressions, templates or logic expres-
sions to detect the presence of specific terms
or concepts among student responses. Pre-
vious work has shown that manually devel-
oped regular expressions can provide effective
scoring, however manual development can be
quite time consuming. In this work we present
a new approach that uses word-order graphs
to identify important patterns from human-
provided rubric texts and top-scoring student
answers. The approach also uses semantic
metrics to determine groups of related words,
which can represent alternative answers. We
evaluate our approach on two datasets: (1) the
Kaggle Short Answer dataset (ASAP-SAS,
2012), and (2) a short answer dataset provided
by Mohler et al. (2011). We show that our
automated approach performs better than the
best performing Kaggle entry and generalizes
as a method to the Mohler dataset.

1 Introduction

In recent years there has been a significant rise in the
number of approaches used to automatically score
essays. These involve checking grammar, syntax
and lexical sophistication of student answers (Lan-
dauer et al., 2003; Attali and Burstein, 2006; Foltz et
al., 2013). While essays are evaluated for the qual-
ity of writing, short answers are brief and evoke very
specific responses (often restricted to specific terms
or concepts) from students. Hence the use of fea-
tures that check grammar, structure or organization
may not be sufficient to grade short answers.

Regular expressions, text templates or patterns
have been used to determine whether a student an-
swer matches a specific word or a phrase present
in the rubric text. For example, Moodle (2011) al-
lows for the use of a “Regular Expression Short-
Answer question” type which allows instructors or
question developers to code correct answers as reg-
ular expressions. Consider the question: “What are
blue, red and yellow?” This question can evoke a
very specific response: “They are colors.” How-
ever, there are several ways (with the term “color”
spelled differently, for instance) to answer this
question. E.g. (1) they are colors; (2) they
are colours; (3) they’re colours; (4) they’re col-
ors; (5) colours; or (6) colors. Instead of having
to enumerate all the alternatives to this question,
the answer can be coded as a regular expression:
(they(’|\s(a))re\s)?colo(u)?rs.

Manually generated regular expressions have
been used as features in generating models that score
short answers in the Kaggle Short Answer Scoring
competition (ASAP-SAS, 2012). Tandalla (2012)’s
approach, the best performing one of the competi-
tion, achieved a Quadratic Weighted (QW) Kappa
of 0.70 using just regular expressions as features.
However, regular expression generation can be te-
dious and time consuming, and the performance of
these features is constrained by the ability of humans
to generate good regular expressions. Automating
this approach would ensure that the process is re-
peatable, and the results consistent.

We propose an approach to identify patterns to
score short answers using the rubric text and top-
scoring student responses. The approach involves
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(1) identification of classes of semantically related
words or phrases that a human evaluator would ex-
pect to see among the best answers, and (2) com-
bining these semantic classes in a meaningful way
to generate patterns. These patterns help capture the
main concepts or terms that are representative of a
good student response. We use a word order graph
(Ramachandran and Gehringer, 2012) to represent
the rubric text. The graph captures order of tokens
in the text. We use a lexico-semantic matching tech-
nique to identify the degree of relatedness across to-
kens or phrases. The matching process helps iden-
tify alternate ways of expressing the response.

An answer containing the text diet
of koalas would be coded as follows:
(?=.*(diet|eat(s)?|grub).*) of (?=
.*(koala(s)?|koala|opossum).*). The
patterns generated contain (1) positional constraints
(?=, which indicates that the search for the text
should start at the beginning, and (2) the choice
operator (|), which captures alternate ways of
expressing the same term, e.g. diet or eat or
grub. We look for match (or non-match) between
the set of generated patterns and new short answers.

We evaluate our patterns on short answers from
the Kaggle Automated Student Assessment Prize
(ASAP) competition, the largest publicly available
short answer dataset (Higgins et al., 2014). We com-
pare our results with the those from the competi-
tion’s best model, which uses manually generated
regular expressions. Our aim with this experiment
is to demonstrate that automatically generated pat-
terns produce results that are comparable to man-
ually generated patterns. We also tested our ap-
proach on a different short answer dataset curated
by Mohler et al. (2011).

One of the main contributions of this paper is the
use of an automated approach to generate patterns
that can be used to grade short answers effectively,
while spending less time and effort. The rest of this
paper is organized as follows: Section 2 discusses
related work that use manually constructed patterns
or answer templates to grade student responses. Sec-
tion 3 contains a description of our approach to au-
tomatically generate patterns to grade short answers.
Sections 4 and 5 discuss the experiments conducted
to evaluate the performance of our patterns in scor-
ing short answers. Section 6 concludes the paper.

2 Related Work

Leacock and Chodorow (2003) developed the use of
a short-answer scoring system called C-rater, which
focuses on semantic information in the text. They
used a paraphrase-recognition based approach to
score answers.

Bachman et al. (2002) proposed the use of a short
answer assessment system called WebLAS. They
extracted regular expressions from a model answer
to generate the scoring key. Regular expressions are
formed with exact as well as near-matches of words
or phrases. Student answers are scored based on
the degree of match between the answer and scor-
ing key. Unlike Bachman et al., we do not use pat-
terns to directly match and score student answers.
In our approach, text patterns are supplied as fea-
tures to a learning algorithm such as Random For-
est (Breiman, 2001) in order to accurately predict
scores.

Mitchell et al. (2003) used templates to identify
the presence of sample phrases or keywords among
student responses. Marking schemes were devel-
oped based on keys specified by human item de-
velopers. The templates contained lists of alter-
native (stemmed) tokens for a word or phrase that
could be used by the student. Pulman and Sukkarieh
(2005) used hand-coded patterns to capture different
ways of expressing the correct answer. They auto-
mated the approach of template creation, but the au-
tomated ones did not outperform the manually gen-
erated templates. Makatchev and VanLehn (2007)
used manually encoded first-order predicate repre-
sentations of answers to score responses.

Brill et al. (2002) reformulated queries as declar-
ative sentence segments to aid query-answer match-
ing. Their approach worked under the condition
that the (exact) content words appearing in a query
would also appear in the answer. Consider the sam-
ple query “When was the paper clip invented?”, and
the sample answer: “The paper clip is a very useful
device. It was patented by Johan Vaaler in 1899.”
The word patented is related in meaning to the term
invented, but since the exact word is not used in the
query, it will not match the answer. We propose
a technique that uses related words as part of the
patterns in order to avoid overlooking semantically
close matches.
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Figure 1: An overview of the approach.

3 Approach

In this section we describe our approach to auto-
matically identify text patterns that are representa-
tive of the best answers. We automatically generate
two types of patterns containing: (1) content words
and (2) sentence structure information. We use the
rubric text provided to human graders and a set of
top-scored student answers as the input data to gen-
erate patterns. Top-scoring responses are those that
receive the highest human grades. In our implemen-
tation we use the top-scored answers from the train-
ing set only. Figure 1 depicts an overview of our
approach to automate pattern generation.1,2

3.1 Extracting Content Tokens

We rewrite the rubric text in order to generate a
string of content words that represent the main
points expected to appear in the answer. The aim
of our approach is to generate patterns with no man-
ual intervention. The re-writing of the rubric is also
done automatically. It involves the removal of stop-
words while retaining only content tokens.

We eliminate stopwords and function words in the
text and retain only the important prompt-specific
content words. Short answer scoring relies on the
presence or absence of specific tokens in the stu-
dent’s response. Content tokens are extracted from
sample answers, and the tokens are grouped together
without taking the order of tokens into considera-
tion.

Students may use words different from those used
in the rubric (e.g. synonyms or other semantically
related words or phrases). Therefore we have to

1Prompt: Writing prompt provided to help guide students.
2Stimulus: Text presented to students, in addition to the

writing prompt, to provide further writing guidance.

identify groups of words or phrases that are semanti-
cally related. In order to extract semantically similar
words specific to the prompt’s vocabulary, we look
for related tokens in top-scoring answers as well as
in the prompt and stimulus texts.

3.1.1 Semantic Relatedness Metric
We use WordNet (Fellbaum, 1998) to determine

the degree of semantic match between tokens be-
cause it is faster to query than a knowledge resource
such as Wikipedia. WordNet has been used success-
fully to measure relatedness by Agirre et al. (2009).

Match between two tokens could be one of: (1)
exact, (2) synonym3, (3) hypernym or hyponym
(more generic or specific), (4) meronym or holonym
(sub-part or whole) (5) presence of common parents
(excluding generic parents such as object, entity),
(6) overlaps across definitions or examples of tokens
i.e., using context to match tokens, or (7) distinct or
non-match. Each of these matches expresses differ-
ent degrees of semantic relatedness across compared
tokens. The seven types of matches are weighted on
a scale of 0 to 6. An exact match gets the highest
weight of 6, a synonym match gets a weight of 5
and so on, and a distinct or non-match gets the least
weight of 0.

In the pattern (?=.*(larg(e)?|size|vol-
um(e)?).*)(?=.*(dry).*)(?=.*(surf-
ace).*), the set (?=.*(larg(e)?|size|vo-
lum(e)?).*) contains semantically related al-
ternatives. The pattern looks for the presence of
three tokens: any one of the tokens within the first
(?=.*· · ·*) and tokens dry and surface. These
tokens do not have to appear in any particular order
within the student answer. A combination of these
tokens should be present in a student answer for it to
get a high score. Steps involved in generating con-
tent tokens based patterns for the text “size or type
of container to use” are described in Algorithm 1.

3.2 Extracting Phrase Patterns

In order to capture word order in the rubric text we
extract subject–verb, verb–object, adjective–noun,
adverb–verb type structures from the sample an-
swers. The extraction process involves generation of

3We use the part-of-speech of a token to extract the synset
from WordNet. This, to an extent, helps disambiguate the sense
of a token.
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Input: Rubric text, top-scoring answers, and prompt
and stimulus texts (if available)

Output: Patterns containing unordered content
words.

for each sentence in the rubric text do
/* Rubric text: "size or type
of container to use" */
1. Remove stopwords or relatively common
words.
/* Output: size type container
use*/
2. Rank tokens in top-scoring answers, and
prompt and stimulus texts based on their
frequency, and select the top most frequent
tokens.
/* size container type*/
3. Identify classes of alternate tokens, for each
rubric token, from among most frequent tokens
(from Step 2).
/* {size, large, mass, thing,
volume} {container, cup,
measure} {type, kind}*/
4. Stem words and use the suffix as an
alternative
/* container→ (stem: contain,
suffix: er) →contain(er)?/
5. Generate the pattern by AND-ing each of the
classes of words.
/* (?=.*(large|mass|size|thing|
volume).*)(?=.*(contain(er)?|cup|
measure).*)(?=.*(kind|type).*)

end
Algorithm 1: Generating patterns containing un-
ordered content tokens.

word-order graph representations for the sample an-
swers, and extracting edges representing structural
relations listed above.
Generating word-order graphs: We use word-
order graphs to represent text because they contain
the ordering of words or phrases, which helps cap-
ture context information. Context is not available
when using just unigrams.

Word graphs have been found to be useful for the
task of determining a review’s relevance to the sub-
mission. Word-order graphs’ f-measure on this task
is 0.687, while that of dependency graphs is 0.622
(Ramachandran and Gehringer, 2012). No approach
is highly accurate, but word graphs work well for
this task.

Structure information is crucial in a pattern-

Figure 2: Word-order graphs for texts (A) “Generalists
are favored over specialists” and (B) “The paper pre-
sented important concepts.” Edges in a word-order graph
maintain ordering information, e.g. generalists–are fa-
vored, paper–presented, important–concepts.

Input: Rubric text, top-scoring answers, and prompt
and stimulus texts (if available)

Output: Patterns containing ordered word phrases.
for each sentence in the rubric text do

/* Rubric text: "· · ·particles
like sodium, potassium ions into
membranes· · ·"
1. Generate word-order graphs from the text,
and extract edges from the word-order graph.
/* The extracted segment:
particles like--sodium
potassium--ions into membranes.
Graph edges are connected with a
"--"
2. Replace stopwords or function words with
\w{0,4}.
/* The segment becomes:
particles(\s\w{0,4}\s){0,1} sod-
ium potassium ions(\s\w{0,4}\s)
{0,1}membranes
3. Rank tokens in top-scoring answers and
prompt and stimulus texts based on their
frequency, and select the top most frequent
tokens.
4. Identify class of alternate tokens, for each
rubric token, from among most frequent tokens.
5. Add all synonyms of the rubric token from
WordNet to the class of alternatives.
/* E.g. class of alternate
tokens for sodium: {potassium,
bismuth, zinc, cobalt},
for potassium: {tungsten, zinc,
calcium, iron, aluminum, tin},
for membrane: {film, sheet}
6. Stem words and generate pattern by AND-ing
all classes of words.

end
Algorithm 2: Generating patterns containing sen-
tence structure or phrase pattern information.
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generation approach since some short answers may
capture relational information. Consider the answer:
“Generalists are favored over specialists”, to a ques-
tion on the differences between generalists and spe-
cialists. A pattern that does not capture order of
terms in the text will not capture the relation that ex-
ists between “generalists” and “specialists”. Figure
2(A) contains the graph representation for this text.

During graph generation, each sample text is
tagged with parts-of-speech (POS) using the Stan-
ford POS tagger (Toutanova et al., 2003), to help
identify nouns, verbs, adjectives, adverbs etc. For
each sample text consecutive noun components,
which include nouns, prepositions, conjunctions and
Wh-pronouns are combined to form a noun vertex.
Consecutive verbs (or modals) are combined to form
a verb vertex; similarly with adjectives and adverbs.
When a noun vertex is created the generator looks
for the last created verb vertex to form an edge be-
tween the two. When a verb vertex is found, the
algorithm looks for the latest noun vertex to create
a noun–verb edge. Ordering is maintained when an
edge is created i.e., if a verb vertex was formed be-
fore a noun vertex a verb–noun edge is created, else
a noun–verb edge is created. A detailed description
of the process of generating word-order graphs is
available in Ramachandran and Gehringer (2012).

For this experiment we do not use dense repre-
sentations of words (e.g. Latent Semantic Analy-
sis (LSA) (Landauer, 2006)) because they are ex-
tracted from a large, general corpus and tend to ex-
tend the meaning of words to other domains (Foltz
et al., 2013). In place of a dense representation we
use word-order graphs, since they capture order of
phrases in a text.

Substituting stopwords with regular expressions:
Stopwords or function words in the extracted
word phrases are replaced with the regular expres-
sion (\s\w{0,x}\s){0,n} where x indicates the
length of the stopwords or function words, and n
indicates the number of stopwords that appear con-
tiguously. We use x=4, and n can be determined
while parsing the text. We allow for 0 occurrences
of stopwords (in {0,n}) between content tokens.
Some students may not write grammatically correct
or complete answers, but the answer might still con-
tain the right order of the remaining content words,

which helps them earn a high score.
Identifying semantic alternatives for content
words: Just as in the case of tokens-based patterns
(Section 3.1), semantically related words are iden-
tified to accommodate alternative responses (relat-
edness metric described in Section 3.1.1). Tokens
in top-scoring answers and prompt texts are ranked
based on their frequency, and the most frequent to-
kens are selected for comparison with words in the
rubric text. Apart from that we also add other syn-
onyms of the token to the class of related terms. For
instance some synonyms of the token droplets
are raindrops, drops, which are added to its
class of semantically related words.

Stemming accommodates typos, the use of wrong
tenses as well as the use of morphological variants
of the same term (containing singular-plural or nom-
inalized word forms). For instance if “s” is missed in
“drops”, it is handled by the expression “drop(s)?”.
These are correctly spelled variants of the same to-
ken. We use Porter (1980) stemmer to stem words.
The final class of words from the example above
looks as follows: {droplet(s)?, driblet,
raindrop(s)?, drop(s)?}. Humans tend
to overlook typos as well as difference in tenses.
Therefore the trailing “s” is considered optional.

Algorithm 2 describes steps involved in ex-
tracting phrase patterns from a sample answer
“· · ·particles like sodium, potassium ions into
membranes· · ·”. Output of Algorithm 2 is:
particles(\s\w{0,4}\s){0,1}(?=.*(sod-
ium|potassium|bismuth|zinc|cobalt).*)
(?=.*(potassium|tungsten|zinc|calcium
|iron|aluminum|tin).*)ions(\s\w{0,4}\s)
{0,1}(?=.*(membrane|film|sheet).*).
These patterns are also flexible like the token-based
ones (with the presence of positional constraints),
but it expects content words such as particles,
sodium, potassium, ions and membrane
to appear in the text, in that order.

4 Kaggle Short Answer Dataset

The aim of the Kaggle ASAP Short Answer Scor-
ing competition was to identify tools that would help
score answers comparable to humans (ASAP-SAS,
2012). Short answers along with prompt texts (and
in some cases sample answers) were made avail-
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able to competitors. The dataset contains 10 differ-
ent prompts scored on either a scale of 0–2 or 0–
3. There were a total of 17207 training and 5224
test answers. Around 153 teams participated in the
competition. The metric used for evaluation is QW
Kappa. The human benchmark for the dataset was
0.90. The best team achieved a score of 0.77.

4.1 Tandalla’s Approach

Tandalla (2012)’s was the best performing model at
the ASAP-Short Answer Scoring competition. One
of the important aspects of Tandalla’s approach was
the use of manually coded regular expressions to de-
termine whether a short answer matches (or does
not match) a sample pattern. Specific regular ex-
pressions were developed for each prompt set, de-
pending on the type of answers each set evoked (e.g.
presence of words such as “alligator”, “generalist”,
“specialist” etc. in the text). These patterns were
entirely hand-coded, which involved a lot of man-
ual effort. Tandalla built a Random Forest model
with the regular expressions as features. This model
alone achieved a QW Kappa of 0.70. Tandalla also
manually labeled answers to indicate match with the
rubric text. A detailed description of the best per-
forming approach is available in Tandalla (2012).

4.2 Experiment

Our aim with this experiment is to compare system-
generated patterns with Tandalla’s manually gen-
erated regular expressions. The goal is to deter-
mine the scoring performance of automated patterns,
while keeping everything (but the regular expres-
sions) in the best performing approach’s code con-
stant.

We substituted the manual regular expressions
used by Tandalla in his code with the automated pat-
terns. We then ran Tandalla’s code to generate the
models and obtain predictions for the test set. We
evaluate our approach on each of the 10 prompt sets
from the Kaggle short answer dataset.

The final predictions produced by Tandalla’s code
is the average of four learning models’ (two Ran-
dom Forests and two Gradient Boosting Machines)
predictions. The learners were used to build regres-
sion (and not discrete) models. We used content to-
kens and phrase patterns to generate two sets of pre-
dictions, one for each run of Tandalla’s code. We

stacked the output by taking the average of the two
sets of predictions.

We compare our model with the following:

1. Tandalla’s model with manually generated reg-
ular expressions: This is the gold standard,
since manual regular expressions were a part of
the best performing model.

2. Tandalla’s model with no regular expressions:
This model constitutes a lower baseline since
the absence of any regular expressions should
cause the model to perform worse. Since the
code expects Boolean regular expression fea-
tures as inputs, we generated a single dummy
regular expression feature with all values as 0
(no match).

4.3 Results
From Table 1 we see that Tandalla’s base code along
with our patterns’ stacked output performs better
than the manual regular expressions. On 8 out of
the 10 sets our patterns perform better than the man-
ual regular expressions. Their performance on the
remaining 2 sets is better than that of the lower base-
line i.e., Tandalla’s code with no regular expressions.

The mean QW Kappa achieved by our patterns is
0.78 and that achieved by Tandalla’s manual regular
expressions is 0.77. Although the QW Kappas are
very close (i.e. the difference is not statistically sig-
nificant), their unrounded difference of 0.00530 is
noteworthy as per Kaggle competition’s standards.
For instance the difference between the first and sec-
ond place teams (Luis Tandalla and Jure Zbontar) in
the competition is 0.00058.4

4.4 Analysis of Behavior of Regular
Expressions

While the overall performance of the automated reg-
ular expressions is better than Tandalla’s manual
regular expressions, there are some aspects that it
may be lacking in when compared with the manual
regular expressions.

In the case of Sets 5 and 7, the stacked model per-
forms worse than the model that uses manual regu-
lar expressions. This indicates that the manual reg-
ular expressions play a very important role for these

4Kaggle Public Leaderboard https://www.kaggle.
com/c/asap-sas/leaderboard/public
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Table 1: Comparing performance of models on the test set from the Kaggle ASAP competition. The table contains
QW Kappas for each of the ten prompts in the dataset. AutoP: Stacked patterns model. Tandalla’s: Tandalla’s model
with manually generated regular expressions; Baseline: Tandalla’s model with no regular expressions.

Approach Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Mean
AutoP 0.86 0.78 0.66 0.70 0.84 0.88 0.66 0.63 0.84 0.79 0.78
Tandalla’s 0.85 0.77 0.64 0.65 0.85 0.88 0.69 0.62 0.84 0.78 0.77
Baseline 0.82 0.76 0.64 0.66 0.80 0.86 0.63 0.59 0.82 0.76 0.75

prompts. In the case of set 5, the prompt evokes
information on the movement of mRNA across the
nucleus and ribosomes. We found that:

1. The answers discuss the movement of mRNA
in a certain direction, e.g. out of (exit) the nu-
cleus and into the (entry) ribosome. Although
students may mention the content terms such
as nucleus and ribosome correctly, they tend to
miss the directionality (of the mRNA). Since
terms such as into, out of etc. are prepositions
or function words, they get replaced, in our au-
tomated approach by \w{0,x}. Hence, if the
student answer mentions “the mRNA moved
into the nucleus” as opposed to saying “out
of the nucleus”, our pattern would incorrectly
match it.

2. Another reason why automated regular expres-
sions do not perform well is that WordNet
treats terms such as nucleus and ribosome as
synonyms. As a result when students inter-
change the two terms, the regular expression
finds incorrect matches. For example an au-
tomated pattern for the text “travels from the
cytoplasm into the ribosome” is represented as
travels(\s\w{0,4}\s){0,2}(?=.*
(cytoplasm|endoplasm(ic)?).*)
(\s\w{0,4}\s){0,2}(?=.*(riboso-
m(e)?|nucleu(s)?).*). An incorrect
student answer containing “· · · mRNA travels
from the cytoplasm into the nucleus · · ·” will
match this pattern.

As described above we found that retaining stop-
words (e.g. prepositions such as “into” or “out of”)
in the regular expressions may be useful in the case
of some prompts. Our approach to regular expres-
sion generation may be tweaked to allow the use of
stopwords for some prompts. However, our aim is to
show that with a generalized approach (in this case

one that excludes stopwords) our system performs
better than Tandalla’s.

In the case of prompt 7, the answers are ex-
pected to contain a description of the traits of
a character named Rose, as well as an expla-
nation on why students thought that the char-
acter was caring. An automated pattern such as:
(?=.*(hard|difficult).*)(?=.*(work-
(ing)?).*) captures some of Rose’s traits. The
answer “Rose was a very hard working girl. She
felt really lonely because her dad had just left and
her mother worked most of the day.” matches the
above pattern. However the explanation provided
by the student in the second sentence is not correct.
This answer was awarded a score of 1 by the
human grader, but was given a 2 by the system.
Although the pattern succeeds in capturing partial
information, it does not capture the explanation
correctly for this prompt.

5 Mohler et al. (2011)’s Short Answer
Dataset

In this section we evaluate our approach on an al-
ternate short answer scoring dataset generated by
Mohler et al. (2011). The aim is to show that
our method is not specific to a single type of short
answer, and could be used successfully on other
datasets to build scoring models.

Mohler et al. use a combination of graph-based
alignment and lexical similarity measures to grade
short answers. They evaluate their model on a
dataset containing 10 assignments and 2 examina-
tions. The dataset contains 81 questions with a total
of 2273 answers. The dataset was graded by two hu-
man judges on a scale of 0–5. Human judges have
an agreement of 57.7%.

Mohler et al. apply a 12-fold cross validation
over the entire dataset to evaluate their models. On
average, the train fold contains 1894 data points
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Table 2: Sample questions from a single assignment.
Questions in this assignment are about sorting tech-
niques. Since they discuss the same subject a single
model can be built for the assignment.

1. In one sentence, what is the main idea imple-
mented by insertion sort?
2. In one sentence, what is the main idea imple-
mented by selection sort?
3. What is the number of operations for insertion
sort under a best-case scenario, and what is the
best-case scenario?
4. What is the base case for a recursive implemen-
tation of merge sort?

while the test fold contains 379 data points. Mod-
els are constructed with data from assignments con-
taining questions on a variety of programming con-
cepts such as the role of a header file, offset notation
in arrays and the advantage of linked lists over ar-
rays. Although all the questions are from the same
domain (e.g. computer programming) the answers
they evoke are very different.

Mohler et al. achieved a correlation of 0.52 with
the average human grades, with a hybrid model that
used Support Vector Machines as a ranking algo-
rithm. The hybrid model contained a combination
of graph-nodes alignment, bag-of-words and lexi-
cal similarity features. The best Root Mean Square
Error (RMSE) of 0.98 was achieved by the hybrid
model, which used Support Vector Regression as the
learner. The best median RMSE computed across
each individual question was 0.86.

5.1 Experiment and Results

We use the same dataset to extract text patterns.
Since patterns are prompt or question specific we
cannot create models using the entire dataset like
Mohler et al. do. Patterns extracted from across
different questions may not be representative of
the content of individual questions or assignments.
Questions within each assignment are on the same
topic. Table 2 contains a list of all questions from
Assignment 5, which is about insertion, selection
and merge sort algorithms. We therefore extract pat-
terns containing content tokens and phrases for each
assignment.

The data for each assignment is divided into train

Figure 3: Features used and models built for the experi-
ment on Mohler et al. (2011)’s short answer dataset.

and test sets (80% train and 20% test). The train set
contains a total of 1820 data points and the test set
contains a total of 453 data points. The train data
is used to extract content tokens and phrase patterns
from sample answers.

Most short answer grading systems use term vec-
tors as features (Higgins et al., 2014), since they
work as a good baseline. Term vectors contain fre-
quency of terms in an answer. We use a combination
of term vectors and automatically extracted patterns
as features.

We use a Random Forest regressor as the learner
to build models. The learner is trained on the av-
erage of the human grades. We stack results from
models created with each type of pattern to com-
pute final results. Results are listed in Table 3. Our
approach’s correlation over all the test data is 0.61.
The RMSE is 0.86, and the median RMSE computed
over questions is 0.77. The improvement in correla-
tion of our stacked model over Mohler et al.’s per-
formance of 0.52 is significant (one tailed test, p-
value = 0.02 < 0.05, thus the null hypothesis that
this difference is a chance occurrence may be re-
jected). Correlation achieved by using just term vec-
tors is 0.56 (difference from Mohler et al.’s result is
not significant). These results indicate that the use of
patterns results in an improvement in performance.

The above process was repeated at the granular-
ity level of questions. Data points from each ques-
tion were divided into train and test sets, and models
were built for each training set. There were a total
of 1142 training and 1131 test data points. Results
from the stacked model are computed over all the
test predictions. This model achieved a correlation
of 0.61, and an RMSE of 0.88. The median RMSE
computed over each of the questions is 0.82.
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Table 3: Comparing performance of models on Mohler
et al. (2011)’s dataset. Md(RMSE): median RMSE over
questions; AutoP (As): Stacked model over assignments;
AutoP (Qs): Stacked model over questions; Baseline:
Mohler et al.’s best results; Human: Human Average
(Mohler et al., 2011). “*” under column Sig. indicates
that the difference between our model and the baseline is
statistically significant (p < 0.05)

Models R Sig. RMSE Md(RMSE)
AutoP (As) 0.61 * 0.86 0.77
AutoP (Qs) 0.61 * 0.88 0.82
Term vectors 0.56 0.92 0.87
Baseline 0.52 0.98 0.86
Human 0.59 0.66 0.61

As can be seen from Table 3 our stacked model
performs better in terms of correlation, RMSE and
median RMSE over questions than Mohler et al.’s
best models. One of the reasons for improved per-
formance could be that models were built over indi-
vidual assignments or questions rather than over the
entire data. Patterns are particularly effective when
built over assignments containing the same type of
responses. Short answer scoring can be very sen-
sitive to the content of answers. Hence using data
from across a variety of assignments could result in
a poorly generalized model.

6 Conclusion

Automatically scoring short answers is difficult. For
example, none of Kaggle ASAP short answer scor-
ing competitors managed to consistently reach the
level of human-human reliability in scoring. The re-
sults of the Kaggle competition, however do show
that manually generated regular expressions are a
promising approach to increase performance. Regu-
lar expressions like patterns are easily interpretable
features that can be used by learners to boost short
answer scoring performance. They capture seman-
tic and contextual information contained within a
text. Thus, determining the best ways to incorpo-
rate these patterns as well as making it efficient to
develop them is critical to improving short answer
scoring.

In this paper we introduce an automated approach
to generate text patterns with limited human ef-
fort, and whose performance is comparable to man-

ually generated patterns. Further we ensure that the
method is generalizable across data sets.

We generate patterns from rubrics and sample
top-scoring answers. These patterns help capture the
desired structure and semantics of answers and act
as good features in grading short answers. Our ap-
proach achieves a QW Kappa of 0.78 on the Kag-
gle short answer scoring dataset, which is greater
than the QW Kappa achieved by the best performing
model that uses manually generated regular expres-
sions. We also show that on Mohler et al. (2011)’s
dataset our model achieves a correlation of 0.61 and
an RMSE of 0.77. This result is an improvement
over Mohler et al. (2011)’s best published correla-
tion of 0.52 and RMSE of 0.86.
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Abstract

This paper reports on the development and the initial
evaluation of a dictation&spelling prototype exercise
for second language (L2) learners of Swedish based
on text-to-speech (TTS) technology. Implemented on
an  already  existing  Intelligent  Computer-Assisted
Language  Learning  (ICALL)  platform,  the  exercise
has not only served as a test case for TTS in L2 envi-
ronment, but has also shown a potential to train liste-
ning and orthographic skills, as well as has become a
way of collecting learner-specific spelling errors into
a database. Exercise generation re-uses well-annotated
corpora, lexical resources, and text-to-speech techno-
logy with an accompanying talking head. 

1 Introduction and background

ICALL – Intelligent Computer-Assisted Language
Learning  -  is  an intersection between Computer-
Assisted Language Learning (CALL) and Natural
Language Processing (NLP) where interests of the
one  side  and  technical  possibilities  of  the  other
meet, e.g. automatic error detection and automatic
essay scoring.

Multiple research projects worldwide explore
the  benefits  of  NLP in  educational  applications
(Mitkov  &  Ha  2003;  Monaghan  &  Bridgeman
2005; Heilman & Eskenazi, 2006; Antonsen 2012),
some of them being exploited for real-life language
teaching (Amaral and Meurers, 2011; Heift, 2003;
Nagata, 2009), most of them though staying  wit-
hin  academic  research  not  reaching  actual  users
(Nilsson & Borin, 2002; François & Fairon, 2012)
or remaining limited by commercial usage (Attali
& Burstein, 2006; Burstein et al., 2007).

In the past five decades the area of NLP has
witnessed  intensive  development  in  Sweden.
However, ICALL has remained rather on the perip-
hery of NLP community interests. Among the di-
rections  in  which  ICALL research  developed  in
Sweden, one can name supportive writing systems
(Bigert et al., 2005;  Östling et al., 2013); exercise
generators  (Bick  2001,  2005;  Borin  &  Saxena,
2004; Volodina et al., 2014); tutoring systems (Wik
2004, 2011; Wik & Hjalmarsson, 2009). 

As can be seen, the number of directions for
Swedish ICALL projects is relatively small. Given
the potential that NLP holds for CALL community,
this fact is rather surprising, if not remarkable. 

1.1 Pedagogical Framework

More than a decade ago Council of Europe has ad-
opted  a  new  framework  for  language  learning,
teaching and assessment,  the  Common European
Framework  of  Reference  for  Languages (CEFR;
COE, 2001). The CEFR guidelines describe langu-
age skills  and competences at six proficiency le-
vels (from beginner to proficient): A1, A2, B1, B2,
C1,  C2.  Among those skills,  orthographic skills,
listening  comprehension,  vocabulary  range  and
control, and knowledge of lexical elements are rele-
vant in the context of the exercise described in the
paper.

Orthographic  control,  as  defined  by  the
CEFR, is ranging from ”Can copy familiar words
and short phrases ... used regularly” at the begin-
ner level (A1) to ”Writing is orthographically free
of  error”  at  the  mastery  level  (C2)  (COE,
2001:118). The same applies to  listening compre-
hension which ranges from ”I can recognise fami-
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liar words and very basic phrases...” at A1 to ”I
have no difficulty  in understanding  any kind of
spoken language...” at C1 (COE 2001:26-27). Cri-
teria  for  lexical  competence include  vocabulary
range and control and knowledge of  lexical  ele-
ments that  stretch  over  the  limits  of  one  single
word (2001:110-112). 

The proposed dictation&spelling exercise is a
possible  way  to  improve  the  above-mentioned
competences and skills. Learners first hear the item
pronounced by a talking head, and afterwards spell
it - item in this context being understood as either a
single word, a phrase or a sentence. For teachers, it
is rather time-consuming to engage in dictation in
an attempt to help students improve their lexical,
listening and orthographic skills. In this case, NLP
can successfully replace a teacher in this drill-like
exercise.

1.2 Use of TTS for L2 learning

TTS is being increasingly used in CALL systems
for multiple tasks, such as for listening and dicta-
tion practice (Santiago-Oriola, 1999; Huang et al.,
2005;  Pellegrini  et  al.,  2012;  Coniam, 2013),  for
reading texts aloud (Lopes et al., 2010),  and for
pronunciation  training  (Wik,  2011;  Wik  & Hjal-
marsson, 2009). 

The  Swedish  TTS  in  CALL environment  is
represented by  Ville and  Deal (Wik, 2011; Wik &
Hjalmarsson,  2009).  Ville is  a  virtual  language
teacher that assists learners in training vocabulary
and pronunciation. The system makes a selection
of  words that  the  student  has  to  pronounce.  The
system analyses students' input and provides feed-
back on their pronunciation. The freestanding part
of  Ville,  called  DEAL,  is a role-playing game for
practicing conversational skills. While Ville provi-
des exercises in the form of isolated speech seg-
ments, DEAL offers the possibility to practice them
in conversations (Wik & Hjalmarsson, 2009).

Like Ville, the dictation&spelling exercise pre-
sented here uses TTS technology for training voca-
bulary. However, unlike  Ville,  the dictation&spel-
ling exercise is (1) focused on spelling rather than
pronunciation, and in this respect complements the
functionality offered by Ville; (2) is web-based and
does not need prior installation; and (3) is designed
to address students at different CEFR proficiency
levels.

1.3 Research questions

Two important  research questions,  raised in  con-
nection to this project, have influenced the design
of the implemented exercise. 

(1)  Is  TTS  technology  for  Swedish  mature
enough for use in ICALL applications? To answer
this question, we included evaluation and a follow-
up questionnaire by the end of the project, where
users could assess several parameters of the speech
synthesizer and express an overall  impression of
the exercise (Section 3). 

(2) What way should feedback on L2 misspel-
lings  be  delivered?  To  have  a  better  idea  about
what typical L2 spelling errors learners of Swedish
make, we designed an error database that stores in-
correct answers during the exercise. Based on the
analysis of the inititally collected errors, we sug-
gest  a  way  to  generate  meaningful  feedback  to
Swedish L2 learners  (Section 4).

The rest of the paper is structured as follows:
Section 2 describes the implementation details of
the exercise and the database. Section 3 presents
the results of the evaluation. Section 4 focuses on
the first explorations of the SPEED (SPElling Er-
ror Database) and suggests a feedback generation
flow. Section 5 concludes the paper and outlines
future prospects.

2 Exercise design and implementation 

2.1 Resources

A number of computational resources for Swedish
have been used in the exercise, namely:

• Corpora  available  through  Korp,  Språk-
banken's  infrastrusture  for  maintaining  and  sear-
ching Swedish corpora (Borin et  al.,  2012b).  All
corpora  in  Korp  are  accessible  via  web services
and contain linguistic  annotation:  lemmas,  parts-
of-speech,  morphosyntactic  information,  depen-
dency relations.

• Lexical resources available through Karp,
Språkbanken's lexical  infrastructure (Borin et al.,
2012a):  Kelly  word list, a  frequency-based word
list of modern Swedish containing 8,500 most im-
portant words for language learners with associa-
ted CEFR proficiency levels (Volodina & Johans-
son Kokkinakis,  2012); and  Saldo morphology,  a
morphology lexicon of Swedish containing all in-
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Figure 1. User interface for dictation&spelling exercise, version 2

flected forms for each lemgram (base form + part
of  speech  pair)  (Borin,  Forsberg  &  Lönngren,
2013). Karp resources are also accessible through
web services.

• SitePal's  TTS  synthesizer  module  and  a
talking head, Monica, who is addressed that way in
the paper

• Lärka,  an  ICALL platform  for  Swedish
where  the  exercise  is  deployed  (Volodina  et  al.,
2014).  Lärka is  an ICALL platform for studying
Swedish (in broad sense). It targets two major user
groups – students of Linguistics, and L2 learners.
The exercise repertoire comprises (1) exercises for
training parts-of-speech, syntactic relations and se-
mantic roles for students of Linguistics; and (2) ex-
ercises for training word knowledge and inflectio-
nal  paradigms  for  L2  learners  (Volodina  et  al.,
2014).  Features  common to  all  exercises  include
corpora and lexical resources, training modes, ac-
cess to reference materials (Figure 1). 

2.2 Linguistic levels 

According  to  Nation  (2001),  aspects  of  word
knowledge include: (1) Form: spoken (recognition
in speech,  pronunciation);  written (recognition in
texts, spelling); word parts (inflection, derivation,
word-building);  (2)  Meaning:  form and meaning;
concept  and  references;  associations;  (3)  Use:
grammatical functions; collocations; constraints on
use (register/frequency/etc.)

While  the  two previously available  exercises
in Lärka – for training vocabulary knowledge and
inflectional paradigms – focus on some aspects of

meaning,  use  and  form,  the  newly  added
dictation&spelling  exercise  has  extended  the
spectrum of trained word knowledge aspects to co-
ver other dimensions of form-aspect, namely spo-
ken and written forms, and therefore the exercise
has become a natural and welcome addition to the
exercise arsenal offered by Lärka.

The exercise is offered at four linguistic levels,
each targeting different aspects of word knowled-
ge. The  word level focuses on pronunciation and
spelling of the base form of a word. A target word
of an indicated CEFR level is randomly selected
from the Kelly list or from a user-defined list, an
option provided by Lärka where learners can type
words they need to train. The target item is then
sent to the TTS module to obtain its pronunciation.
TTS pronounces the word, while the user needs to
spell it (Figure 2).

Figure 2. NLP pipeline for word levels. At the non-in-
flected word level Saldo morphology is excluded from

the pipeline

The inflected word level (Figure 2) also focu-
ses on a single word, however, the learner is made
aware  of  its  inflectional  patterns,  in  addition  to
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pronunciation and spelling (learners have to spell
the   inflected form they hear).  Analogous to  the
word level,  the  target  word is  randomly selected
from the Kelly list or the user-defined list. Before
the item is sent to the TTS module, its different in-
flected  forms  are  checked  in  Saldo-morphology,
whereas some of the forms,  e.g.  possessives,  are
excluded as inappropriate for training through dic-
tation. One random form is used for training.

The phrase level offers the target word in some
typical context, which alongside demonstrating the
item's collocational and distributional patterns, also
requires  the  user  to  identify  (via  listening)  the
number of separate words constituting the phrase.
While the implementation for the word and the in-
flected word levels was straightforward, the imple-
mentation for the phrase level needed some work-
around to achieve the best phrase accuracy. In this
exercise version only noun and verb phrases have
been taken into consideration.  

For  retrieval  of  the  typical  phrase  patterns,
word pictures associated with the target  item are
retrieved from Korp.  A fragment of a word picture
for the noun ord [word], is shown in Figure 3. The
columns on top of Figure 4 provide the most dis-
tinguished collocation patterns (prepositions,  pre-
modifiers, post-modifiers), underneath followed by
the actual  lemmas alongside with the  number  of
hits in the corpora. Most typical prepositions used
with the noun  ord are (in translation):  with,  wit-
hout,  behind,  against,  beyond.  Most  typical  pre-
modifiers are: free, ugly, beautiful, hard, empty.

Figure 3. Word picture for the noun ord [word] in Korp

The number accompanying each of the collo-
cates reflects the number of hits in the corpus. For
example, fri 2353 on top of the second column me-
ans that the phrase starting with a pre-modifier  fri
[free] has a pattern  fri  + ord and has been used
2353 times in the corpora where we performed our
search. To extract the actual phrase containing  fri
ord,  another request  is  forwarded to Korp where

the  actual  corpus  hits  are  returned  (the  2353  of
them). Then, any of the sentences can be used for
extracting the actual phrase preserving  inflections
and words that come in-between, e.g.  fria tankar
och ord [free thoughts and words]. After some ex-
periments, we have set the limit at max 6 tokens
per phrase. 

Figure 4. NLP pipeline for the phrase level

The final flow of the exercise generation at the
phrase level is shown in Figure 4: A random item
from the Kelly list is forwarded to the Korp's word
picture web-service,  one of the top frequent  pat-
terns is selected and the actual KWIC hits are con-
sulted. After the phrase has been selected and adju-
sted, it is sent to the TTS module for pronuncia-
tion. In case of a user-defined word list, the ran-
domly selected item is first sent to Saldo-morpho-
logy  to  check  possible  word  classes  associated
with the item, one is selected and sent further to
Korp for extracting a word picture. 

         Figure 5. NLP pipeline for the sentence level.

The  sentence level offers the target item in a
sentence  context,  which  sets  further  demands  on
listening comprehension and awareness of structu-
res that the target word can be used in. The sen-
tence level is the most challenging for the users,
since sentences are usually long and it is difficult
to  remember  all  information.  Programmatically,
though, it is less challenging than the phrase level,
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unless you want to ensure that learners understand
the sentences they get for training. We have used
algorithms developed by Pílan et al. (2014) for au-
tomatic retrieval of sentences understandable by le-
arners at B1/B2 proficiency levels. Before the sen-
tence is sent to the TTS module,  some additional
filtering is performed blacklisting sentences of in-
appropriate length or containing inappropriate to-
kens (e.g. dates with slashes 30/11/2013), see Figu-
re 5. 

Finally  the  performance-based variant of  the
exercise offers a  path from the word to  the  sen-
tence level, allowing the user to go over from one
level to another according to his/her performance.
If 10 items have been spelled correctly, a new level
is offered. 

2.3 Error database

All user answers are logged in SPEED, the SPEl-
ling Error Database, which has been deployed on
Karp's backend. SPEED keeps track of: 
(1) the session which consists of the date and time
when the user has started the exercise. All errors
made by that particular user have the same session
ID. This way we have a chance to identify some
user-specific behaviour and error patterns. 
(2) the correct item, its parts-of-speech, the miss-
pelling and the time when the misspelling is added.
If an entry for the correct item has already been
created, a new misspelling is added to the list of
misspellings. Otherwise, a new entry is created.

Since no login information is required to use
Lärka (which is a choice made at the departmental
level),  we cannot log information about  learners'
first language (L1) background. 

3 User evaluation

We have used an off-the-shelf TTS solution offered
by SitePal (www.sitepal.com), which offers an op-
timal combination of voice quality, availability of
talking  heads,  user-friendliness  and  a  reasonable
subscription price. 

A critical  question  for  this  project  has  been
whether the TTS quality of the SitePal's synthesi-
zer is mature enough for use in an ICALL applica-
tion.  A quality of a TTS synthesizer is  generally
judged by its naturalness (i.e. similarity to the hu-
man  voice),  understandability (comprehensibility
of  the  message  and  intelligibility  of  individual

sounds), and  accuracy (Handley & Hamel, 2005).
This is especially significant when applied to L2
context where TTS is used both for setting an ex-
ample of correct pronunciation and for testing lis-
tening  comprehension.  Besides  the  three  criteria
above, the criteria of  language learning potential
and opportunity to focus on linguistic form are cri-
tical  in  CALL  environment  (Chapelle,  2001a,
2001b). If the technology doesn't live up to the de-
mands, this type of exercise should be excluded in
want of better technological solutions.

A few studies  have evaluated TTS in CALL
applications.  A study  by  Pellegrini  et  al.  (2012)
compared TTS-produced versus human pre-recor-
ded speech in L2 dictation exercises (sentence le-
vel). They found that L2 learners make more mis-
takes when human voice is heard, thus establishing
that (at A2 level) TTS speech is more understan-
dable by L2 learners of Portuguese, most probably
due  to  the  speed  difference,  TTS version being
15% slower.  Handley (2009) evaluated TTS mo-
dules in four CALL applications using criteria of
comprehensibility,  acceptability,  and  appropriate-
ness, and found TTS technology mature enough for
use  in  L2 applications,  emphasizing  that  expres-
siveness  was  insufficient.  Handley  &  Hamel
(2005)  discuss  a  benchmark for  evaluation  of
speech synthesis  for  CALL applications.  Evalua-
tion focus should differ depending on uses of TTS,
since different features play roles for various learn-
ing scenarios. They explored appropriateness, ac-
ceptability and comprehensibility as potential crite-
ria for the three TTS tasks: reading texts, pronunci-
ation training and dialogue partner, and found that
the same TTS module has been evaluated differ-
ently depending upon the task it was used for.  

3.1 Participants and setting 

The evaluation of the exercise was carried out with
10 participants who represented three user groups:
beginner levels A1/A2, intermediate levels B1/B2
and  advanced levels C1/C2 with 3 participants in
each. A native speaker is categorized separately as
his/her language knowledge exceeds the CEFR-de-
fined proficiency levels.

The participants have been asked to fill an eva-
luation form following the experience of working
with the exercise. During the exercise, each of the
participants spelled at least 40 items: 10 at each of
the four linguistic levels. They were also encoura-
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ged to test performance-based level. All along the
misspellings have been saved to the error database.

3.2 Questionnaire

The purpose of the evaluation has been primarily
to evaluate the text-to-speech module and to assess
the usefulness of the exercise, based on L2 learner
preferences.  We  have  used  criteria  suggested  by
Handley and Hamel (2005) and Chapelle (2001a,
2001b) as the basis for our evaluation adding some
more questions. 

The questionnaire  contained 15 questions,  of
which five were focused on the TTS quality (ques-
tions #3-7, Table 1), six - on the exercise and its ef-
fectiveness  (#8-14),  one explicitly  asking for  the
type of feedback learners expect from the program
(#15), and the rest were devoted to the user-friend-
liness of the GUI (#1-2)1.

All questions (except #15) were evaluated ac-
cording to a 5-grade scale, where 1 corresponded
to very good and 5 to very poor. Additionally, the
evaluators had the possibility to add comments for
every question and at the end of the questionnaire.

Table 1. Results by question & proficiency level, on the
scale 1=very good … 5=very poor

3.3 Evaluation results and discussion

According to the evaluation results (Table 1), the
talking head (#5) appears to be the least effective
element in the spelling exercises. The unsatisfying
results for the speaking head are based hypotheti-
cally on the missing facial expression and on its lo-
cation within the spelling game. Compared to the
virtual  language  teacher  Ville,  which  was  deve-
loped specifically for educational purposes, the Si-
tePal's talking head seems to have a rather entertai-
ning function. The expressive lip movement that is
1Full questionnaire form can be downloaded from 
http://spraakbanken.gu.se/eng/larka/tts

characteristic of Ville, is clearly missing from Mo-
nica.

The  pronunciation generated by the TTS mo-
dule  (#7),  however,  is  regarded  as  good  despite
comments  on some smaller  pronunciation errors.
The user interface (#2) and the quality of pronunci-
ation (#7) are the most  satisfactory features.  The
naturalness of speech (#6) is perceived differently
among the participants. While the beginner group
finds  the  TTS-produced speech  natural  and  hu-
man-like, the advanced group perceives it as least
natural. This result is not very surprising as the be-
ginner group is not familiar with the language and
therefore is not able to critically judge the natural-
ness  of  speech.  The native  speaker  is  in  general
very positive towards the TTS system.  

Table 1 shows clearly that the word/inflected
word levels (#9) are the most appropriate units for
training  spelling  followed  by  the  phrase  level
(#10). Phrases need to be adapted to the respective
proficiency level in order to achieve the best lear-
ning effect. The sentence level (#11) is assessed as
the  least  appropriate  one,  as  the  length  and  the
speed rate have been perceived unsuitable for trai-
ning spelling and listening. The results demonstra-
te that the learning potential at the word and phra-
se  levels  is  higher  than at  the  sentence level,  as
perceived by L2 learners.

The results by proficiency level (Table 1) show
that there is an obvious tendency to become more
critical as the level grows.  The proficiency group
C1/C2 is the least satisfied one, while the native
speaker is  the most  positive.  The reason for that
might be that language learners from higher profi-
ciency levels are more critical as their knowledge
of the language is better  and therefore TTS mis-
takes  are  more  noticeable,  while  TTS  mistakes
might  not  be  that  obvious  to  the  learners  with
lower levels of proficiency. The vocabulary chosen
for training spelling and listening at lower levels
may  also  be  easier  for  the  TTS  system  to  pro-
nounce. The native speaker shows in general a very
positive attitude towards the spelling game as (s)he
might be more aware of the difficulty of the lan-
guage and is  therefore more ‘forgiving’.  Another
reason might be that the native speaker does not
assess the spelling exercise from the learner’s point
of view and might therefore be less critical.

When it comes to the word level (#9), with the
increase of learners' proficiency dissatisfaction also
increases (Figure 6). The reason for that might be

112



that  the words in the Kelly-list  are too advanced
for the intermediate level.  Some of the advanced
participants  find  the  word  level  not  challenging
enough as the target words are displayed quickly
before they are pronounced. This kind of spelling
tip needs to be adapted to the proficiency level. 

As  for  the  appropriateness  of  phrases  (#10),
the  intermediate  group  is  more  positive  to  them
than the beginner and advanced groups. The reason
for that  may lie in the implementation approach.
Since words within a phrase do not all belong to
the same difficulty level, phrases extracted for the
beginner level might be too advanced.
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Figure 6. Results by proficiency levels & linguistic lev-
els, on the scale 1=very good … 5=very poor

The sentence level (#11) is in general the most
challenging  linguistic  level  for  training  spelling
and listening  (Figure 6). The C1/C2 group finds
the  sentence  level  in  general  inappropriate  for
spelling  exercises.  The  obtained  sentences  were
difficult to follow not only for beginners but even
for advanced Swedish L2 learners. 

Especially  interesting  are  the  comments  pro-
vided  for  the  question  on  feedback  (#15).  The
feedback that the participants would like to see in
this exercise is grouped into several suggestions:
• A hint on the word form for the inflected forms
• Tips regarding grapheme-phoneme mappings
• English translation of the spelled items
• Possibility to see the correct answer by choice
• Possibility to notify the pronunciation mistakes
made by the TTS module
• Detailed feedback on the wrong answers
• Run-time marking of spelling errors    

4 Feedback on L2 misspellings

In  the  pedagogical  and  psychological  studies  on
feedback one can encounter an extensive amount

of different terms, e.g. achievement feedback, as-
sessment feedback (Higgins et  al.,  2002),  forma-
tive and summative feedback, feedback on perfor-
mance (Hyland,  2001),  etc.  The common ground
for all types of feedback is that the student perfor-
mance (actual level) is compared with the expected
performance (reference level)  and some informa-
tion  is  provided  to  the  learners  that  should  help
them develop the target skills further in order to al-
ter  the gap between the actual  and the reference
levels (Ramaprasad, 1983).

Obviously, just stating the presence of the gap
(“incorrect”)  is  not  sufficient.  Feedback becomes
useful when ways to improve or change the situa-
tion are outlined. To do that, we need to understand
the nature of a spelling mistake, and to point learn-
ers to the specific aspects of the  target language
orthography,  the phoneme-grapheme mappings in
L2; or even to the relation between L1 and the tar-
get L2 spelling and pronunciation systems. A lot of
studies argue that it is vital to know a learner's L1
for successful error analysis (Tingbjörn & Anders-
son,  1981;  Abrahamsson,  2004;  Koppel  et  al.,
2005;  Nicolai  et  al.,  2013).   Unfortunately,  the
ICALL platform that is used as a basis for the exer-
cise does not offer any login facility, which makes
it impossible to log learners' L1, at least at present.
Given that constraint we had to make the best out
of the situation. We started looking for a taxonomy
of most typical L2 spelling errors which students
should be addressed to, independent of their L1.

While there are several available error corpora
for  other  languages  (Granger  2003;  Tenfjord,
Meurer  & Hofland 2006),  we are  aware of  only
one error database for Swedish, an Error Corpora
Database (ECD), which is a collection of different
types of errors, among others spelling ones. They
have been collected from Swedish newspapers, and
analyzed to create an error typology used for de-
veloping proof-reading tools for professional writ-
ers of Swedish (Wedbjer Rambell, 1999a; Wedbjer
Rambell, 1999b). Being a good source for compar-
ison, ECD, however, cannot be applied as it is to
the  context  of  Swedish  L2  learning.  Antonsen
(2012) points out that L2 errors differ in nature and
type from L1 errors. Rimrott & Heift (2005) found
that generic spell-checkers fail to identify L2 errors
and therefore special care should be taken to study
specific L2 errors. We faced therefore the necessity
of collecting a special database of Swedish L2 er-
rors as the first step on the way to useful feedback.
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Collecting errors into a database from corpora
is a time-consuming process which we could not
afford. We have opted for another alternative, in-
spired by Rodrigues & Rytting (2012),  where er-
rors are collected into a database while learners do
exercises. Advantages of collecting a corpus by ap-
plying this method are numerous: participants are
quickly attracted, while cost, time and effort of col-
lecting a corpus are reduced. 

While the feedback has not been implemented
at this stage, the database has been populated with
misspellings and has given us the first insights into
the nature of typical L2 errors and prompted some
ideas on useful feedback.

4.1 Error log analysis 

The initial  analysis  of  the  error  logs  focused  on
word-level  errors,  which  have  been  categorized
into several error types. The same spelling errors
could often be classified into more than one cate-
gory; e.g. a real word error can be at the same time
a performance- or a competence-based error.

There are two major groups of errors, compe-
tence-based (55%) and performance-based (17%)
ones, that are described here. The rest of the errors
(28%) are connected to a group of errors occurring
in sentences or phrases where e.g. wrong segmen-
tation or total absence of one or several words are
the cause of the error. These errors  have been left
out of the present analysis.

While performance-based errors are accidental
and are easily corrected with a hint to the learner,
competence-based errors depend on the lack of or
insecure  knowledge  and  need  to  be  explained.
Learners need to be made aware of the mappings
between orthography and pronunciation in the tar-
get  language.  L1  speakers  usually make  perfor-
mance-based errors  while  in  L2 learners'  writing
competence-based  errors  dominate  (Rimrott  &
Heift, 2005).

Competence-based errors (55%) occur as a re-
sult of not knowing a word’s spelling or confusing
words. L2 spelling errors are mostly competence-
based. This type of errors mainly occurs when the
orthographic rules of L2 differ from the ones of L1
or when a language contains special characters or
sounds that  do not  exist  in L1. The competence-
based errors from the evaluation fall into the four
categories described below.

Spelling  errors  based  on  consonant  doubling
(28%) belong to one of the most common errors,
where either a single consonant is written instead
of a double (e.g.  stopa instead of  stoppa [thrust])
or  a  double  consonant  instead  of  a  single  (e.g.
rimmligen instead of rimligen [reasonably]). 

Spelling  words  that  contain  characters  with
accents/diacritics (ä,  å,  ö)  present  challenge  for
Swedish L2 learners, due to the difficulty to distin-
guish  between  special  characters  and  the  ortho-
graphically or phonetically similar vowels (23%).
For  example,  the  sound of  the  letter  å was  fre-
quently mistaken for the vowel o.

Phonetic  errors (25%)  appear  when  parts  of
words are spelled as they are heard. The most fre-
quent phonetic error in our logs is caused by con-
fusing voiced and voiceless consonants.

Another  cause of  a  typical  Swedish L2 mis-
spelling are  consonant clusters  that follow special
rules  for  grapheme-to-phoneme  mapping  (20%).
The  letter  combination  rl, for  example,  is  pro-
nounced [l]. The drop of “r”-sound applies also for
the combinations  rs,  rd and  rt.  Some other prob-
lematic clusters are  tj, ch, hj, sk.

Performance-based errors (17%), the so called
‘typos’, are caused by addition, deletion, insertion
or replacement of one or several letters in a word,
often a result of hitting a wrong key or two keys at
the same time on the keyboard. Performance-based
errors  are  not  always  obvious,  for  example,  the
misspelling sjön (corr. skön [beautiful]) could have
been created by confusing the keys j’ and k on the
keyboard but could also be categorized as a com-
petence-based  phonetic  error.  The  spelling  error
förb’ttra (corr. forbättra [improve]) clearly belongs
to the performance-based category.

Spelling mistakes can also result in real words
(14%) either by chance or because a word is mis-
heard  and  therefore  mistaken  for  another  word.
For example, the word liknande [similar] could ei-
ther be mistaken for liknade [resembled] or the let-
ter  n was  omitted  accidentally,  while  the  word
livsstil [life style] is more likely to be misheard as
livstid [life  time].  Overall,  the  results  show that
non-word  errors  (86%)  are  significantly  more
likely to occur than real-word errors (14%). 

The first analysis of the error logs inspired us
to propose a feedback generation tree (Figure 7).
The analysis of a larger database might lead to a
more specific  decision tree.  The tree  is  build up
from the easiest spelling errors to identify to the
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more difficult  ones.  All  along the error  analysis,
relevant feedback is provided. If multiple changes
are necessary, they are advised step-wise. In case
the spelling error cannot be classified, the correct
item is shortly exposed. 

Figure 7. Feedback generation tree

The proposed feedback generation flow would
allow to offer the kind of information that can help
learners to fill the gap between the reference and
the actual level of the assessed spelling error.

5 Concluding remarks

The goals of this project have been, firstly, the im-
plementation of a Swedish dictation&spelling ex-
ercise that can provide L2 learners with a tool for
training spelling and listening at different linguistic
levels; and secondly,  the evaluation of the newly
implemented  module  regarding  its  effectiveness
and usefulness. The main focus of the evaluation,

in its turn, was to find out whether the TTS tech-
nology is mature enough for the use in L2 context
and to suggest a way to provide useful feedback on
L2 specific misspellings.

The  state  of  TTS  development  looks  very
promising for integration of the current TTS syn-
thesizer for Swedish L2 learning. Some improve-
ments might be in place on the Lärka side, espe-
cially regarding the placement of the talking head
on the screen and adjustment of the pronunciation
speed to the level of the learner. However, the nat-
uralness and understandability of the SitePal's TTS
module hold a very good level.

The issue of homophones should be solved at
word  levels,  either  by  counting  alternative
spellings as correct ones (e.g. flour vs flower) or
by  offering  learners  an  additional  possibility  to
hear the item in a context of a phrase or a sentence.
The latter should help distinguish errors that arise
due to learners' inability to recognize the word pro-
nounced out of  context  versus their not  knowing
how to spell the word. 

Besides,  a  broader  spectrum  of  lexical  re-
sources and detailed feedback are necessary.  The
taxonomy of spelling errors shows that generating
feedback for easily  identifiable  spelling errors  is
straightforward while  more  work  is  necessary  to
understand  the  nature  of  other  types  of  errors.
More detailed  evaluations  with  larger  number  of
participants, and repeated analysis of more exten-
sive error logs are necessary to refine the feedback
generation  tree.  Other  suggestions  on  feedback
proposed by evaluation participants will be consid-
ered for implementation.

The vocabulary for the word level needs to be
expanded with larger lexical resources and domain
specific  vocabulary  lists.  The  generation  pace of
phrases has to be accelerated, and the phrase level
needs to be adapted to the proficiency level. Since
the sentence level is regarded as the least effective
one, most improvements are due on this level. The
sentence length as well as the speech rate need to
be adapted to the proficiency level.

In order to assess the spelling exercises from
the pedagogical point of view, an in-class evalua-
tion with teachers needs to be carried out once a
new version is in place.
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Abstract

We present the Jinan Chinese Learner Cor-
pus, a large collection of L2 Chinese texts pro-
duced by learners that can be used for edu-
cational tasks. The present work introduces
the data and provides a detailed description.
Currently, the corpus contains approximately
6 million Chinese characters written by stu-
dents from over 50 different L1 backgrounds.
This is a large-scale corpus of learner Chinese
texts which is freely available to researchers
either through a web interface or as a set of
raw texts. The data can be used in NLP tasks
including automatic essay grading, language
transfer analysis and error detection and cor-
rection. It can also be used in applied and cor-
pus linguistics to support Second Language
Acquisition (SLA) research and the develop-
ment of pedagogical resources. Practical ap-
plications of the data and future directions are
discussed.

1 Introduction

Despite the rapid growth of learner corpus research
in recent years (Dı́az-Negrillo et al., 2013), no large-
scale corpus of second language (L2) Chinese has
been made readily available to the research commu-
nity.

Learner corpora are often used to investigate
learner language production in an exploratory man-
ner in order to generate hypotheses about learner
language. Recently, learner corpora have also been
utilized in various educational NLP tasks includ-
ing error detection and correction (Gamon et al.,

2013), Native Language Identification (Tetreault et
al., 2013) and language transfer hypothesis formula-
tion (Swanson and Charniak, 2014).

While such corpus-based studies have become an
accepted standard in SLA research and relevant NLP
tasks, there remains a paucity of large-scale L2 cor-
pora. For L2 English, the two main datasets are the
ICLE (Granger, 2003) and TOEFL11 (Blanchard et
al., 2013) corpora, with the latter being the largest
publicly available corpus of non-native English writ-
ing.1 However, this data scarcity is far more acute
for L2 other than English and this has not gone
unnoticed by the research community (Lozano and
Mendikoetxea, 2013; Abuhakema et al., 2008).

The present work attempts to address this gap by
making available the Jinan Chinese Learner Corpus
(JCLC), an L2 Chinese corpus designed for use in
NLP, corpus linguistics and other educational do-
mains. This corpus stands out for its considerable
size and breadth of data collection. Furthermore, the
corpus – an ongoing project since 2006 – continues
to be expanded with new data. In releasing this data
we hope to equip researchers with the data to sup-
port numerous research directions2 going forward.

The JCLC is freely available to the research com-
munity and accessible via our website.3 It can be
used via a web-based interface for querying the data.
Alternatively, the original texts can be downloaded
in text format for more advanced tasks.

1TOEFL11 contains over 4 million tokens in 12,100 texts.
2See section 5 for examples.
3http://hwy.jnu.edu.cn/jclc/
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2 Background

Interest in learning Chinese is rapidly growing, lead-
ing to increased research in Teaching Chinese as a
Foreign Language (TCFL) and the development of
related resources such as learner corpora (Chen et
al., 2010).

This booming growth in Chinese language learn-
ing (Rose and Carson, 2014; Zhao and Huang,
2010), related to the dramatic globalization of the
past few decades and a shift in the global language
order (Tsung and Cruickshank, 2011), has brought
with it learners from diverse backgrounds. Conse-
quently, a key challenge here is the development
of appropriate resources – language learning tools,
assessments and pedagogical materials – driven by
language technology, applied linguistics and SLA
research (Tsung and Cruickshank, 2011). The ap-
plication of these tools and SLA research can greatly
assist researchers in creating effective teaching prac-
tices and is an area of active research.

This pattern of growing interest in Chinese is also
reflected in the NLP community, evidenced by the
continuously increasing research focus on Chinese
tools and resources (Wong et al., 2009).

A key application of such corpora is in the field of
Second Language Acquisition (SLA) which aims to
build models of language acquisition. One aspect of
SLA is to formulate and test hypotheses about par-
ticularly common patterns of difficulty that impede
L2 production among students. This is usually done
using the natural language produced by learners to
identify deficits in their interlanguage.

A criticism of SLA has been that its empirical
foundation is weak (Granger, 2002), casting doubts
on the generalizability of results. However, this is
beginning to change with the shift towards using
large learner corpora. The creation of such corpora
has led to an efflorescence of empirical research into
language acquisition (Granger, 2002).

The use of NLP and machine learning methods
has also extended to SLA, with a new focus on
a combined multidisciplinary approach to develop-
ing methods for extracting ranked lists of language
transfer candidates (Swanson and Charniak, 2014;
Malmasi and Dras, 2014c).

3 Data Collection and Design

The JCLC project, started in 2006, aims to create
a corpus of non-native Chinese texts, similar to the
ICLE. The majority of the data has been collected
from foreign students learning Chinese at various
universities in China, with some data coming from
universities outside China. This data includes both
exams and assignments. The texts are manually
transcribed with all errors being maintained. Error
annotations are not available at this stage.

In order to be representative, the corpus includes
student data from a wide range of countries and pro-
ficiency levels. 59 different nationalities are repre-
sented in the corpus. Proficiency levels are classified
according to the length of study and include: begin-
ners (less than 1 year), intermediate (2-3 years) and
advanced (3+ years). In selecting texts for inclusion,
we strived to maximize representativeness across all
proficiencies.

3.1 Data Format
The learner texts are made available as Unicode
(UTF-8) text files to ensure maximum compatibility
with linguistic and NLP tools.

3.2 Metadata
In order to support different research directions, ex-
tensive metadata about each text has been recorded.
This metadata is available in text, CSV and Mi-
crosoft Excel format. The variables are outlined be-
low.

Writing ID A unique id assigned to each text.

Writing Type Either exam or assignment.

Student ID While student names are redacted,
they are each assigned a unique ID which allows for
the analysis of longitudinal data in the corpus.

Date The submission date of the writing also en-
ables longitudinal analysis of a student’s data.

Gender, Age and Education level This data al-
lows the investigation of other research questions,
e.g. the critical age hypothesis (Birdsong, 1999).

Native Language This variable is helpful in
studying language transfer effects by taking into ac-
count the author’s native language.
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Other Acquired Languages It should be noted
that the currently used learner corpora, including the
ICLE and TOEFL11, fail to distinguish whether the
learner language is in fact the writer’s second lan-
guage, or if it is possibly a third language (L3). It has
been noted in the SLA literature that when acquiring
an L3, there may be instances of both L1- and L2-
based transfer effects on L3 production (Ringbom,
2001). Studies of such second language transfer ef-
fects during third language acquisition have been a
recent focus on cross-linguistic influence research
(Murphy, 2005). The JCLC is the first large-scale
learner corpus to include this information as well.

Proficiency Level Determined by the length of
study, as described above, a level of beginner, in-
termediate or advanced is assigned to each text.

Length of Chinese study The amount of time
spent studying Chinese. Study inside and outside
China are recorded separately.

Chinese heritage learner This variable indicates
if the learner is of Chinese heritage, was exposed to
Chinese at home, and if so, which dialect.

4 Corpus Analysis

We now turn to a brief analysis of the corpus. The
current version of the JCLC contains 5.91 million
Chinese characters across 8,739 texts. The top back-
grounds of the learners and their text frequency and
mean lengths4 are shown in Table 1.

We also observe high variability in text lengths
across the data.5 A histogram of the text lengths,
shown in Figure 1, confirms this trend. We believe
that this is a result of the data being collected from
a variety of tasks of different scopes from a range of
courses at different institutes. Most texts fall in the
250-700 token range of the distribution.

For text types, 57% of the texts are assignments
while the remaining 43% are mostly exams.

We can also look at the distribution of proficiency
levels in the data, as shown in Figure 2. The ma-
jority of the texts, 65%, fall into the medium cate-
gory with 21% and 14% in the low and high levels,
respectively. Comparing this distribution to that of
the data in the TOEFL11, also shown in Figure 2,

4As measured by the number of Chinese characters.
5The standard deviation in text length is 530 tokens.

Language Texts Mean Token Count
Indonesian 3381 663.62
Thai 1307 755.86
Vietnamese 824 721.41
Korean 568 399.45
Burmese 410 776.92
Laotian 398 794.78
Khmer 329 691.62
Filipino 293 1135.90
Japanese 270 446.13
Spanish 198 401.85
Mongolian 119 537.02
Others 642 418.26
Total 8739 675.93

Table 1: The top native language backgrounds available
in the corpus, including document counts and the average
number of Chinese tokens per text.
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Figure 1: Histogram of text lengths (bin size = 50).

we observe a similar trend with the great majority of
the data falling into the medium proficiency bracket.
The TOEFL11 has more advanced learners, which
is to be expected given that the texts are all collected
from a high-stakes exam.

While the data sampling is not equal across all
language/proficiency groups we note that this type
of imbalance is a perennial problem present in most
learner corpora and generally a result of the demo-
graphics of the students. Given these constraints,
we strived to adhere to key corpus design principles
(Wynne, 2005) at all stages.
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Figure 2: Proficiency distributions in the Jinan Chinese
Learner Corpus (left) and the TOEFL11 corpus (right).

In sum, we see that the JCLC is a large corpus and
represents various native language and proficiency
groups. These characteristics make it suitable for a
wide range of research tasks, as described in the next
section.

5 Applications

Educational studies in linguistics and NLP have
been increasing recently. To this end, this corpus
can be used in various areas, as outlined here.

Automatic Essay Scoring is an active area of re-
search that relies on examining the differences be-
tween proficiency levels using large learner data and
NLP methods (Yannakoudakis et al., 2011). Given
the inclusion of proficiency data, the JCLC could
also be used to investigate the extension of current
automatic grading techniques to Chinese, something
which has not been done to date.

Error Detection and Correction There is grow-
ing research in building error detection and cor-
rection systems trained on learner corpus data
(Dahlmeier and Ng, 2011; Han et al., 2010). This
was also the focus of a recent shared tasks includ-
ing Helping Our Own (Dale and Kilgarriff, 2011;
Dale et al., 2012) and CoNLL shared tasks (Ng et
al., 2013). A recent shared task also focused on Chi-
nese error correction (Yu et al., 2014). This research
was also recently extended to Chinese word ordering
error detection and correction (Cheng et al., 2014),
also using learner texts. The large JCLC can be used
in such tasks through the addition of error annota-
tions.

Native Language Identification is the task of in-
ferring an author’s native tongue based on their
writings in another language (Malmasi and Dras,
2015). This task mainly relies on learner corpora
and the JCLC could be directly applied here. A good
overview is presented in the review of the recent NLI
shared task (Tetreault et al., 2013). NLI methods
have already been tested on other languages includ-
ing Arabic and Finnish (Malmasi and Dras, 2014a;
Malmasi and Dras, 2014b).

Transfer Hypothesis Extraction Researchers
have recently investigated using data-driven tech-
niques combined with machine learning and NLP
to extract language transfer hypotheses from learner
corpora (Swanson and Charniak, 2014).

Second Language Acquisition researchers are in-
terested in contrasting the productions of natives and
non-natives (Housen, 2002). This is made possi-
ble with the JCLC data and the presence of multiple
L1s allows for contrastive interlanguage analysis be-
tween different native languages as well. The avail-
ability of such large-scale data with different L1-L2
combinations can enable broad language acquisition
research that can be extrapolated to other learners.

Pedagogical Material Development Learner cor-
pora have been used identify areas of difficulty and
enable material designers to create resources that
take into account the strengths and weaknesses of
students from distinct groups (McEnery and Xiao,
2011). This can also be further expanded to syllabus
development where corpus-derived knowledge can
be used to guide the design process.

Combined with language transfer analysis,
learner data can be used to aid development of
pedagogical material within a needs-based and
data-driven approach. Once language use patterns
are uncovered, they can be assessed for teachability
and used to create tailored, native language-specific
exercises and teaching material.

Automatic Assessment Generation Combined
with the above-mentioned error detection and lan-
guage transfer extraction methods, this data can be
used to automatically generate testing material (e.g.
Cloze tests). Following such an approach, recent
work by Sakaguchi et al. (2013) made use of large-
scale English learner data to generate fill-in-the-
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blank quiz items for language learners. Previous
research in this space had also considered the au-
tomatic generation of multiple-choice questions for
language testing (Hoshino and Nakagawa, 2005),
but without learner data. The use of learner cor-
pora containing naturally produced errors provides
a much more promising synergy, enabling the as-
sessment of more complex linguistic errors beyond
articles, prepositions and synonyms. With further
annotations of the present errors, the JCLC could be
used for such tasks.

6 Conclusion and Future Work

The JCLC, a sizeable project that has been ongoing
for the last 8 years, has yielded a large-scale lan-
guage resource for researchers – the first of its kind.
As the only such corpus of this size, the JCLC is a
valuable resource to support research in various ar-
eas, some of which we outlined here.

Research in most of the tasks described in section
5 has focused on English. The availability of the
JCLC will enable much of this work to be extended
to Chinese, potentially opening new research areas
for the community.

The JCLC is an ongoing project and new data
continues to be collected and added to the corpus.
No fixed target size has been set and it is anticipated
that the corpus will grow to be much larger than the
current size.

Several directions for future work are under con-
sideration. One avenue is the the creation of fur-
ther annotation layers over the data to include addi-
tional linguistic information such as Chinese word
segmentation boundaries, part-of-speech tags, con-
stituency parses and grammatical dependencies. The
inclusion of error annotations and manual correc-
tions is another potential avenue for future work.

Another possibility is the addition of a new sub-
corpus of native texts that can be used as a con-
trol group for comparing native and non-native data.
This would enable further analysis of learner inter-
language.
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Abstract

Automated short answer scoring is increas-
ingly used to give students timely feedback
about their learning progress. Building scor-
ing models comes with high costs, as state-
of-the-art methods using supervised learning
require large amounts of hand-annotated data.
We analyze the potential of recently proposed
methods for semi-supervised learning based
on clustering. We find that all examined meth-
ods (centroids, all clusters, selected pure clus-
ters) are mainly effective for very short an-
swers and do not generalize well to several-
sentence responses.

1 Introduction

Automated short answer scoring is getting more and
more important, e.g. in the context of large-scale as-
sessment in MOOCs or PISA (OECD, 2010). The
state of the art is currently to use supervised systems
that are trained for a certain assessment item using
manually annotated student responses. For high-
stakes assessments like PISA, the effort that goes
into manually scoring a large number of responses
in order to train a good model might be justified, but
it becomes a large obstacle in settings where new
items need to be generated more frequently, like in
MOOCs. Thus, in this paper we explore ways to
reduce the number of annotated training instances
required to train a model for a new item.

In the traditional setting, human annotators score
responses until a certain total or score distribution is
reached that is deemed sufficient to train the model.

∗Michael Heilman is now a Data Scientist at Civis Analyt-
ics.

As long as responses are randomly chosen for man-
ual scoring, it is inevitable that annotators will see
a lot of similar answers that will not add much new
knowledge to the trained model. Another drawback
is that the class distribution in the data is often highly
skewed (e.g. because there are only very few excel-
lent answers). Thus, the number of responses that
need to be manually scored is much higher than it
perhaps needs to be. It should be possible to replace
the random selection of responses to be annotated
with a more informed approach. In this paper, we
explore two approaches: (i) annotating single se-
lected instances, and (ii) annotating whole answer
clusters. The difference between the two approaches
is visualized in Figure 1.

In the first approach, we try to maximize lexical
diversity based on the assumption that the classifier
is best informed by responses that are as different as
possible (i.e. in the words used). In the second ap-
proach, we simulate letting annotators score whole
clusters with a label that is used for all instances in
this cluster. The main advantage of this method is
that it yields multiple training instances with just one
decision from the annotator. At the same time, judg-
ing whole clusters – especially if they are large – is
more difficult than judging a single response, so we
need to take this into consideration when comparing
the results.

2 Related Work

Basu et al. (2013) describe a related study on Power-
grading, an approach for computer-assisted scoring
of short-answer questions. They carry out experi-
ments using crowd-sourced responses to questions
from the US citizenship test. The end goal of that
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Figure 1: Comparison of the classical supervised approach with clustering approach where a subset of
instances is selected for manual annotation.

work is the clustering itself, which they argue is use-
ful for the teacher to understand the misconceptions
of the students, while for us it is only an intermediate
step towards a trained model for complete automatic
scoring of responses. Another major difference be-
tween our work and theirs is that we cluster the same
feature space that is also used for supervised clas-
sification (in order to ensure direct comparability),
while Basu et al. (2013) use a pairwise similarity-
based space.

The work closest to ours is Horbach et al. (2014)
who investigate approaches for selecting the opti-
mum response from within a cluster of responses for
a human to score in order to train automated scor-
ing models. They propagate the human score for
this optimum response to the rest of the cluster and
use this to train an automated scoring system. In
experiments on 1,668 very short German responses,
they show that a scoring accuracy of over 85% can
be achieved by only annotating 40% of the training
data. It is unclear what the distribution of scores
is in this dataset, and since they only report accu-
racy and do not report agreement measures such as
quadratic weighted kappa, we cannot easily interpret
the changes in performance between models.

Basu et al. (2013) and Horbach et al. (2014) both
use datasets with very short responses. As we will

show later, shorter responses are easier to cluster and
it is unclear whether these techniques generalize to
several-sentence responses.

While we only focus on the side of the training
data, it is also possible to change the learning pro-
cess itself. Lewis and Gale (1994) introduce un-
certainty sampling, a form of active learning where
a classifier is trained on a small annotated sample
and the classifier then finds examples where it is un-
certain, which are then also labeled by the teacher.
Ienco et al. (2013) combine active learning and clus-
tering to avoid sampling bias which is especially im-
portant for streaming data, i.e. when not all answers
are available at the beginning. Those first answer
might have a strong bias towards a certain outcome
class, e.g. better grades because the unmotivated stu-
dents wait until the last minute to submit. However,
this is less of a problem in standardized testing when
all students take the test at the same time.

A completely different approach that fully elimi-
nates the need for training data is to use peer-grading
(Kulkarni et al., 2014), where the grading process is
farmed out to students. The approach relies on the
assumption that (at least) some of the students know
the correct answer. However, if a misconception is
shared by a majority of students, peer-grading will
give fatally flawed results.
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# items # classes ∅ # responses ∅ # tokens type/token ratio

ASAP 10 3-4 1,704 (±157) 48 (±12) .040 (±.016)
PG 10 2 486 (±157) 4 (±2) .100 (±.005)

Table 1: Overview of datasets

3 Experimental Setup

In this section, we describe the datasets used for
evaluation as well as the principal setup of our su-
pervised scoring system.

3.1 Evaluation Datasets
We use two publicly available datasets. Table 1 gives
an overview of their properties.

Automated Student Assessment Prize (ASAP)
This dataset was used to run the 2012 short answer
scoring competition. See Higgins et al. (2014) for a
good overview of the challenge and the results. The
dataset contains 10 items with approximately 20,000
graded student answers. All responses were written
by students primarily in grade 10 and mostly consist
of multiple sentences. The responses were graded
on a 0-2 or 0-3 scale (i.e. 3–4 classes).

Powergrading (PG) The dataset was created by
Basu et al. (2013) and contains about 5,000 crowd-
sourced responses to 10 questions from the US citi-
zenship test.1 As can be quickly seen from Table 1,
the responses in this dataset are rather short with on
average 4 tokens. Looking into the data, it quickly
becomes clear that there is relatively little variance
in the answers. We thus expect clustering to work
rather well on this dataset.

We are not aware of any supervised systems using
the PG dataset before. In order to have a point of ref-
erence for the performance of the automatic scoring,
we computed an average pairwise inter-annotator-
agreement of .86 (quadratic weighted kappa) for the
three human annotators.

3.2 Scoring System
In order to allow for a fair comparison of all ap-
proaches, we implement a basic short answer scor-
ing system using the DKPro TC (Daxenberger et al.,

1In all our experiments, we excluded item #13 as it has mul-
tiple correct answers and is thus an anomaly amongst all the
other items.

2014) framework. We preprocess the answers using
the ClearNLP tools2 (segmenter, POS-tagger, lem-
matizer, and dependency parser). As we are not in-
terested in tuning every last bit of performance, we
use a standard feature set (length, ngrams, depen-
dencies) described in more detail in Table 2. We
use the DKPro TC wrapper for Weka and apply the
SMO learning algorithm in standard configuration.

3.3 Evaluation Metric
We use the evaluation metric that was also used in
the ASAP challenge: quadratic weighted kappa κ.
We follow the ASAP challenge procedure by apply-
ing Fisher-Z transformation when averaging kappas.
According to Bridgeman (2013), quadratic weighted
kappa is very similar to Pearson correlation r in such
a setting.

4 Baseline Results

Applying our basic scoring system and using all
available training data, we get a kappa of .67 for
the ASAP dataset and .96 for the PG dataset. The
extraordinaryly high result on the PG dataset (even
much higher than the inter-annotator agreement) im-
mediately stands out. As we have already discussed
above, the answers in the PG dataset are very short
and show very limited lexical variance making it
quite easy to learn a good model.

Our results on the ASAP dataset are about 10 per-
centage points lower than the best results from the
literature (Higgins et al., 2014). This is due to our
feature set and classifier not being tuned directly on
this dataset. The results are in line with what similar
systems achieved in the original competition. Re-
sults closer to the best results in the literature can
be reached by using more specialized features (Tan-
dalla, 2012) or by ensembling multiple scoring mod-
els (Zbontar, 2012).

With our system, we get quite consistent results
on all ASAP items, while attempts to tune the sys-

2http://clearnlp.wikispaces.com
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Name Configuration Description

length Number of words in the response Longer responses are often better.
ngrams 1-3 grams of words Which word sequences appear in good or bad responses.
skipNgrams 2-3 skip grams of words, 2 tokens

maximum skip
This accounts for non adjacent token combinations.

charNgrams 3-5 grams of characters This mainly accounts for spelling errors as also partially
correct word fragments can influence the score.

dependencies All dependencies, no threshold Like skipNgrams this measures whether a certain combi-
nation of tokens appears in the document, but also makes
sure they are in the same dependency relation.

Table 2: List of features

tem on a certain item led to decreased performance
on the others. For our experiments consistency is
more important than especially good baseline re-
sults, and so we choose to run the same system on
all ten items rather than developing ten separate sys-
tems that require individual tuning.

Impact of Training Data Size The main question
that we are exploring in this paper is whether some
answers are more valuable for training than others
(Lewis and Gale, 1994; Horbach et al., 2014). By
carefully selecting the training instances, we should
be able to train a model with performance compara-
ble to the full model that uses less training data and
thus is cheaper to create. In order to assess the po-
tential of this approach, it will be useful to compare
against the upper and lower bound in performance.
For this purpose, we need to find the best and worst
subset of graded answers. As the number of possi-
ble combinations of k instances from n answers is
much too high to search in its entirety, we test 1,000
random samples while making sure that all outcome
classes are found in the sample. In Figure 2, we
show the performance of the best and worst subset,
as well as the mean over all subsets. In order to avoid
clutter, we show averaged curves over all items in a
dataset.

Looking at the ASAP dataset first, we see that
in the average case doubling the amount of training
data yields a steady performance increase, but with
diminishing returns. Using about 100 (27) answers
means sacrificing more than 10 percentage points of
performance compared with using about 1,000 (210)
answers. However, it should be noted that in an av-
erage practical setting annotating 1,000 answers is

next to impossible and 100 still means a consider-
able effort even if one is willing to live with the sub-
optimal performance.

For the PG dataset, the pattern is similar in the
average case, but we need more training examples
in the worst case to get up and running, while the
ASAP worst case has a much steeper climb.

We see that the selection of instances actually has
an enormous effect for both datasets. Especially for
small numbers of training instances, depending on
how lucky or unlucky we are in picking instances
to score, we might end up with performance near
zero, or performance very close to what we can ex-
pect when training on all instances. When inspecting
the selected subsets it becomes clear that one crucial
factor is the lexical variance that we see in instances.
We explore this in more detail in the next section.

5 Selecting Answers for Annotation

The idea behind this approach is that given a limited
amount of training instances, we should only anno-
tate answers that inform the machine learner in an
optimal way. Our hypothesis is that the learning al-
gorithm should gain more from a lexically diverse
sample than from a sample of very similar answers.
For example, if we have already scored an answer
like Edison invented the light bulb, rating another
very similar one like The light bulb was invented
by Edison adds little additional information to the
model.

Setup We cluster all answers and then select the
centroid of each cluster for manual annotation. We
use Weka k-means clustering and set the k to the
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Figure 2: Learning curves for the supervised approach. Best and worst lines indicate the range of potential
for selecting good/bad subsamples for training.

desired number of instances we want to annotate.
As k-means might result in ‘virtual’ centroids that
do not correspond to any real instance, we deter-
mine the instance that is closest to the centroid. In
a practical setting, this selected instance would now
be presented to a teacher to be scored. In our setting,
we simulate this step by using data that was already
scored before. (Note that we do not use the score
during clustering so that a cluster might contain an-
swers with different scores.) The classifier is then
trained using the selected instances.

Results Figure 3 shows the resulting performance
when using only the centroids for training. We also
show the corresponding learning curves from Fig-
ure 2 for comparison.

For the ASAP dataset, results are very close to the
average performance, but most of the time slightly
worse. For the PG dataset, results are slightly
above average with the highest gains for the small-
est amount of training data. In both cases, the cen-
troids are obviously not the instances that maximize
the performance, as there is quite some room for im-
provement to reach the best performance.

However, we believe that the result is more impor-
tant than it might seem, as the average case against
which we are comparing here is only a statistical
observation. When selecting a subset of instances

for manual annotation, we might be lucky and get
even better performance than compared with all in-
stances, or we might be very unlucky and get a
model that does not generalize at all. Using cen-
troids, we can at least be sure of getting a reasonable
minimum performance even if it does not reach the
model’s full potential.

A disadvantage of maximizing lexical diversity is
that similar but contradicting answers like The solu-
tion is A and The solution is not A will be in the same
cluster and the difference cannot be learned. This
implies a need for better features so that the cluster-
ing can get better at distinguishing those cases.

In the next section, we explore whether using the
whole clusters might get us closer to the optimal per-
formance as was proposed in previous work.

6 Annotating Whole Clusters

In this section, we explore whether we can take the
clustering idea one step further. We explore how we
can make use of the whole clusters, not just the cen-
troids.

6.1 Using all clusters
If the teacher has already scored the centroid of a
cluster, we could use the same score for all other in-
stances in that cluster. This results in more instances
for training without incurring additional annotation
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Figure 3: Results for training only on answers selected using cluster centroids. Learning curves from
Figure 2 are shown for comparison.
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Figure 4: Results for projecting centroid score to whole clusters (all) and when selecting pure clusters
(pure). Learning curves from Figure 2 are shown for comparison.
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costs. However, this might obviously also result in
a large training error if the clusters are not pure, as
we would assign incorrect labels to some instances
in that case.

Following Horbach et al. (2014), we use the score
assigned to the centroid for the whole cluster and
obtain the results shown in Figure 4. For the ASAP
dataset, the curve is almost flat, i.e. no matter how
many cluster centroids the teacher annotates, predic-
tion results do not improve. The results even dip be-
low the ‘worst’ line which can be explained by the
fact that we are using a lot of noisy training data in
this case instead of fewer correct instances. For the
PG dataset, results are better due to the much eas-
ier clustering. In this case, we can get a significant
performance increase compared to just using cen-
troids especially for smaller amounts of annotated
instances.

As we are always clustering the whole set of an-
swers, selecting a small number of clusters and at the
same time asking for noise-free clusters is equivalent
to finding a perfect solution for the scoring prob-
lem. For example, if we have 4 scores (0,1,2,3) and
4 clusters, than the clusters can only be pure if all
the answers for each score are in their own cluster.
This is unlikely to happen. If the number of clusters
grows, we expect to have some smaller, purer clus-
ters where similar answers are grouped together, and
some larger clusters with a lot of noise.3 We thus
need to find a way to minimize the impact of noise
in our training data.

6.2 Using only pure clusters
One possible approach to reduce noise in the clus-
tered data would be to have the teacher look at the
whole clusters instead of individual answers only.
The teacher would then select only those clusters
that are relatively pure, i.e. only contain answers cor-
responding to the same score. We simulate this step
by computing the purity of each cluster using the
already known scores for each answer. The solid
line in Figure 4 shows the result for this scenario.
We see that for both datasets, the results are sig-
nificantly above average, getting close to the opti-
mal performance. We believe that this is due to

3Note that, if we ask for as many clusters as there are an-
swers in the set, each answer gets its own cluster and we get the
baseline results.
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Figure 5: Results annotating pure clusters for differ-
ent ‘exchange rates’, where 1:1 means that annotat-
ing a cluster and a single answer takes the same time,
2:1 a cluster takes twice as long as a single answer,
etc.

the pure clusters representing frequent correct an-
swers or frequent misconceptions shared between
students, while impure clusters represent noisy an-
swers that lead to overfitting in the learned model.

Annotation Difficulty One obvious criticism of
this approach is that scoring a large cluster takes
much longer than scoring a single answer. As a con-
sequence, the ‘exchange rate’ between scoring an
individual answer and a cluster is not 1:1. For ex-
ample, a 4:1 rate would mean that it takes 4 longer
to annotate a cluster compared to a single answer,
or in other terms, while annotating a single cluster a
teacher could annotate 4 single answers in the same
time. In Figure 5, we plot the results on the ASAP
dataset for the pure clusters using exchange rates of
1:1, 2:1, and 4:1. With a 2:1 ratio, the pure ASAP
clusters are still somewhat ahead of the average per-
formance, with a 4:1 ratio slightly below. While es-
timating the exact exchange ratio is left to future an-
notation studies with real teachers annotating clus-
ters, it seems safe to argue that it will be closer to 4:1
than to 1:1, thus resulting in no benefit to the method
on the ASAP dataset in terms of manual work to be
saved. For the PG dataset, the results are obviously
above average and very close to the optimal perfor-
mance no matter what exchange rate is used. We can
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thus conclude that the effectiveness of this method
strongly depends on how well the answers can be
clustered. This in turn depends on both the nature of
the answers and the quality of the feature space (or
similarity function for graph clustering). As we are
using the same feature set for both datasets, the good
results on PG can only be explained with the rather
short answers and the low lexical variance. How-
ever, a better baseline model of answer similarity
might also push results on the ASAP dataset more
towards the optimal result.

7 Conclusions

In this paper, we explored approaches for minimiz-
ing the required amount of annotated instances when
training supervised short answer scoring systems.
Instead of letting a teacher annotate all instances in
advance, we argue that by carefully selecting the
instances we might be able to train a comparable
model at much lower costs. We do this by cluster-
ing the answers and having the teacher only annotate
the cluster centroids. We find that – especially for
small amounts of instances to be annotated – using
centroids yields results comparable to the average
random selection of the same number of instances.
This means that centroids provide a convenient way
to select suitable instances for annotation instead of
random selection, but only if one is comfortable with
significantly sacrificing scoring quality.

In a second experiment, we follow Horbach et al.
(2014) projecting the score assigned to the centroid
to the whole cluster. Especially for longer answers
that doesn’t work well due to the noise introduced
by imperfect clustering. Having the teacher select
and annotate only pure clusters counters the noise
problem, but introduces quite high annotation costs
that probably negate any gains.

To summarize: the results indicate that clustering
has limited potential for reducing the annotation ef-
fort if the answers are short enough to be partitioned
well, but is not well suited for longer answers. It
remains an open question whether better clustering
based on a deeper understanding of multiple sen-
tence answers could change that picture. We make
the full source code publicly available so that our
experiments can be easily replicated.4

4https://github.com/zesch/exp-grading-bea2015
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Abstract

This paper explores the annotation and classi-
fication of students’ revision behaviors in ar-
gumentative writing. A sentence-level revi-
sion schema is proposed to capture why and
how students make revisions. Based on the
proposed schema, a small corpus of student
essays and revisions was annotated. Stud-
ies show that manual annotation is reliable
with the schema and the annotated informa-
tion helpful for revision analysis. Further-
more, features and methods are explored for
the automatic classification of revisions. In-
trinsic evaluations demonstrate promising per-
formance in high-level revision classification
(surface vs. text-based). Extrinsic evaluations
demonstrate that our method for automatic re-
vision classification can be used to predict a
writer’s improvement.

1 Introduction

Rewriting is considered as an important factor of
successful writing. Research shows that expert writ-
ers revise in ways different from inexperienced writ-
ers (Faigley and Witte, 1981). Recognizing the im-
portance of rewriting, more and more efforts are be-
ing made to understand and utilize revisions. There
are rewriting suggestions made by instructors (Wells
et al., 2013), studies modeling revisions for error
correction (Xue and Hwa, 2010; Mizumoto et al.,
2011) and tools aiming to help students with rewrit-
ing (Elireview, 2014; Lightside, 2014).

While there is increasing interest in the improve-
ment of writers’ rewriting skills, there is still a lack
of study on the details of revisions. First, to find

out what has been changed (defined as revision ex-
traction in this paper), a typical approach is to ex-
tract and analyze revisions at the word/phrase level
based on edits extracted with character-level text
comparison (Bronner and Monz, 2012; Daxenberger
and Gurevych, 2012). The semantic information
of sentences is not considered in the character-level
text comparison, which can lead to errors and loss
of information in revision extraction. Second, the
differentiation of different types of revisions (de-
fined as revision categorization) is typically not
fine-grained. A common categorization is a binary
classification of revisions according to whether the
information of the essay is changed or not (e.g.
text-based vs. surface as defined by Faigley and
Witte (1981)). This categorization ignores poten-
tially important differences between revisions under
the same high-level category. For example, chang-
ing the evidence of a claim and changing the rea-
soning of a claim are both considered as text-based
changes. Usually changing the evidence makes a pa-
per more grounded, while changing the reasoning
helps with the paper’s readability. This could indi-
cate different levels of improvement to the original
paper. Finally, for the automatic differentiation of
revisions (defined as revision classification), while
there are works on the classification of Wikipedia
revisions (Adler et al., 2011; Bronner and Monz,
2012; Daxenberger and Gurevych, 2013), there is
a lack of work on revision classification in other
datasets such as student writings. It is not clear
whether current features and methods can still be
adapted or new features and methods are required.

To address the issues above, this paper makes
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.

Figure 1: In the example, words in sentence 1 of Draft 1 are rephrased and reordered to sentence 3 of Draft
2. Sentences 1 and 2 in Draft 2 are newly added. Our method first marks 1 and 3 as aligned and the other two
sentences of Draft 2 as newly added based on semantic similarity of sentences. The purposes and operations
are then marked on the aligned pairs. In contrast, previous work extracts differences between drafts at the
character level to get edit segments. The revision is extracted as a set of sentences covering the contiguous
edit segments. Sentence 1 in Draft 1 is wrongly marked as being modified to 1, 2, 3 in Draft 2 because
character-level text comparison could not identify the semantic similarity between sentences.

the following efforts. First, we propose that it is
better to extract revisions at a level higher than
the character level, and in particular, explore the
sentence-level. This avoids the misalignment errors
of character-level text comparisons. Finer-grained
studies can still be done on the sentence-level revi-
sions extracted, such as fluency prediction (Chae and
Nenkova, 2009), error correction (Cahill et al., 2013;
Xue and Hwa, 2014), statement strength identifica-
tion (Tan and Lee, 2014), etc. Second, we propose
a sentence-level revision schema for argumentative
writing, a common form of writing in education. In
the schema, categories are defined for describing an
author’s revision operations and revision purposes.
The revision operations can be directly decided ac-
cording to the results of sentence alignment, while
revision purposes can be reliably manually anno-
tated. We also do a corpus study to demonstrate the
utility of sentence-level revisions for revision anal-
ysis. Finally, we adapt features from Wikipedia re-
vision classification work and explore new features
for our classification task, which differs from prior
work with respect to both the revision classes to be
predicted and the sentence-level revision extraction
method. Our models are able to distinguish whether
the revisions are changing the content or not. For

fine-grained classification, our models also demon-
strate good performance for some categories. Be-
yond the classification task, we also investigate the
pipelining of revision extraction and classification.
Results of an extrinsic evaluation show that the au-
tomatically extracted and classified revisions can be
used for writing improvement prediction.

2 Related work

Revision extraction To extract the revisions for
revision analysis, a widely chosen strategy uses
character-based text comparison algorithms first and
then builds revision units on the differences ex-
tracted (Bronner and Monz, 2012; Daxenberger and
Gurevych, 2013). While theoretically revisions ex-
tracted with this method can be more precise than
sentence-level extractions, it could suffer from the
misalignments of revised content due to character-
level text comparison algorithms. For example,
when a sentence is rephrased, a character-level text
comparison algorithm is likely to make alignment
errors as it could not recognize semantic similarity.
As educational research has suggested that revision
analysis can be done at the sentence level (Faigley
and Witte, 1981), we propose to extract revisions at
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the sentence level based on semantic sentence align-
ment instead. Figure 1 provides an example com-
paring revisions annotated in our work to revisions
extracted in prior work (Bronner and Monz, 2012).
Our work identifies the fact that the student added
new information to the essay and modified the orga-
nization of old sentences. The previous work, how-
ever, extracts all the modifications as one unit and
cannot distinguish the different kinds of revisions
inside the unit. Our method is similar to Lee and
Webster’s method (Lee and Webster, 2012), where a
sentence-level revision corpus is built from college
students’ ESL writings. However, their corpus only
includes the comments of the teachers and does not
have every revision annotated.

Revision categorization In an early educational
work from Faigley and Witte (1981), revisions are
categorized to text-based change and surface change
based on whether they changed the information of
the essay or not. A similar categorization (factual
vs. fluency) was chosen by Bronner and Monz
(2012) for classifying Wikipedia edits. However,
many differences could not be captured with such
coarse grained categorizations. In other works on
Wikipedia revisions, finer categorizations of revi-
sions were thus proposed: vandalism, paraphrase,
markup, spelling/grammar, reference, information,
template, file etc. (Pfeil et al., 2006; Jones, 2008;
Liu and Ram, 2009; Daxenberger and Gurevych,
2012). Corpus studies were conducted to analyze
the relationship between revisions and the quality
of Wikipedia papers based on the categorizations.
Unfortunately, their categories are customized for
Wikipedia revisions and could not easily be applied
to educational revisions such as ours. In our work,
we provide a fine-grained revision categorization de-
signed for argumentative writing, a common form of
writing in education, and conduct a corpus study to
analyze the relationship between our revision cate-
gories and paper improvement.

Revision classification Features and methods are
widely explored for Wikipedia revision classifica-
tions (Adler et al., 2011; Mola-Velasco, 2011; Bron-
ner and Monz, 2012; Daxenberger and Gurevych,
2013; Ferschke et al., 2013). Classification tasks in-
clude binary classification for coarse categories (e.g.
factual vs. fluency) and multi-class classification for

fine-grained categories (e.g. 21 categories defined
by Daxenberger and Gurevych (2013)). Results
show that the binary classifications on Wikipedia
data achieve a promising result. Classification of
finer-grained categories is more difficult and the dif-
ficulty varies across different categories. In this
paper we explore whether the features used in
Wikipedia revision classification can be adapted to
the classification of different categories of revisions
in our work. We also utilize features from research
on argument mining and discourse parsing (Burstein
et al., 2003; Burstein and Marcu, 2003; Sporleder
and Lascarides, 2008; Falakmasir et al., 2014; Braud
and Denis, 2014) and evaluate revision classification
both intrinsically and extrinsically. Finally, we ex-
plore end-to-end revision processing by combining
automatic revision extraction and categorization via
automatic classification in a pipelined manner.

3 Sentence-level revision extraction and
categorization

This section describes our work for sentence-level
revision extraction and revision categorization. A
corpus study demonstrates the use of the sentence-
level revision annotations for revision analysis.

3.1 Revision extraction
As stated in the previous section, our method takes
semantic information into consideration when ex-
tracting revisions and uses the sentence as the ba-
sic semantic unit; besides the utility of sentence re-
visions for educational analysis (Faigley and Witte,
1981; Lee and Webster, 2012), automatic sentence
segmentation is quite accurate. Essays are split into
sentences first, then sentences across the essays are
aligned based on semantic similarity.1 An added
sentence or a deleted sentence is treated as aligned
to null as in Figure 1. The aligned pairs where the
sentences in the pair are not identical are extracted as
revisions. For the automatic alignment of sentences,

1We plan to also explore revision extraction at the clause
level in the future. Our approach can be adapted to the clause
level by segmenting the clauses first and aligning the segmented
clauses after. A potential benefit is that clauses are often the ba-
sic units of discourse structures, so extracting clause revisions
will allow the direct use of discourse parser outputs (Feng and
Hirst, 2014; Lin et al., 2014). However, potential problems are
that clauses contain less information for alignment decisions
and clause segmentation is noisier.
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we used the algorithm in our prior work (Zhang
and Litman, 2014) which considers both sentence
similarity (calculated using TF*IDF score) and the
global context of sentences.

3.2 Revision schema definition
As shown in Figure 2, two dimensions are consid-
ered in the definition of the revision schema: the au-
thor’s behavior (revision operation) and the reason
for the author’s behavior (revision purpose).

Revision operations include three categories:
Add, Delete, Modify. The operations are decided
automatically after sentences get aligned. For ex-
ample, in Figure 1 where Sentence 3 in Draft 2 is
aligned to sentence 1 in Draft 1, the revision op-
eration is decided as Modify. The other two sen-
tences are aligned to null, so the revision operations
of these alignments are both decided as Add.

The definitions of revision purposes come
from several works in argumentative writing
and discourse analysis. Claims/Ideas, War-
rant/Reasoning/Backing, Rebuttal/Reservation, Ev-
idence come from Claim, Rebuttal, Warrant, Back-
ing, Grounds in Toulmin’s model (Kneupper, 1978).
General Content comes from Introductory mate-
rial in the essay-based discourse categorization of
Burstein et al. (2003). The rest come from the cat-
egories within the surface changes of Faigley and
Witte (1981). Examples of all categories are shown
in Table 1. These categories can further be mapped
to surface and text-based changes defined by Faigley
and Witte (1981), as shown in Figure 2.

Note that while our categorization comes from the
categorization of argumentative writing elements, a
key difference is that our categorization focuses on
revisions. For example, while an evidence revision
must be related to the evidence element of the essay,
the reverse is not necessarily true. The modifications
on an evidence sentence could be just a correction of
spelling errors rather than an evidence revision.

3.3 Data annotation
Our data consists of the first draft (Draft 1) and sec-
ond draft (Draft 2) of papers written by high school
students taking English writing courses; papers were
revised after receiving and generating peer feed-
back. Two assignments (from different teachers)
have been annotated so far. Corpus C1 comes from

Figure 2: For the revision purpose, 8 categories are
defined. These categories can be mapped to surface
and text-based changes. Revision operations include
Add, Delete, Modify (A, D, M in the figure). Only
text-based changes have Add and Delete operations.

an AP-level course, contains papers about Dante’s
Inferno and contains drafts from 47 students, with
1262 sentence revisions. A Draft 1 paper contains
38 sentences on average and a Draft 2 paper con-
tains 53. Examples from this corpus are shown in
Table 1. After data was collected, a score from 0
to 5 was assigned to each draft by experts (for re-
search prior to our study). The score was based on
the student’s performance including whether the stu-
dent stated the ideas clearly, had a clear paper or-
ganization, provided good evidence, chose the cor-
rect wording and followed writing conventions. The
class’s average score improved from 3.17 to 3.74 af-
ter revision. Corpus C2 (not AP) contains papers
about the poverty issues of the modern reservation
and contains drafts from 38 students with 495 revi-
sions; expert ratings are not available. Papers in C2
are shorter than C1; a Draft 1 paper contains 19 sen-
tences on average and a Draft 2 paper contains 26.

Two steps were involved in the revision scheme
annotation of these corpora. In the first step, sen-
tences between the two drafts were aligned based
on semantic similarity. The kappa was 0.794 for
the sentence alignment on C1. Two annotators dis-
cussed about the disagreements and one annotator’s
work was decided to be better and chosen as the gold
standard after discussion. The sentence alignment
on C2 is done by one annotator after his annotation
and discussion of the sentence alignment on C1. In
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Codes Claims/Ideas: change of the position or claim being argued for
Conventions/Grammar/Spelling: changes to fix spelling or grammar errors, misusage of punc-
tuation or to follow the organizational conventions of academic writing

Example Draft 1: (1, “Saddam Hussein and Osama Bin Laden come to mind when mentioning wrath-
ful people”)
Draft 2: (1, “Fidel Castro comes to mind when mentioning wrathful people”)

Revisions (1->1, Modify, “claims/ideas”), (1->1, Modify, “conventions/grammar/spelling”)
Codes Evidence: change of facts, theorems or citations for supporting claims/ideas

Rebuttal/Reservation: change of development of content that rebut current claim/ideas
Example Draft 1: (1, “In this circle I would place Fidel.”)

Draft 2: (1, “In the circle I would place Fidel”), (2, “He was annoyed with the existence of
the United States and used his army to force them out of his country”), (3, “Although
Fidel claimed that this is for his peoples’ interest, it could not change the fact that he is a
wrathful person.”)

Revisions (null->2, “Add”, “Evidence”), (null->3, “Add”, “Rebuttal/Reservation”)
Codes Word-usage/Clarity: change of words or phrases for better representation of ideas

Organization: changes to help the author get a better flow of the paper
Warrant/Reasoning/Backing: change of principle or reasoning of the claim
General Content: change of content that do not directly support or rebut claims/ideas

Example As in Figure 1

Table 1: Examples of different revision purposes. Note that in the second example the alignment is not
extracted as a revision when the sentences are identical.

the second step, revision purposes were annotated
on the aligned sentence pairs. Each aligned sentence
pair could have multiple revision purposes (although
rare in the annotation of our current corpus). The
full papers were also provided to the annotators for
context information. The kappa score for the revi-
sion purpose annotation is shown in Table 2, which
demonstrates that our revision purposes could be an-
notated reliably by humans. Again one annotator’s
annotation is chosen as the gold standard after dis-
cussion. Distribution of different revision purposes
is shown in Tables 3 and 4.

3.4 Corpus study

To demonstrate the utility of our sentence-level revi-
sion annotations for revision analysis, we conducted
a corpus study analyzing relations between the num-
ber of each revision type in our schema and stu-
dent writing improvement based on the expert paper
scores available for C1. In particular, the number of
revisions of different categories are counted for each
student. Pearson correlation between the number of

revisions and the students’ Draft 2 scores is calcu-
lated. Given that the student’s Draft 1 and Draft 2
scores are significantly correlated (p < 0.001, R =
0.632), we controlled for the effect of Draft 1 score
by regressing it out of the correlation.2 We expect
surface changes to have smaller impact than text-
based changes as Faigley and Witte (1981) found
that advanced writers make more text-based changes
comparing to inexperienced writers.

As shown by the first row in Table 5, the overall
number of revisions is significantly correlated with
students’ writing improvement. However, when
we compare revisions using Faigley and Witte’s
binary categorization, only the number of text-
based revisions is significantly correlated. Within
the text-based revisions, only Claims/Ideas, War-
rant/Reasoning/Backing and Evidence are signifi-
cantly correlated. These findings demonstrate that
revisions at different levels of granularity have dif-
ferent relationships to students’ writing success,

2Such partial correlations are one common way to measure
learning gain in the tutoring literature, e.g. (Baker et al., 2004).
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Revision Purpose Kappa (C1) Kappa (C2)
Surface

Organization 1 1
Conventions 0.74 0.87
Word-usage 1 1

Text-based
Claim 0.76 0.89
Warrant 0.78 0.85
Rebuttal 1 1
General Content 0.76 0.80
Evidence 1 1

Table 2: Agreement of annotation on each category.

which suggests that our schema is capturing salient
characteristics of writing improvement.

While correlational, these results also suggest the
potential utility of educational technologies based
on fine-grained revision analysis. For teachers, sum-
maries of the revision purposes in a particular paper
(e.g. “The author added more reasoning sentences
to his old claim, and changed the evidence used to
support the claim.”) or across the papers of multiple
students (e.g. “90% of the class made only surface
revisions”) might provide useful information for pri-
oritizing feedback. Fine-grained revision analysis
might also be used to provide student feedback di-
rectly in an intelligent tutoring system.

4 Revision classification

In the previous section we described our revision
schema and demonstrated the utility of it. This sec-
tion investigates the feasibility of automatic revision
analysis. We first explore classification assuming we
have revisions extracted with perfect sentence align-
ment. After that we combine revision extraction and
revision classification in a pipelined manner.

4.1 Features
As shown in Figure 3, besides using unigram fea-
tures as a baseline, our features are organized into
Location, Textual, and Language groups following
prior work (Adler et al., 2011; Bronner and Monz,
2012; Daxenberger and Gurevych, 2013).

Baseline: unigram features. Similarly to Dax-
enberger and Gurevych (2012), we choose the count
of unigram features as a baseline. Two types of uni-

Rev Purpose # Add # Delete #Modify
Total 800 96 366
Surface 0 0 297

Organization 0 0 35
Conventions 0 0 84
Word-usage 0 0 178

Text-based 800 96 69
Claim 80 23 8
Warrant 335 40 14
Rebuttal 1 0 0
General 289 23 42
Evidence 95 10 5

Table 3: Distribution of revisions of corpus C1.

Rev Purpose # Add # Delete #Modify
Total 280 53 162
Surface 0 0 141

Organization 0 0 1
Conventions 0 0 29
Word-usage 0 0 111

Text-based 280 53 21
Claim 42 12 4
Warrant 153 23 10
Rebuttal 0 0 0
General 60 13 6
Evidence 25 5 1

Table 4: Distribution of revisions of corpus C2.

Revision Purpose R p
# All revisions (N = 1262) 0.516 <0.001
# Surface revisions 0.137 0.363

# Organization 0.201 0.180
# Conventions -0.041 0.778
# Word-usage/Clarity 0.135 0.371

# Text-based revisions 0.546 <0.001
# Claim/Ideas 0.472 0.001
# Warrant 0.462 0.001
# General 0.259 0.083
# Evidence 0.415 0.004

Table 5: Partial correlation between number of re-
visions and Draft 2 score on corpus C1 (partial cor-
relation regresses out Draft 1 score); rebuttal is not
evaluated as there is only 1 occurrence.
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.

Figure 3: An example of features extracted for the aligned sentence pair (2->2).

grams are explored. The first includes unigrams ex-
tracted from all the sentences in an aligned pair. The
second includes unigrams extracted from the differ-
ences of sentences in a pair.

Location group. As Falakmasir et al. (2014)
have shown, the positional features are helpful for
identifying thesis and conclusion statements. Fea-
tures used include the location of the sentence and
the location of paragraph .3

Textual group. A sentence containing a spe-
cific person’s name is more likely to be an exam-
ple for a claim; sentences containing “because” are
more likely to be a sentence of reasoning; a sen-
tence generated by text-based revisions is possibly
more different from the original sentence compared
to a sentence generated by surface revisions. These
intuitions are operationalized using several feature
groups: Named entity features4 (also used in Bron-
ner and Monz (2012)’s Wikipedia revision classi-
fication task), Discourse marker features (used by

3Since Add and Delete operations have only one sentence in
the aligned pair, the value of the empty sentence is set to 0.

4Stanford parser (Klein and Manning, 2003) is used in
named entity recognition.

Burstein et al. (2003) for discourse structure identi-
fication), Sentence difference features and Revision
operation (similar features are used by Daxenberger
and Gurevych (2013)).

Language group. Different types of sentences
can have different distributions in POS tags (Daxen-
berger and Gurevych, 2013). The difference in the
number of spelling/grammar mistakes5 is a possi-
ble indicator as Conventions/Grammar/Spelling re-
visions probably decrease the number of mistakes.

4.2 Experiments

Experiment 1: Surface vs. text-based As the cor-
pus study in Section 3 shows that only text-based
revisions predict writing improvement, our first ex-
periment is to check whether we can distinguish be-
tween the surface and text-based categories. The
classification is done on all the non-identical aligned
sentence pairs with Modify operations6. We choose
10-fold (student) cross-validation for our experi-

5The spelling/grammar mistakes are detected using the lan-
guagetool toolkit (https://www.languagetool.org/).

6Add and Delete pairs are removed from this task as only
text-based changes have Add and Delete operations.
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N = 366 Precision Recall F-score
Majority 32.68 50.00 37.12
Unigram 45.53 49.90 46.69
All features 62.89∗ 58.19∗ 55.30∗

Table 6: Experiment 1 on corpus C1 (Surface vs.
Text-based): average unweighted precision, recall,
F-score from 10-fold cross-validation; ∗ indicates
significantly better than majority and unigram.

ment. Random Forest of the Weka toolkit (Hall et
al., 2009) is chosen as the classifier. Considering the
data imbalance problem, the training data is sampled
with a cost matrix decided according to the distribu-
tion of categories in training data in each round. All
features are used except Revision operation (since
only Modify revisions are in this experiment).

Experiment 2: Binary classification for each
revision purpose category In this experiment, we
test whether the system could identify if revisions of
each specific category exist in the aligned sentence
pair or not. The same experimental setting for sur-
face vs. text-based classification is applied.

Experiment 3: Pipelined revision extraction
and classification In this experiment, revision ex-
traction and Experiment 1 are combined together as
a pipelined approach7. The output of sentence align-
ment is used as the input of the classification task.
The accuracy of sentence alignment is 0.9177 on C1
and 0.9112 on C2. The predicted Add and Delete re-
visions are directly classified as text-based changes.
Features are used as in Experiment 1.

4.3 Evaluation
In the intrinsic evaluation, we compare different fea-
ture groups’ importance. Paired t-tests are utilized
to compare whether there are significant differences
in performance. Performance is measured using un-
weighted F-score. In the extrinsic evaluation, we re-
peat the corpus study from Section 3 using the pre-
dicted counts of revision. If the results in the intrin-
sic evaluation are solid, we expect that a similar con-
clusion could be drawn with the results from either
predicted or manually annotated revisions.

Intrinsic evaluation Tables 6 and 7 present the
results of the classification between surface and text-

7We leave pipelined fine-grained classification to the future.

N = 162 Precision Recall F-score
Majority 31.57 40.00 33.89
Unigram 50.91 50.40 51.79
All features 56.11∗ 55.03∗ 54.49∗

Table 7: Experiment 1 on corpus C2.

based changes on corpora C1 and C2. Results show
that for both corpora, our learned models signifi-
cantly beat majority and unigram baselines for all
of unweighted precision, recall and F-score; the F-
score for both corpora is approximately 55.

Tables 8 and 9 show the classification results for
the fine-grained categories. Our results are not sig-
nificantly better than the unigram baseline on Ev-
idence of C1, C2 and Claim of C2. While the
poor performance on Evidence might be due to the
skewed class distribution, our model also performs
better on Conventions where there are not many in-
stances. For the categories where our model per-
forms significantly better than the baselines, we see
that the location features are the best features to add
to unigrams for the text-based changes (significantly
better than baselines except Evidence), while the
language and textual features are better for surface
changes. We also see that using all features does not
always lead to better results, probably due to over
fitting. Replicating experiments in two corpora also
demonstrates that our schema and features can be
applied across essays with different topics (Dante
vs. poverty) written in different types of courses (ad-
vanced placement or not) with similar results.

For the intrinsic evaluation of our pipelined ap-
proach (Experiment 3), as the revisions extracted
are not exactly the same as the revisions annotated
by humans, we only report the unweighted precision
and unweighted recall here; C1 (p: 40.25, r: 45.05)
and C2 (p: 48.08, r: 54.30). Paired t-test shows that
the results significantly drop compared to Tables 6
and 7 because of the errors made in revision extrac-
tion, although still outperform the majority baseline.

Extrinsic evaluation According to Table 10 , the
conclusions drawn from the predicted revisions and
annotated revisions are similar (Table 5). Text-based
changes are significantly correlated with writing im-
provement, while surface changes are not. We can
also see that the coefficient of the predicted text-
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N = 1261 Text-based Surface
Experiments Claim Warrant General Evidence Org. Word Conventions
Majority 39.24 32.25 29.38 27.47 25.49 27.75 31.23
Unigram 65.64 63.24 69.21 60.40 49.23 62.07 56.05
All features 66.20 70.76∗ 72.65∗ 60.57 54.01∗ 73.79∗ 70.95∗
Textual+unigram 71.54∗ 68.13∗ 70.76 59.73 52.62∗ 75.92∗ 71.98∗
Language+unigram 67.76∗ 66.27∗ 69.23 59.81 49.21 65.01∗ 69.62∗
Location+unigram 69.90∗ 67.78∗ 72.94∗ 59.14 49.25 62.40 66.85∗

Table 8: Experiment 2 on corpus C1: average unweighted F-score from 10-fold cross-validation; ∗ indicates
significantly better than majority and unigram baselines. Rebuttal is removed as it only occurred once.

N = 494 Text-based Surface
Experiments Claim Warrant General Evidence Word Conventions
Majority 24.89 32.05 28.21 27.02 13.00 32.67
Unigram 54.34 64.06 55.00 56.99 49.56 60.09
All features 50.22 67.50∗ 56.50 53.90 56.07∗ 77.78∗
Textual+unigram 52.19 65.79 55.74 56.08 54.19∗ 76.08∗
Language+unigram 50.54 68.24∗ 56.42 56.15 58.83∗ 78.92∗
Location+unigram 53.20 66.45∗ 58.08∗ 52.57 51.55 75.39∗

Table 9: Experiment 2 on corpus C2; Organization is removed as it only occurred once.

Predicted purposes R p
#All revisions (N = 1262) 0.516 <0.001
#Surface revisions 0.175 0.245
#Text-based revisions 0.553 <0.001
Pipeline predicted purposes R p
#All (predicted N = 1356) 0.509 <0.001
#Surface revisions 0.230 0.124
#Text-based revisions 0.542 <0.001

Table 10: Partial correlation between number of pre-
dicted revisions and Draft 2 score on corpus C1.
(Upper: Experiment 1, Lower: Experiment 3)

based change correlation is close to the coefficient
of the manually annotated results.

5 Conclusion and current directions

This paper contributes to the study of revisions for
argumentative writing. A revision schema is defined
for revision categorization. Two corpora are anno-
tated based on the schema. The agreement study
demonstrates that the categories defined can be re-
liably annotated by humans. Study of the annotated

corpus demonstrates the utility of the annotation for
revision analysis. For automatic revision classifica-
tion, our system can beat the unigram baseline in
the classification of higher level categories (surface
vs. text-based). However, the difficulty increases for
fine-grained category classification. Results show
that different feature groups are required for differ-
ent purpose classifications. Results of extrinsic eval-
uations show that the automatically analyzed revi-
sions can be used for writer improvement prediction.

In the future, we plan to annotate revisions
from different student levels (college-level, grad-
uate level, etc.) as our current annotations lack
full coverage of all revision purposes (e.g., “Re-
buttal/Reservation” rarely occurs in our high school
corpora). We also plan to annotate data from other
educational genres (e.g. technical reports, science
papers, etc.) to see if the schema generalizes, and to
explore more category-specific features to improve
the fine-grained classification results. In the longer-
term, we plan to apply our revision predictions in
a summarization or learning analytics systems for
teachers or a tutoring system for students.
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Abstract 

We introduce a novel framework based on the 

probabilistic model for emotion wording as-

sistance. The example sentences from the on-

line dictionary, Vocabulary.com are utilized as 

the training data; and the writings in a de-

signed ESL’s writing task are the testing cor-

pus. The emotion events are captured by 

extracting patterns of the example sentences. 

Our approach learns the joint probability of 

contextual emotion events and the emotion 

words from the training corpus. After extract-

ing patterns in the testing corpus, we then ag-

gregate their probabilities to suggest the 

emotion word that describes the ESL’s con-

text most appropriately. We evaluate the pro-

posed approach by the NDCG@5 of the 

suggested words for the writings in the testing 

corpus. The experiment result shows our ap-

proach can more appropriately suggest the 

emotion words compared to SVM, PMI and 

two representative on-line reference tools, 

PIGAI and Thesaurus.com. 

1 Introduction 

Most English-as-a-second-language (ESL) learners 

have been found to have difficulties in emotion 

vocabulary (Pavlenko, 2008). With limited lexical 

knowledge, learners tend to use common emotion 

words such as angry and happy to describe their 

feelings. Moreover, the learner’s first language 

seems to lead to inappropriate word choices (Altar-

riba and Basnight-Brown, 2012).  Many learners 

consult the thesaurus for synonyms of emotion 

words; typically, the synonyms suggested come 

with little or no definition or usage information. 

Moreover, the suggested synonyms seldom take 

into account contextual information. As a result, 

the thesaurus does not always help language learn-

ers select appropriately nuanced emotion words, 

and can even mislead learners into choosing im-

proper words that sometimes convey the wrong 

message (Chen et al., 2013). Take embarrassed 

and awkward for example: although they both de-

scribe situations where people feel uneasy or un-

comfortable, in practice they are used in different 

scenarios. According to Vocabulary.com, embar-

rassed is more self-conscious and can result from 

shame or wounded pride: for instance, He was too 

embarrassed to say hello to his drunken father on 

the street. On the other hand, awkward would be 

“socially uncomfortable” or “unsure and con-

strained in manner”: He felt awkward and reserved 

at parties. These examples illustrate not only the 

nuances between synonymous emotion words, but 

also the difficulty for language learners in deter-

mining proper words. There is a pressing need for 

a reference resource providing a sufficient number 

of emotion words and their corresponding usage 

information to help language learners expand their 

knowledge of emotion words and learn proper 

emotional expressions. 

To address this issue, we propose a novel ap-

proach to help differentiate synonyms of emotion 

words based on contextual clues—Ranking Emo-

tional SynOnyms for language Learners’ Vocabu-

lary Expansion (RESOLVE). This involves first 

the learning of emotion event scores between an 

event and an emotion word from a corpus: these 
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scores quantify how appropriate an emotion word 

is to describe a given event. Subsequently, based 

on the emotion event in the learner’s text, 

RESOLVE suggests a list of ranked emotion words. 

2 Related Work 

Previous studies related to RESOLVE can be di-

vided into four groups: paraphrasing, emotion 

classification, word suggestion and writing as-

sessment. The aim of paraphrasing research is how 

to express the same information in various ways. 

Such alternative expressions of the same infor-

mation rely on paraphrase pairs which map an ex-

pression to a previously learned counterpart, or 

inference rules that re-structure the original sen-

tences. Most work uses machine translation tech-

niques such as statistical machine translation or 

multiple-sequence alignment to extract paraphrase 

pairs from monolingual corpora (Barzilay and 

McKeown, 2001; Keshtkar and Inkpen, 2010), or 

bilingual corpora (Bannard and Callison-Burch, 

2005; Callison-Burch, 2008; Chen et al., 2012). 

Approaches based on inference rules, on the other 

hand, derive these rules by analyzing the depend-

ency relations of paraphrase sentences (Lin and 

Pantel, 2001; Dinu and Lapata, 2010). Alternative 

expressions can be achieved by applying inference 

rules to rephrase the original sentence. In general, 

the focus of paraphrasing is sentence variation, 

which involves sentence re-structuring, phrase al-

ternation and word substitution. Generating an al-

ternative sentence without changing the sentence’s 

original meaning is the main concern. For 

RESOLVE, in contrast, rather than attempting 

preservation, the focus is on appropriate in-context 

word substitution. There are several online para-

phrasing tools. PREFER1 (Chen et al., 2012) is an 

online paraphrase reference interface that generates 

phrase-level paraphrases using a combination of 

graph and PageRank techniques. Chen shows a 

significant improvement in learner paraphrase 

writing performance. For RESOLVE, instead of 

pursuing participant improvements in semantically 

equivalent rephrasing, the aim is to suggest contex-

tually appropriate wording. Microsoft Contextual 

Thesaurus2 (MCT) is similar to PREFER: it is an 

online reference tool that smartly rephrases an in-

                                                           
1 http://service.nlpweb.org/PREFER 
2 http://labs.microsofttranslator.com/thesaurus/ 

put sentence into various alternative expressions, 

using both word-level and phrase-level substitution. 

However, we know of no study that evaluates 

learning effectiveness when using MCT. Finally, 

SPIDER (Barreiro, 2011) targets document-level 

editing; it relies on derivations from dictionaries 

and grammars to paraphrase sentences, aiming at 

reducing wordiness and clarifying vague or impre-

cise terms. In short, rather than offering better sug-

gestions, paraphrasing tools provide equivalent 

expressions. 

Emotion classification concerns approaches to 

detect the underlying emotion of a text. Related 

work typically attempts this using classifiers. 

These classifiers are trained with features such as 

n-grams (Tokuhisa et al., 2008), word-level 

pointwise mutual information (PMI) values 

(Agrawal et al., 2012; Bullinaria et al., 2007; and 

Church et al., 1990) or a combination of word POS 

and sentence dependency relations (Ghazi et al., 

2012). The remained works of emotion classifica-

tion in above mentioned research to deal with emo-

tions aroused by events inspires us to relate events 

to emotion words in RESOLVE. In addition, in 

terms of emotion classification, RESOLVE classi-

fies texts into fine-grained classes where each 

emotion word can be viewed as a single class; in 

contrast, most emotion classification work focuses 

only on coarse-grained (6 to 10 classes) emotion 

labeling. It is a challenging work. 

Word suggestion involves guessing a possible 

replacement for a given word in a sentence, or 

finding word collocations. A representative re-

search task for word suggestion is the SemEval 

2007 English Lexical Substitution task: the prob-

lem is to find a word substitute for the designated 

word given a sentence. Zhao et al. (2007) first uses 

rules to find possible candidates from WordNet 

and verifies the sentence after substitution using 

Web search results; Dahl et al. (2007) utilizes a 

more traditional n-gram model but uses statistics 

from  web 5-grams. Although closely related to our 

work, this task is different in several ways. First, 

the word for which a substitute is required is al-

ready an appropriate word, as it appears in a sen-

tence from a well-written English corpus, the 

Internet Corpus of English3. However, the goal of 

our work is to determine whether a word selected 

by ESL learners is appropriate, and if necessary to 

                                                           
3 http://corpus.leeds.ac.uk/internet.html 
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suggest appropriate alternatives. Observation of 

our corpus has shown that typically, the word se-

lected by ESL learners is not the most appropriate 

one. This is in contrast to the cited related works in 

which the original in-context wording is usually 

the most appropriate one. However, in our research 

the context often does not support the way the ESL 

learner’s word(s) are used. Second, the context of 

the given word in SemEval is a sentence, while in 

this work it is a document. Third, annotators for 

SemEval were limited to at most three possible 

substitutions, all of which were to be equally ap-

propriate, while in our work annotators are asked 

to assign ranks to all candidates (synonyms of the 

given word). Fourth, in SemEval the words to be 

substituted come from various syntactic or seman-

tic categories, while we only suggest appropriate 

emotion words to the learners. 

For writing assessment, existing works are 

known as automatic essay assessment (AEA) sys-

tems, which analyze user compositions in terms of 

wording, grammar and organization. PIGAI4, tar-

geted at generating suggested revisions, suggests 

unranked synonyms for words. However, unranked 

synonyms easily confuse Chinese learners (Ma, 

2013). E-rater (Leading et al. 2005), a writing 

evaluation system developed by the Educational 

Testing Service (ETS), offers a prompt-specific 

vocabulary usage score, a scoring feature which 

evaluates the word choice and compares words in 

the writing with samples in low- to high-quality 

writings. Ma shows that students’ scores on PIGAI 

increase after using PIGAI, and that these results 

are in proportion to the frequency they use PIGAI. 

As for E-rater, to our best knowledge, its focus is 

on helping judges to score writing rather than on 

assisting learners. In contrast, the purpose of 

RESOLVE is to directly assist language learners in 

finding appropriate wording, especially for emo-

tion words. 

As context and events are crucial to appropriate 

emotion wording, both have been taken into ac-

count in the development of RESOLVE. For con-

text, learner writings describing emotions have 

been utilized to extract contextual clues. For events, 

Jeong and Myaeng (2012) find that in the well-

annotated TimeBank corpus, 65% of the event 

conveyance was accomplished using verbs; thus 

we detect events from verb phrases. In contrast to 

                                                           
4 http://www.pigai.org 

paraphrasing and emotion analysis, the goal of 

RESOLVE is to distinguish the nuances among 

emotion synonyms in order to aid in language 

learning: this makes it a novel research problem. 

3 Method 

We postulate that patterns can describe emotion 

events, and that event conveyance is accomplished 

primarily using verbs (Jeong and Myaeng, 2012). 

In RESOLVE, verb-phrase patterns are selected for 

use in differentiating emotion word synonyms, that 

is, candidate emotion words, using their relation-

ships with these patterns. Figure 1 shows the two-

stage RESOLVE framework. First we learn corpus 

patterns (patterns extracted from the corpus) and 

their emotion event scores, EES, for all emotion 

words, and then, given the target emotion word, we 

rank the candidate emotion words to suggest ap-

propriate wording using the writing patterns (pat-

terns extracted from learner writing) and associated 

emotion event scores learned in the first stage. To 

determine the similarity between corpus patterns 

and writing patterns, we also propose a pattern 

matching algorithm which takes into account the 

cost of wildcard matching. Finally, to verify the 

effectiveness of RESOLVE in aiding precise word-

ing, a learning experiment is designed. In an ex-

ample RESOLVE scenario, the learner writes the 

following: “I love guava but one day I ate a rotten 

guava with a maggot inside, which made me dis-

gust.” She is not sure about the wording so she 

turns to RESOLVE for help. She is given a ranked 

word suggestion list: repugnance, disgust, repul-

sion, loathing and revulsion; which are more ap-

propriate than the list Theasurus.com provides: 

antipathy, dislike, distaste, hatred and loathing. 
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Figure 1: RESOLVE framework. 

3.1 Stage One: Learning Corpus Patterns for 

All Emotion Words 

In this stage, we learn patterns and their relations 

to emotion words from the corpus. Sentences are 

first pre-processed, after which patterns are ex-

tracted from the corpus and their emotion event 

scores calculated.  

Pre-processing. As compound sentences can 

be associated with more than one emotion event, 

they must be pre-processed before we extract pat-

terns. Compound sentences are first broken into 

clauses according to the Stanford phrase structure 

tree output (Klein and Manning, 2003). In the ex-

periments, these clauses are treated as sentences.  

Pattern Extraction. Emotion events are char-

acterized by verb-phrase patterns, derived from the 

output of the Stanford dependency parser (De 

Marneffe et al., 2006). This parser generates the 

grammatical relations of word pairs and determines 

the ROOT, which is often the verb, after parsing 

each sentence. We describe the extraction steps 

given the sentence “We gave the poor girl a new 

book.”. A total of 746,919 patterns were extracted 

in this process. 

Step1: Identify the ROOT (gave) and all its de-

pendents based on the parsing result. 

Step2: Replace the words having no dependency 

relation to the ROOT with wildcards; consecutive 

wildcards were combined into one.  

(we gave * girl * book) 

Step3: Filter out less informative dependents (i.e., 
those nodes that are not the children of the ROOT 

in the dependency parse tree) by replacing with 

wildcards the dependents in the following relations 

to the ROOT: subj, partmod, comp, parataxis, 

advcl, aux, poss, det, cc, advmod and dep. (* gave 

* girl * book) 

Step4: Generalize the grammatical objects by re-

placing them with their top-level semantic class in 

WordNet. (* gave * <person> * <artifact>) 

Step5: Lemmatize the verbs using WordNet. 

(* give * <person> * <artifact>) 

Step6: Removing the starting and ending wild-

cards. (give * <person> * <artifact>) 

Emotion Event Score Calculation. Once the 

patterns are extracted, RESOLVE learns their emo-

tion event scores (EES) to quantize their relations 

to each emotion word. Here we discover an inter-

esting issue: the extracted pattern may summarize 

an emotion event, but it may also tell the emotion 

it bears directly with emotion words. To determine 

whether patterns containing emotion words have 

different characteristics and effects on performance, 

we term them self-containing patterns. Hence two 

pattern sets are used in experiments: one that in-

cludes all extracted patterns (Pall), and the other 

that excludes all self-containing patterns (P-scPattern). 

As shown in equation (1), we define the emo-

tion event score (EESp,e) of a pattern p for an emo-

tion word e by the conditional probability of e 

given p. 

 , |p eEES P e p  (1) 

3.2 Stage Two: Ranking Synonyms of the 

Emotion Word to Suggest Appropriate 

Wording 

In previous stage we built a pattern set for each 

emotion word. In this stage, there are four tasks: 

enumerate candidate emotion words for the target 

emotion word, extract writing patterns, match the 

writing patterns to the corpus patterns of the candi-

dates, and rank the candidates. To enumerate the 

candidate emotion words, RESOLVE first looks up 

synonyms of the target emotion word in Word-

NetSynsets and in Merriam Webster’s Dictionary. 

Pattern Matching. For each candidate ei, 

RESOLVE compares writing patterns  

Pwriting=(pw1,pw2,…pwN) with corpus patterns Pcorpus, 

and returns the matching corpus patterns 

Pmatch=(p1,p2,…pN) and their corresponding emo-
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tion event scores; where N is number of clauses in 

the writing. Edit distance is utilized to calculate the 

similarity between a writing pattern and a corpus 

pattern, where the matching corpus pattern is de-

fined as that with the maximum pattern similarity 

to the writing pattern (in a one-to-one matching). 

The emotion scores of this matched corpus pattern 

for different emotion words will be used as the 

writing pattern scores. 

We propose a variation of edit distance which 

accepts wildcards (that is, edit-distance with wild-

cards, EDW) that allows for partial matching, in-

cluding similar patterns, and hence increases hit 

rates. Therefore, we add a wildcard replacement 

cost (WRC) to the edit cost (general edit cost, 

GEC) in the traditional definition of the edit dis-

tance. For this purpose, a two-dimensional vector 

(GEC, WRC) which considers two edit costs sepa-

rately is used to measure the EDW between pat-

terns S1 and S2. EDW is defined as 

   ,1 2 ,  I JE D GECDW S WS RC 
 

(2) 

where S1={s1(1), s1(2), s1(3),...,s1(I)} and S2={s2(1), 

s2(2), s2(3),..., s2(J)} are tokens of the corpus pat-

tern S1 and the writing pattern S2; I and J are the 

lengths of S1 and S2; i and j are the indices of S1 

and S2; and DI, J is recursively calculated from 1 to 

I and 1 to J  using the edit distance formula. Note 

that D0,0 is (0,0). A wildcard may be replaced with 

one or more tokens, or vice versa. When calculat-

ing EDW, if there is a wildcard replacement, the 

replacement cost is added to the WRC; for other 

cases, the edit cost is added to the GEC. 

We here define the value of the WRC. The tra-

ditional edit-distance algorithm takes into account 

only single-token costs, whereas wildcards in our 

patterns may replace more than one token. Wild-

card insertion and deletion costs hence depend on 

the number of tokens a wildcard may replace. Af-

ter some experiments, we empirically choose e 

(Euler’s number) as the cost of wildcard insertion 

and deletion. Note that e is also very close to the 

mean of the number of words replaced by one 

wildcard (positively skewed distribution). Table 1 

shows the costs of all EDW operations.  

 

 

 

 

 

 

Operation Cost 

Wildcard Insertion (ø → *) e 

Wildcard Deletion (* →ø) e 

Wildcard Replacement (* →token) 1 

Wildcard Replacement (token → *) e 

Table 1: Edit distance costs for EDW operations. 

Empirically, if no exact pattern is found, to rep-

resent the pattern we seek a more general pattern 

rather than a specific one. A general pattern’s 

meaning includes the meaning of the original pat-

tern, but a specific pattern’s meaning is part of the 

original. For example, consider the pattern “eat * 

tomorrow morning quickly.” If unable to find an 

exactly matching pattern, it would be better to use 

“eat * tomorrow * quickly” rather than “eat break-

fast tomorrow morning quickly” to represent it. 

Hence “*→token” wildcard replacements (“*

→morning” in the example) should be assigned a 

lower cost than “token→*” wildcard replace-

ments (“breakfast→*”  in the example), as a 

wildcard token may represent several general to-

kens: “token→*” wildcard replacement (token

→*) is equivalent to inserting more than zero to-

kens and “*→token” wildcard replacements are 

equivalent to deleting more than zero tokens. 

Therefore, we define the cost of “*→ token” 

wildcard replacement as 1 and “token→*” wild-

card replacement as e.  
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 (3) 

The Euler equation, equation (3), takes into ac-

count both GEC and WRC to calculate the simi-

larity of two patterns. The matching corpus pattern 

is that with the maximum similarity. 

Candidate Emotion Word Ranking. The 

scoring function for ranking candidates S 

={e1,e2,…,eI} depends on the conditional probabil-

ity of candidate ei given writing patterns and can-

didates as defined in equation (4), which equals 

equation (5), assuming the patterns in Pwriting are 

mutually independent.  

   1 2| , | , ,..., ,i writing i NP e P S P e pw pw pw S  (4) 
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The second term in equation (5), P(ei|S)1-N, de-

notes the learner’s preference with respect to writ-

ing topics. As we have no learner corpus, we 

assume that there are no such preferences and thus 

that P(ei|S) is uniformly distributed among ei in S. 

As a result, when ranking ei, P(ei|S)1-N can be omit-

ted.  In addition, for the scores of the writing pat-

terns we must use the scores of the matching 

corpus pattern found by the EDW algorithm for the 

corpus. Therefore, we rewrite the first term of 

equation (5) as follows. 
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(6) 

P(ei|pn,S) in equation (6) can be calculated by 

EES, and the similarity value from equation (3) is 

utilized in equation (7) to estimate the first term. 

Equation (8), its logarithmic form, is the final scor-

ing function for ranking. 
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Modified EES. After observing the corpus 

characteristics, we further modified EES by adding 

the weighting factors ICZe (the Inverse Corpus-

siZe-ratio for emotion word e, where the corpus 

size denotes the number of patterns) and CTPl
p (the 

emotion Category Transition Penalty for pattern p, 

where l denotes the level of the emotion word hier-

archy, as explained later) in equation (9). ICZ in 

equation (10) normalizes the effect of the emotion 

word corpus size. When an emotion word appears 

more frequently, more example sentences are col-

lected, resulting in a larger corpus. This can lead to 

a suggestion bias toward commonly seen emotion 

words. 
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The other weighting factor, CTP, takes into ac-

count emotion word similarity. As mentioned, 

emotion words are derived from WordNet-Affect 

and then extended via WordNetSynset and Webster 

Synonyms; as shown in Figure 2, we build a three-

layered hierarchy of emotion words. Level 1 is the 

six major emotion categories in WordNet-Affect 

(anger, disgust, fear, joy, sadness, and surprise), 

level 2 is the 1,000 emotion words from WordNet-

Affect, and level 3 is the synonyms of the level-2 

emotion words. 

 

Figure 2: The emotion word hierarchy.  
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(11) 

Intuitively, patterns that co-occur with many 

different emotion words are less informative. To 

assign less importance to these patterns, CTP esti-

mates how often a pattern transits among emotion 

categories and adjusts its score accordingly in 

equation (11), where m is the number of categories 

in each level; c is the emotion category. High-CTP 

patterns appear in more emotion categories or are 

evenly distributed among emotion categories and 

are hence less representative. Note that categories 

in lower levels (for instance level 1) are less simi-

lar, and transitions among these make patterns less 

powerful. 

4 Experiment 

4.1 Emotion Words and Corpus 

The corpora used in this study include WordNet-

Affect (Strapparava and Valitutti, 2004), Word-

NetSynset (Fellbaum, 1999), Merriam Webster 

Dictionary, and Vocabulary.com. The WordNet-
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Affect emotion list contains 1,113 emotion terms 

categorized into six major emotion categories: an-

ger, disgust, fear, joy, sadness, and surprise (Ek-

man, 1993). 113 of the 1,113 terms were excluded 

because they were emotion phrases as opposed to 

words; thus a total of 1,000 emotion words were 

collected. Then, to increase coverage, synonyms of 

these 1,000 emotion words from WordNetSynset 

and Merriam Webster Dictionary were included. 

Thus we compiled a corpus with 3,785 emotion 

words. For each of these 3,785 emotion words 

there was an average of 13.1 suggested synonyms, 

with a maximum of 57 and a minimum of 1. 

Moreover, we extracted from Vocabulary.com a 

total of 2,786,528 example sentences, each con-

taining emotion words. The maximum number of 

example sentences for a given emotion word was 

1,255; the minimum was 3. 

4.2 Testing Data and Gold Standard 

A writing task was designed for the evaluation. To 

create the testing data, 240 emotion writings writ-

ten by ESL learners were collected. The partici-

pants were non-native English speakers (native 

Chinese speakers), all undergraduates or higher. 

Each writing was a short story about one of the six 

emotions defined by Ekman, and each had three 

requirements: (1) a length of at least 120 words; (2) 

a consistent emotion throughout the story; and (3) 

a sentence at the end that contains an emotion 

word (hereafter referred to as the target emotion 

word) summarizing the feeling of the writing. The 

target emotion word and its synonyms were taken 

as candidates of the most appropriate word (hereaf-

ter termed candidate emotion words). From these, 

RESOLVE proposes for each writing the five most 

appropriate words.  

To create the gold standard, two native-speaker 

judges ranked the appropriateness of the emotion 

word candidates for each target emotion word giv-

en the writing. The judges scored the candidates 

ranging from 0 (worst) to 6 (best) based on contex-

tual clues. When two or more words were consid-

ered equally appropriate, equal ranks were allowed, 

i.e., skips were allowed in the ranking. For exam-

ple, given the synonym list angry, furious, enraged, 

mad and annoyed, if the judge considered enraged 

and furious to be equally appropriate, followed by 

angry, mad and annoyed, then the ranking scores 

from highest to lowest would be enraged-6, furi-

ous-6, angry-4, mad-3 and annoyed-2, respectively. 

In addition, words not in the top five but that fit the 

context were assigned 1 whereas those that did not 

fit the context were assigned 0.  

In order to gauge the quality of judges' ranks, 

Cohen’s KAPPA value was utilized to measure the 

inter-judge agreement. KAPPA (k) is calculated by 

considering the ranking score to be either zero (0) 

or non-zero (1-6). In addition, a weighted KAPPA 

value for ranked evaluation (kw) was adopted (Sim 

and Wright, 2005) to quantify the agreement be-

tween the native scores. On average, k=0.51, and 

kw=0.68; both values indicate substantial inter-

judge agreement. 

5 Performance of RESOLVE 

In this section, we first evaluate the performance of 

RESOLVE from several aspects: (1) the perfor-

mance of EDW and modified EES, (2) a compari-

son of RESOLVE with commonly-adopted mutual 

information and machine learning algorithms for 

classification, and (3) a comparison of RESOLVE 

with tools for ESL learners. Then we utilize and 

compare the pattern sets Pall and P-scPattern (no self-

containing patterns) introduced in Section 4.1. We 

adopt NDCG@5 as the evaluation metric, which 

evaluates the performance when viewing this work 

as a word suggestion problem. 

5.1 EDW and Modified EES 

We evaluate the effect of the pattern-matching al-

gorithm EDW, EES modified by three layers of 

CTP weighting, and ICZ weighting. First we com-

pare EDW matching with wildcard matching. For 

the baseline, we use conventional wildcard match-

ing with neither ICZ nor CTP. The results in Table 

2 show that EDW outperforms the baseline wild-

card matching algorithm. In addition, using ICZ to 

account for the influence of the corpus size im-

proves performance. Level-1 CTP performs best. 

Thus for the remaining experiments we use EDW 

and EES modified by ICZ weighting and level-1 

CTP. 
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 RESOLVE Components NDCG@5 

Baseline 0.5107 

EDW 0.5138 

EDW + level-1 CTP 0.5150 

EDW + level-1 CTP + ICZ 0.5529 

EDW + level-1, 2 CTP + ICZ 0.5104 

EDW + level-1, 2, 3 CTP + ICZ 0.5098 

Table 2: Performance with various components. 

5.2 Comparison to MI/ML Methods 

After demonstrating that the proposed EDW and 

modified EES for RESOLVE yield the best per-

formance, we compare RESOLVE to representa-

tive methods in related work to demonstrate its 

superiority. As mentioned in Section 2, related 

works view similar research problems as emotion 

classification problems or word suggestion prob-

lems. Commonly-adopted approaches for the for-

mer are based on mutual information (MI) and the 

latter on machine learning (ML). To represent 

these two types of approaches, we selected PMI 

and SVM, respectively, to which we compare the 

performance of RESOLVE. 

PMI, SVM and RESOLVE all used the same 

corpus. Note that NAVA words (noun, adjective, 

verb and adverb) are the major sentiment-bearing 

terms (Agrawal and An, 2012). Hence for compar-

ison with the feature set of extracted patterns we 

selected NAVA words as the additional feature set. 

For the PMI approach we calculated PMI values (1) 

between NAVA words and emotion words, (2)  

between patterns and emotion words. The PMI 

values between features from the writing and one 

emotion word candidate are then summed as the 

ranking score of the candidate. For the SVM ap-

proach, we used libsvm (Chang et al., 2011). We 

used a linear kernel to train for a classifier for each 

emotion by selecting all positive samples and an 

equal number of randomly-selected negative sam-

ples. We ran tests using various SVM parameter 

settings and found the performance differences to 

be within 1%. PMI, SVM and RESOLVE were all 

trained on the prepared three feature sets. SVM 

simply classifies each emotion word candidate as 

fitting the context or not. The confidence value of 

each answer is used for ranking. 

From Table 3, we found the best features for 

the PMI and SVM approaches are NAVA words. 

NDCG@5 (BD) shows the binary decision per-

formance when giving a score of 1 to all candi-

dates with ranking scores from 1 to 6, and 0 other-

wise. Note that it is possible that SVM when using 

NAVA words is too sparse to ensure satisfactory 

performance, as the number of corpus-extracted 

patterns exceeds one million; thus the result is not 

shown here, as this leads to excessive feature 

counts for SVM. Experimental results show that 

RESOLVE achieves the best performance; the sig-

nificance test shows that RESOLVE (pattern) sig-

nificantly outperforms PMI (NAVA) and SVM 

(NAVA) at tail p-values of less than 0.001. 

Feature  PMI SVM RESOLVE 

NAVA 

word 

NDCG@5 0.4275 0.5122 0.5048 

NDCG@5(BD) 0.4778 0.5229 0.5236 

Pattern 
NDCG@5 0.4126 N/A 0.5529 

NDCG@5(BD) 0.4530 N/A 0.5627 

Table 3: NDCG@5 for various feature sets. 

As to RESOLVE, recall that there are two con-

figurations for testing the effectiveness of self-

containing patterns: RESOLVE including self-

containing patterns (RESOLVE-Pall), and 

RESOLVE excluding self-containing patterns 

(RESOLVE-P-scPattern). Six different emotion cate-

gories are analyzed individually to reveal their dif-

ferent characteristics (De Choudhury et al., 2012). 

Table 4 shows the NDCG@5 averaged by the 

number of writings in six emotion categories for 

PMI (NAVA), SVM (NAVA), and RESOLVE-Pall 

and RESOLVE-P-scPattern. A further analysis of the 

writings shows that when expressing disgust or 

sadness, extensive uses of emotion words are 

found. Therefore, RESOLVE-Pall yields better per-

formance. The remaining four emotions are ex-

pressed through descriptions of events rather than 

using emotion words.  These results conform to the 

conclusion from (De Choudhury, Counts and 

Gamon, 2012): negative moods tend to be de-

scribed in limited context. Based on the finding in 

Table 4, RESOLVE-Pall is used for emotion writ-

ings about disgust and sadness, and  

RESOLVE-P-scPattern is used for writings about an-

ger, fear, joy and surprise when building the final 

conditional RESOLVE system. 
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Emotion PMI 

(NAVA) 

SVM 

(NAVA) 

RESOLVE 

-Pall 

RESOLVE 

-P-scPattern 

Anger 0.3295 0.4706 0.4886 0.5071 

Disgust 0.3103 0.3738 0.3773 0.2584 

Fear 0.4064 0.5381 0.5168 0.6152 

Joy 0.4849 0.5764 0.4456 0.5708 

Sadness 0.2863 0.3495 0.3999 0.3194 

Surprise 0.7346 0.7651 0.8037 0.8400 
Table 4 NDCG@5 for six emotion categories. 

5.3 Comparison to Tools for ESL Learners 

In the final part of the system evaluation, we show 

the effectiveness of RESOLVE by evaluating the 

performance of the most commonly-used tools by 

ESL learners. One traditional and handy tool is the 

thesaurus. For this evaluation we selected Roget’s 

Thesaurus5. Another tool is online language learn-

ing systems, of which PIGAI is the most well-

known online rating system for writing for Chinese 

ESL learners. This system can also suggest to 

learners several easily-confused words as substi-

tutes for several system-selected words. For evalu-

ation, we posted the experimental writing to PIGAI 

to check whether there were any suggested substi-

tutes for the target emotion word. Replacement 

suggestions were found for the target emotion 

word in 71 out of 240 writings. Therefore, we 

compared the performance of PIGAI and 

RESOLVE on these 71 writings. Note that what 

the thesaurus and PIGAI suggested are both appro-

priate word sets, where words are listed in alpha-

betic order. Learners must select by themselves (or 

most conveniently, simply select the first one). Ta-

ble 5 shows that RESOLVE provides a better set of 

top-5 suggestions than both the thesaurus and 

PIGAI. 

Tool 
NDCG@5 

 

NDCG@5 

(BD) 

Precision@5 

(BD) 

PIGAI 

(71/240) 
0.3300 0.3095 0.8732 

RESOLVE 

(71/240) 
0.4755 0.4728 0.9789 

Thesaurus 0.3708 0.4237 0.9146 

RESOLVE 0.5529 0.5627 0.9479 
Table 5: Performance using ESL learner tools. 

                                                           
5 http://Thesaurus.com 

6 Conclusion 

We presented a probabilistic model that can sug-

gest emotion word based on the context.  The mod-

ified EES that considered the distribution of 

emotion word help our algorithm rank the candi-

date emotion words better. Besides, the matching 

algorithm, EDW, can find the most similar emo-

tional event from the writings. Furthermore, the 

example sentences can be used as our training cor-

pus without any handcraft annotations. The evalua-

tion shows that the proposed approach can more 

appropriately suggest emotion words than other 

models and reference tools like PIGAI and Thesau-

rus. 
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Abstract

This paper describes RevUP which deals with
automatically generating gap-fill questions.
RevUP consists of 3 parts: Sentence Se-
lection, Gap Selection & Multiple Choice
Distractor Selection. To select topically-
important sentences from texts, we propose
a novel sentence ranking method based on
topic distributions obtained from topic mod-
els. To select gap-phrases from each selected
sentence, we collected human annotations, us-
ing the Amazon Mechanical Turk, on the rel-
ative relevance of candidate gaps. This data is
used to train a discriminative classifier to pre-
dict the relevance of gaps, achieving an accu-
racy of 81.0%. Finally, we propose a novel
method to choose distractors that are semanti-
cally similar to the gap-phrase and have con-
textual fit to the gap-fill question. By crowd-
sourcing the evaluation of our method through
the Amazon Mechanical Turk, we found that
94% of the distractors selected were good. Re-
vUP fills the semantic gap left open by pre-
vious work in this area, and represents a sig-
nificant step towards automatically generating
quality tests for teachers and self-motivated
learners.

1 Introduction

In today’s educational systems, a student needs to
recall and apply major concepts from study material
to perform competently in assessments. Crucial
to this is practice and self-assessment through
questions. King [1992] found that questioning
is an effective method of helping students learn
better. However, the continued crafting of varied

questions is extremely time consuming for teachers
as mentioned in Mitkov et al. [2006]. Further-
more, learners are increasingly moving from the
traditional classroom setting to an independent
learning setting online. Here, there is a need for
leveraging upon online educational texts to provide
practice material for students. Automatic Question
Generation (AQG) shows promise for both these
use-cases.

1.1 Related Work

Work in Automatic Question Generation(AQG)
has mostly involved transforming sentences into
questions and can be divided into two categories:
Wh-Question Generation (WQG) and Gap-Fill
Question Generation (GFQG). Most work in WQG
has involved transforming sentences into gram-
matically correct Wh-questions (Why, What, How,
etc.) with little attention given to the semantics and
educational relevance of the questions (Heilman
and Smith [2009], Mitkov et al. [2006], Mostow
and Chen [2009], Wolfe et al. [1975], Wyse and
Piwek [2009]). On the other hand, previous works
in GFQG have generally worked with vocabulary-
testing and language learning (Smith et al. [2010],
Sumita et al. [2005]). Smith et al. presented Ted-
Clogg which took gap-phrases as input and found
multiple choice distractors from a distributional
thesaurus. 53.3% of the questions generated were
acceptable. Our work aligns more closely to that of
Aggarwal et al. where a weighted sum of lexical,
syntactic features were utilised to select sentences,
gaps and distractors from informative texts (Agar-
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wal and Mannem [2011]). Becker et al. [2012] built
upon the former’s work by collecting human ratings
of questions generated from a Wikipedia-based
corpus. A machine-learning model was trained to
effectively replicate these judgments, achieving a
true positive rate of 83% and false positive rate of
19%.

RevUP focuses on GFQG which overcomes
WQG’s need for grammaticality by blanking out
meaningful words (gaps) in known good sentences.

1.2 Key Contributions
Our key contribution is the employment of data-
driven but domain independent methods to construct
RevUP: an automated system for GFQG from ed-
ucational texts. RevUP consists of 3 components:
Sentence Selection, Gap Selection & Distractor Se-
lection.

Sentence Selection
Current systems use extractive summarization
methods which may not suitable as they aim to
choose sentences that cover the most content,
which could result in complexity or incoher-
ence. As such, we propose selecting topically
important sentences by ranking them based on
topic distributions obtained from a topic model.

Gap Selection
Here, we train a machine learning classifier to
replicate human judgements on the relevance of
gaps. We propose collecting human rankings of
the educational relevance of gaps. This is be-
cause ratings of gaps on a points scale resulted
in inter-rater agreement issues in past work as
each annotator had different thresholds for each
point. We then propose semantic and domain-
independent features for classifier training on
these rankings and the trained classifier pre-
dicts the educational relevance of gap candi-
dates with an accuracy of 81.0%.

Distractor Selection
Contrary to previous work which use the-
sauruses or syntactic features, we propose us-
ing vector representation of words (word2vec),
language model probabilities and dice coeffi-
cients to find semantically similar distractors

with contextual fit to the question. 94% of the
distractors selected by RevUP were found to be
good.

A Biology text book titled Campbell Biology, 9th
Edition has been used for work throughout this pa-
per. The textbook consists of 35621 sentences, with
each sentence consisting of an average of 20 words.

2 Sentence Selection

Previous work in AQG used extractive summarisa-
tion for selecting sentences Becker et al. [2012].
Since these methods aim to select sentences that
maximise content coverage, they might not be suit-
able as such sentences can be complex and incoher-
ent. As such, we aim to choose topically-important
sentences that have a peaked topic distribution and
w = [0.5, 0.3, 0.2]. Sentences with the top-n scores
are selected. This is because sentence with peaked
distributions have the following two properties.

1. The sentence belongs only to a few topics

2. These topics are expressed to a high degree

The first property implies that the sentence is coher-
ent in terms of the ideas and content it expresses.The
second property implies that the sentence contains
important and interesting information. Each sen-
tence is assigned a score as follows.

score =
k∑

i=1

wi ·max(t, i) (1)

where max(t, i) is the ith largest probability in topic
distribution t obtained from a topic model and wi

is its associated weight. For RevUP, we set k = 3.
Table 1 shows a list of good and bad sentences with
their scores.
It is to be noted that the assumption that topically
important and coherent sentences make good ques-
tions does not always hold. We leave it to future
work to account for more factors.

3 Gap Selection

We over-generated a list of candidate gap-phrases
from every sentence and trained a binary classifier
on human judgements of the relative relevance of
the gap-words. Though similar to Becker et al., we
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Good Sentences Score Bad Sentences Score
Within the cortex, sensory areas re-
ceive and process sensory information,
association areas integrate the informa-
tion, and motor areas transmit instruc-
tions to other parts of the body.

0.48 As the water warms or cools, so does
the body of the bass.

0.14

Roots were another key trait, anchoring
the plant to the ground and providing
additional structural support for plants
that grew tall.

0.41 The scientific community reflects the
cultural standards and behaviors of so-
ciety at large.

0.14

Each nucleotide added to a growing
DNA strand comes from a nucleo-
side triphosphate, which is a nucleo-
side with three phosphate groups.

0.29 In one study, researchers spread low
concentrations of dissolved iron over
72 km 2 of ocean and * C uptake by
cultures measures primary production.

0.16

Table 1: Good and bad sentences according to proposed sentence ranking metric

propose ranking gap-phrases instead of rating them
to improve inter-rater agreement. Furthermore, we
propose semantic features for classifier training. We
used sentences from the Campbell Biology Text-
book.

3.1 Methodology
3.1.1 Candidate Extraction

We extracted candidate gap-phrases that span
up to three words. To prevent a skew to-
wards irrelevant gap-phrases, we employed domain-
independent syntactic rules. We first ran the Stan-
ford Part-of-Speech (POS) Tagger to obtain the POS
tags for each word in the sentence and the Stanford
Parser to obtain a syntactic parse tree (Toutanova
et al. [2003a,b]). We extracted all the nouns, adjec-
tives, cardinals and noun-phrases with a Wikipedia
page.

3.1.2 Crowd-Sourcing Annotations
Pinpointing a relevant gap is a complex task

which relies on human judgement. Amazon Me-
chanical Turk, MTurk, was used to collect such hu-
man annotations in a cost and time efficient manner.
In MTurk, requesters can pay human workers (Turk-
ers) a nominal fee to complete Human Intelligence
Tasks (HITs). To gather quality annotations, a HIT
must be easy to complete and must take into account
limitations with human judgement. We first piloted

a HIT where a turker was tasked to rate gap-phrases
from a source sentence on a scale from 1 to 5. How-
ever, we found very poor inter-annotator agreement
as the task was tedious (up to 10 candidate gap-
phrases per task) and each annotator had different
thresholds for each point on the scale. However, the
ratings preserved the relative educational relevance
of the gaps. As such, we decided to redesign the HIT
as a ranking task. Also, for shortening purposes,
each HIT involved the ranking of 3 gap-phrases from
one source-sentence. As such, for every source sen-
tence,we created multiple sets of gap-phrase triplets
as in Figure 1.

Gap A
Gap B
Gap C
Gap D

Trp 1: A,B,C
Trp 2: B,C,D
Trp 3: C,D,A
Trp 4: D,A,B

Figure 1: Triplet Generation. Trp refers to Triplet.

Each gap-phrase is part of three ranking HITs
and each triplet shares two gap phrase pairs with
two other triplets. In Figure 1,Trp 1 shares A,B with
Trp 4 and B,C with Trp 2. Since conventional inter-
annotator agreement metrics, e.g. Cohen’s Kappa,
cannot be used for a ranking task, we proposed
an inter-ranker agreement measure as in Equation 2.

Agreement =

∑
X,Y ∈Gap−Pairs

{
1, if sgn(r1(X)− r1(Y )) = sgn(r2(X)− r2(Y ))
0, otherwise

Num. of HITs
(2)
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Sentence Selected Gap
Sister chromatids are attached
along their lengths by protein
complexes called .

cohesins

Using an ATP-driven pump, the
expel hydrogen ions into

the lumen

parietal cells

Unlike , leukocytes are
also found outside the circula-
tory system, patrolling both in-
terstitial fluid and the lymphatic
system.

erythrocytes

A shoot apical meristem is a
mass of dividing cells at

the shoot tip.

dome-shaped

Table 2: Gaps selected by RevUP. Red indicates bad
gaps.

where sgn(·) is the sign function and rn(Z) is the
rank assigned by ranker n to gap Z.

To collect sentences for HIT deployment, we first
ranked all the sentences from the Campbell’s Bi-
ology textbook as in Section 2.2. From the top
sentences, we hand-picked sentences to ensure a
good mix of topics, sentence-lengths and gap-phrase
lengths so as not to introduce a bias. 200 sentences
were deployed with rankings collected for 1306 gaps
in total. The inter-ranker agreement was high at
0.783.

3.1.3 Automatic Gap Classification
Since every gap was ranked thrice, we assigned

each gap a score by summing up the three ranks.
Ranks ranged from 1 to 3: 1 for best and 3 for worst.
Scores ranged from 3 to 9. For binary classification,
gap-phrases with scores less than 6 were considered
good and the rest bad. Data filtering was done by re-
moving gap-phrases that had been ranked first, sec-
ond and third due to the uncertainty associated with
the relevance of the gap. Gap-phrases that were part
of triplets that showed no agreement with both the
triplets that they shared gap-phrase pairs with, were
removed. 285 gaps were removed. Our final dataset
had a slight skew towards bad gaps with 554 bad
gaps and 468 good gaps.

A good set of features are vital for training a good
classifier. Table 4 lists all the features used for clas-

sification. Note that all the features are domain-
independent. Using the scikit-learn python package,
we trained a Support Vector Machine (SVM) with
a Radial Basis Function (RBF) kernel (Pedregosa
et al. [2011]).

3.2 Results
Table 3 details the average accuracy, precision, re-
call and F1 score achieved for a 10-fold cross vali-
dation test. Given an accuracy of 81%, we can con-
clude that RevUP performs fairly well for gap selec-
tion, on par with Becker et al. [2012].

Filtered Gaps All Gaps
Accuracy 0.81 ± 0.024 0.77 ± 0.026
Precision 0.81 ± 0.061 0.74 ± 0.045

Recall 0.77 ± 0.066 0.71 ± 0.082
F1-Score 0.79 ± 0.032 0.72 ± 0.043

Table 3: SVM Cross-Validation Results.

Besides, the results prove the huge impact pre-
processing had on classifier performance. To un-
derstand impact of each feature on classifier perfor-
mance, we obtained the classifier accuracy without
each feature over 10-folds (Figure 2).

We can observe that most features have an equal
effect on classifier performance with the exception
of WordVec (Feature 10). Without WordVec, classi-
fier performance drops to 76.6%. The large impact
of WordVec is mainly because it strongly encodes
the semantics of candidate gap-phrases. Word2Vec
employs a Skip-gram model to learn and obtain dis-
tributed representations of words, from input texts,
in a vector space which spatially encodes the seman-
tic information and meaning of words. We believe
that interesting and important words are separated
from unimportant words in this vector space. This
could have also helped in improving classifier accu-
racy.
Examples of gaps selected by RevUP are in Table 2.

4 Distractor Selection

The final component of RevUP pipeline involves the
selection of relevant multiple-choice distractors to
ensure that the learner has a good grasp of the rel-
evant concepts put to test. Past work has involved
the usage of thesauruses, LSA and rule-based ap-
proaches. Contrary to this, we propose a domain-
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No. Name Description
0 Char Length Number of characters in gap-phrase
1 Char Overlap Character length of gap divided by character length of sentence
2 Height Height of the gap-phrase in the syntactic parse tree
3 TF Number of times gap-phrase occurs in the source sentence
4* Corpus TF Number of times gap-phrase occurs in the biology textbook
5* Corpus IDF Inverse document frequency of the gap-phrase in the biology text-

book. Sentences are treated as documents.
6* Sent. Words Number of words in the source sentence
7* Word Overlap No. of Words in the gap-phrase divided by Sent. Words
8 Index Position of the gap-phrase in the source sentence
9* WN Synsets Number of WordNet synsets of the gap-phrase
10* WordVec Vector of the gap-phrase as computed with the Word2Vec Tool.

Refer to Section 4.1 for more details on word2vec.
11 Prev. POS Tag Part-of-Speech Tags of the two words before the gap-phrase
12 Post. POS Tag Part-of-Speech Tags of the two words after the gap-phrase
13 NER Tag Name-Entity Tag of the gap-phrase
14 SRL Semantic Role Label of the gap-phrase
15* Topic Distribution Topic Distribution of the gap phrase as computed by the proposed

deep learning model
16* Topic Distribution Change Jensen Shannon Divergence between topic distribution of the gap

phrase and the source sentence
17* Transition Prob. Transition probability from Kneser Ney Back-off Language

Model trained on the biology textbook corpus

Table 4: Features Used to Train Binary Classifier. * represents features proposed by the authors. The rest
correspond to that by Becker et al. [2012]
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Figure 2: The effect of features on classifier performance. Note that Feature Number Correspond to Table 4

independent, data-driven approach to select distrac-
tors with semantic similarity and contextual fit. We
leave it to future work to reject distractors that are

correct answers to their respective questions.
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Sentence Selected Gap Distractor

Sister chromatids are attached
along their lengths by protein
complexes called .

cohesins

1) spindle microtubules
2) myosin filaments
3) thick filaments
4) kinetochores

worsen pain by increas-
ing nociceptor sensitivity to nox-
ious stimuli.

Prostaglandins

1) nitric oxides
2) steroid hormones
3) signaling molecules
4) lipid-soluble hormones

Instead, a hypha grows into a
tube formed by of the
root cells membrane.

invagination

1) vegetal pole
2) undifferentiated cell
3) neural plate
4) frog embryo

bodies are reinforced
by ossicles, hard plates com-
posed of magnesium carbonate
and calcium carbonate crystals.

Echinoderms

1) sense organs
2) salamanders
3) birds
4) turtles

Table 5: Examples of distractors generated by RevUP. Red indicates bad distractors.

4.1 Methodology

To choose distractors semantically similar to the
gap-phrase, we used the word2vec tool (Mikolov
et al. [2013]). However, word2vec requires input
texts with millions of words to learn quality vec-
tor representations. To rapidly expand our biol-
ogy training dataset, we downloaded and processed
the latest dumps of Wikipedia. Thereafter, to en-
sure that we only obtained texts relevant to the text-
book used, we implemented a TF-IDF search en-
gine through the gensim python package (Řehůřek
and Sojka [2010]). The Campbell’s Biology text-
book was split into 548 batches of 50 sentences each
and texts from the top 50 Wikipedia pages for each
batch were used. The final data-set consisted of
900,000 sentences and 21 million words. This data-
augmentation method keeps our proposed solution
domain-independent as only the relevant textbook is
needed. For word2vec training, the dimension of the
vector space was set to be 70. A n-best list of can-
didate distractors can be chosen by ranking words in
the vocabulary according to the cosine similarity of
their vectors with respect to that of the gap-phrase.
Thereafter, we removed candidates that already ap-
pear in the question sentence and that are of different

parts-of-speech. Finally, we validated the seman-
tic similarity of each candidate with the gap-phrase
with WordNet (Miller [1995]). WordNet is a lexical
graph database where words are grouped into sets
of synonyms (synsets). Synsets are linked through
a number of relations. We measured the semantic
similarity of two terms, x, y, using path similarity.

pathsim(x, y) =
1

1 + len(shortest path(x,y))
(3)

where len(shortest path(x, y)) is the shortest path
between words x and y in WordNet. We eliminated
candidates with path sim < 0.1. We then proceeded
to re-rank the candidates to obtain the 4 best distrac-
tors. Often, syntactic similarities between distrac-
tors and their respective gap-phrases help confuse
students. For example, s-phase is a good distractor
for g-phase. We captured such syntactic similarities
by computing the Dice Coefficient, DC, for the gap-
phrase and each candidate (Equation 4).

DC(X,Y ) =
2 · |X ∩ Y |
|X|+ |Y | (4)

To take into account the context of the question,
we calculated the language model probability of the
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candidate given the words that appear before the
gap-phrase in the question-sentence. We trained a
5-gram Kneser Ney Back-off Language Model with
the data used for word2vec training. Finally, we
re-weighted and ranked the candidates according to
their word2vec similarity, dice coefficient and lan-
guage model probabilities and we picked the top 4
candidates as the final distractors.

4.2 Results

Amazon Mechanical Turk was used to evaluate
our distractor selection method. Turkers were pre-
sented with a Gap-Fill Question, gap-phrase and
were tasked to evaluate whether each of the top 4
distractors were good or bad. 75 sentences with 300
distractors from the Campbell’s Biology Textbook
were deployed. Since every distractor was rated by 5
turkers, we assigned each distractor a score by sum-
ming up the five ratings (1 for Good and 0 for Bad).
Scores ranged from 0 to 5. Results are summarized
in Table 7.

Very Good Fair Bad
Percentage of Dis-
tractors

43% 51% 6%

Table 6: Distractor Selection Results

Mean Variance
3.19 1.51

Table 7: Distractor Rating Statistics

Distractors with a score > 3 were considered
very good, score < 2 were considered bad and
the rest fair. We found that 51% of the distractors
had a score of 2 or 3 which meant that there was
low inter-annotator agreement. This reflects the
complexity of the task as well as a lack of biological
. As such, a more precise evaluation of our system
can be performed with students/teachers as our
annotators instead. Nonetheless, with 94% of the
distractors being at least fair, RevUP’s distractor
selection component works fairly well.

Examples of distractors selected by RevUP are
in Table 5.

5 Conclusion & Future Work

In summary, we have leveraged upon data-driven
machine learning methods to propose RevUP:
an automated, domain-independent pipeline for
GFQG. Leveraging on topic models, a new topic-
distribution based ranking method was proposed
for sentence selection. For gap-selection, a dis-
criminative binary classifier was trained on human
annotations. With the classifier, RevUP could pre-
dict the relevance of a gap-phrase with an accuracy
of 81.0%. We finally proposed a novel method for
generating semantically-similar distractors with
contextual fit and demonstrated that a 94% of the
generated distractors were fair.

For future work, we hope to utilise more parameters
to more accurately pinpoint better sentences. As
for gap selection, we could explore the usage of
more features and the usage of learning-to-rank
methods e.g. SVMRank. We intend to cast the
distractor selection problem as a machine learning
problem to be trained from human judgments.
Another possibility is the integration of RevUP
into e-learning platforms such as Moodle to allow
public usage of the tool. This could pave the way
for usability tests to be conducted to understand
the impact RevUP has on the learning process and
educational performance of students. Furthermore,
RevUP could be used to generate questions from
transcribed lectures on MOOC platforms such as
Coursera and Udacity.
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Abstract

Providing writing feedback to English lan-
guage learners (ELLs) helps them learn to
write better, but it is not clear what type or how
much information should be provided. There
have been few experiments directly comparing
the effects of different types of automatically
generated feedback on ELL writing. Such
studies are difficult to conduct because they
require participation and commitment from
actual students and their teachers, over ex-
tended periods of time, and in real classroom
settings. In order to avoid such difficulties,
we instead conduct a crowdsourced study on
Amazon Mechanical Turk to answer questions
concerning the effects of type and amount of
writing feedback. We find that our experiment
has several serious limitations but still yields
some interesting results.

1 Introduction

A core feature of learning to write is receiving feed-
back and making revisions based on the information
provided (Li and Hegelheimer, 2013; Biber et al.,
2011; Lipnevich and Smith, 2008; Truscott, 2007;
Rock, 2007). However, an important question to an-
swer before building automated feedback systems is
what type of feedback (and degree of interactivity)
can best support learning and retention. Is it better
to restrict the system to providing feedback which
indicates that an error has been made but does not
suggest a possible correction? Or is it better for the
learner to receive feedback, which provides a clear
indication of the error location as well as the correc-
tion itself, or even an explanation of the underlying

grammatical rule? In this study, we refer to the first
type of feedback as implicit feedback and to the sec-
ond type as explicit feedback.

To the best of our knowledge, there is no em-
pirical study that directly compares several differ-
ent amounts of detail (granularities) in automatically
generated feedback in terms of their impact on learn-
ing outcomes for language learners. This is not sur-
prising since the ideal study would involve conduct-
ing controlled experiments in a classroom setting,
requiring participation from actual language learn-
ers and teachers.

In this paper, we examine whether a large-scale
crowdsourcing study conducted on Amazon Me-
chanical Turk, instead of in classrooms, can provide
any answers about the effect of feedback granularity
on learning. Our experiments are preliminary in na-
ture but nevertheless yield results that — despite not
being directly applicable to ELLs — are interesting.
We also report on lessons we have learned about the
deficiencies in our study and suggest possible ways
to overcome them in future work.

For the purpose of this study, we define an “im-
provement in learning outcome” as an improvement
in the performance of the Turkers on a specific task:
detecting and correcting preposition selection errors
in written text. Obviously, learning to use the cor-
rect preposition in a given context is only one, albeit
an important, aspect of better writing. However, we
concentrate on this single error type since: (a) doing
so will allow us to remove any unintended effects
of interactions among multiple errors, ensuring that
the feedback message is the only variable in our ex-
periment, and (b) automated systems for correcting
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preposition selection errors have been studied and
developed for many years. Reason (b) is important
since we can use the output of these automated sys-
tems as part of the feedback.

Briefly, a high-level description of the study is as
follows:

1. Over multiple sessions, Turkers detect and cor-
rect preposition errors in sentences.

2. We provide sub-groups of Turkers with differ-
ent types of feedback as they proceed through
the sessions.

3. We measure the differences in Turker perfor-
mance and see if the differences vary across
feedback types.

Section 2 describes related work. Section 3 de-
scribes the experimental design of our study in more
detail. Section 4 presents our analysis of the results
from the study and, finally, Section 5 concludes with
a summary of the study along with the lessons we
learned from conducting it.

2 Related Work

One automated writing evaluation tool that helps
students plan, write and revise their essays guided by
instant diagnostic feedback and a score is Criterion.
Attali (2004) and Shermis et al. (2004) examine the
effect of feedback in general in the Criterion system
and find that students presented with feedback are
able to improve the overall quality of their writing.
Those studies do not investigate different feedback
types; they look at the issue of whether feedback in
general is a useful tool. We propose to look at vary-
ing levels of detail in feedback messages to see what
effect this has on student learning.

We have found no large-scale empirical studies
comparing the types of feedback on grammatical er-
rors in the field of second language acquisition, and
no work at all on using computer-generated correc-
tions. In the field of second language acquisition, the
main focus has been on explicit vs. implicit feed-
back in a general sense.

The major focus of studies on Corrective Feed-
back, or “CF”, for grammatical errors has been on
whether CF is effective or not following the contro-
versial claim by Truscott (1996) that it may actually
be harmful to a learner’s writing ability.

Russell and Spada (2006) used 56 studies in their
meta-analysis of CF research, and of those, 22 fo-
cused on written errors and one looked at both oral
and written errors. Meihami and Meihami (2013)
list a few more studies, almost all of which are from
2006 or later. Some of the studies were conducted
in classroom settings, while others were in “labora-
tory” settings. In all of the studies, corrective feed-
back was given by humans (teachers, researchers,
peers, other native speakers), so the sample sizes
are most likely limited (unfortunately, that informa-
tion is missing from the Russell and Spada meta-
analysis).

Doughty and Williams (1998) summarize the
findings of the Lyster and Ranta (1997) classroom
study of the effectiveness of various feedback tech-
niques. Lyster and Ranta (1997) found that one
of the effective types of feedback for stimulating
learner-generated repairs was a repaired response
from the teacher. There were also several other feed-
back types that were found to be effective including
meta-linguistic cues, clarification requests and repe-
tition of the learner error. Carroll and Swain (1993)
found that in general some kind of feedback is better
than no feedback.

There are very few studies that have compared
the effectiveness of different types of written cor-
rective feedback. Bitchener et al. (2005) and Bitch-
ener (2008) seem to show that direct feedback (oral
or written) is more effective than indirect, while in
(Bitchener and Knoch, 2008; Bitchener and Knoch,
2009), which have larger sample sizes, the differ-
ence disappeared. Bitchener and Knoch (2010)
investigated different types of corrective feedback
over a 10-month period and also show that there are
no differences among different types of feedback.
However, Sheen (2007) found that the group re-
ceiving meta-linguistic explanations performed bet-
ter than the one who received direct error corrections
in the delayed post-test 2 months later. All of these
studies focused only on English articles.

Biber et al. (2011) present a synthesis of existing
work on the influences of feedback for writing de-
velopment. One point from this report that is very
relevant to our current work is that “Truscott (2007)
focuses on the quite restricted question of the extent
to which error correction influences writing accu-
racy for L2-English students. This study concluded
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that overt error correction actually has a small neg-
ative influence on learners’ abilities to write accu-
rately. However, the meta-analysis was based on
only six research studies, making it somewhat dif-
ficult to be confident about the generalizability of
the findings.” Biber et al. (2011) also mention that
“In actual practice, direct feedback is rarely used as
a treatment in empirical research.”

The work most directly relevant to our study is
that of Nagata and Nakatani (2010), who attempt to
measure actual impact of feedback on learning out-
comes for English language learners whose native
language is Japanese. At the beginning of the study,
students wrote English essays on 10 different topics.
Errors involving articles and noun number were then
flagged either by a human or by two different auto-
matic error detection systems: one with high preci-
sion and another with high recall. A control group
received no error feedback. Learning was mea-
sured in terms of reduction of error rate for the noun
phrases in the students’ essays. Results showed that
learning was quite similar for the human-supplied
feedback and the high-precision automated feedback
conditions, and that both were better than the no-
feedback condition. In contrast, the high-recall au-
tomated feedback condition actually yielded results
worse than the no-feedback condition. This latter
finding supports the commonly held assumption that
it is better to provide less feedback than to provide
incorrect feedback. Note, however, that their study
only compares providing implicit feedback to pro-
viding no feedback.

3 Experimental Setup

We designed a crowdsourcing experiment to exam-
ine the differences in learning effects resulting from
different types of feedback. The overall design of
the experiment consists of three phases:

1. Phase 1. Recruit Turkers and measure their
pre-intervention preposition error detection and
correction skills. All Turkers are provided
with the same minimal feedback during the
pre-intervention session, i.e., they are on equal
footing when it comes to writing feedback.

2. Phase 2. Divide the recruited Turkers into dif-
ferent, mutually exclusive groups. Each group
participates in a series of intervention sessions

where the Turkers in that group receive one
specific type of feedback.

3. Phase 3. Measure the post-intervention per-
formance for all Turkers. Similar to the pre-
intervention session, the same minimal feed-
back is provided during the post-intervention
session.

We chose to use five different feedback granularities
in our study, which are outlined below. The first one
represents implicit feedback and the last four repre-
sent explicit feedback.

1. Minimal Feedback. Messages are of the form:
There may be an error in this sentence.

2. Moderate Feedback. The incorrect preposition
is highlighted and the feedback message is of the
form: The highlighted preposition P1 may be in-
correct.

3. Detailed Feedback 1. The incorrect preposition
is highlighted and the feedback message is of the
form: The highlighted preposition P1 may be in-
correct; the preposition P2 may be more appro-
priate, where P2 is a human expert’s suggested
correction for the error.

4. Detailed Feedback 2. The incorrect preposition
is highlighted and the feedback message is of the
form: The highlighted preposition P1 may be in-
correct; the preposition P2 may be more appro-
priate, where P2 is the correction assigned the
highest probability by an automated preposition
error correction system (Cahill et al., 2013).

5. Detailed Feedback 3. The incorrect preposition
is highlighted and the feedback message is of
the form: The highlighted preposition P1 may
be incorrect; the following is a list of preposi-
tions that may be more appropriate, where the
list contains the top 5 suggested corrections from
the automated error correction system.

For all three detailed feedback types, Turkers
were told that the corrections were generated by
an automated system. Table 1 shows the design of
our experimental study wherein all recruited Turk-
ers were divided into five mutually exclusive groups,
each corresponding to one of the feedback types de-
scribed above.

For our pre-intervention/recruitment session (Ses-
sion 1), we collected judgments from 450 Turkers
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Session 1 Session 2 Session 3 Session 4 Session 5

Group 1 Minimal Minimal Minimal
Group 2 Minimal Moderate Minimal
Group 3 Minimal Detailed 1 Minimal
Group 4 Minimal Detailed 2 Minimal
Group 5 Minimal Detailed 3 Minimal

Table 1: The experimental design of the study. Turkers were divided into five mutually exclusive groups and always
shown the same type of feedback during the intervention (sessions 2–4). All Turkers were shown the same minimal
feedback during the pre- and the post-intervention (sessions 1 and 5, respectively).

Session 1 Session 2 Session 3 Session 4 Session 5

Group 1 82 78 76 74 72
Group 2 82 72 70 68 66
Group 3 82 72 70 70 65
Group 4 83 74 72 70 70
Group 5 83 75 74 73 72

Total 412 371 362 355 345

Table 2: The number of Turkers that participated in each group for each session.

without regard for qualification requirements. One
Turker’s work was rejected for carelessness, and the
remaining 449 received approved payments of $1.
After scoring the responses, removing questionable
work, and reviewing the distribution of scores, we
reduced this number to 412 (approximately 82 Turk-
ers per group). We then randomly assigned Turkers
to one of the five feedback groups.1 We adminis-
tered Session 2 approximately two weeks after Ses-
sion 1. We created a unique task for each feedback
group, and Turkers were only permitted to access
the task for their assigned group. Upon review, their
work was approved for payment, and a new qualifi-
cation score was assigned for entrance into the next
session. The remaining sessions were posted every
other day up to Session 5, and each task remained
available for two weeks after posting. The payment

1An MTurk feature that was essential to this study was the
ability to designate “qualifications” to recruit and target spe-
cific Turkers. MTurk requesters can use these qualifications to
assign Turkers to conditions and keep a record of their status.
After Turkers completed Session 1, we were able to use our
own qualifications and a range of qualification scores to assign
Turkers to groups and control the order in which they completed
the sessions. Although the Turkers were assigned randomly to
groups, we manually ensured that the distributions of Session 1
scores were similar across groups.

amount increased by 50 cents for each new session,
adding up to a total of $10 per Turker if they com-
pleted all five sessions. Table 2 shows the number of
Turkers assigned to each group who participated in
each of the five sessions.

We used the CLC-FCE corpus (Yannakoudakis et
al., 2011), which has been manually annotated for
preposition errors by professional English language
instructors. We randomly selected 90 sentences with
preposition errors and 45 sentences without errors
and manually reviewed them to ensure their suit-
ability. Unsuitable sentences were replaced from
the pool of automatically extracted sentences un-
til we had a total of 135 suitable sentences. We
annotated each sentence containing an error with a
correct preposition. The 135 sentences were then
randomly divided into 5 HITs (Human Intelligence
Tasks, the basic unit of work on MTurk), one for
each of the five sessions. Each HIT was generated
automatically, with manual human review. Given a
sentence containing an error and a correction, we au-
tomatically extracted the following additional data:

• A version of the sentence where the only error is
the preposition error (specifically errors where
an incorrect preposition is used).
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Figure 1: A partial screenshot of the HIT shown to the Turkers. The first sentence contains a preposition error and the
second does not.

• The incorrect preposition, its position in the sen-
tence, and the human correction.
• A version of the sentence that has the preposition

error corrected.

The pre- and post-intervention HITs consisted of
30 sentences and the intervention sessions consisted
of 25 sentences each. About a third of the sen-
tences in each HIT contained no errors (to measure
detection ability) and the remaining contained a sin-
gle preposition error (to measure correction ability).
Turkers were first asked to indicate whether or not
there was a preposition error in each sentence, in
order to test their error detection skills. Once the
Turker answered, they received a feedback message
of the appropriate granularity directing them to cor-
rect the error in the sentence, if there was one. If
there were no errors annotated in the sentence, Turk-
ers received a message saying that the sentence con-
tained no errors. Figure 1 shows a partial screenshot
of a HIT.

In order to understand more about our partici-
pants, we geo-located Turkers using their IP ad-
dresses. A significant majority of the Turkers — 319
out of the 345 who participated in all five sessions
— were from the United States with the remaining
located in India (21), Mexico (3), Ireland (1), and
Sweden (1).

4 Analysis

To prepare data for analysis, we automatically
scored the Turker responses and manually adjusted
these scores to account for sentences where more
than one correction was appropriate. Scoring for
each sentence depended on the presence of an er-
ror. For sentences with errors, Turkers could score a

maximum of two independent points: 1 point for de-
tection and 1 point for correction. Because Turkers
were not asked to correct sentences without errors,
these were only worth 1 point for detection.

4.1 Prepositions Used

Before examining the Turker responses, we ana-
lyzed the actual prepositions that were involved in
each erroneous sentence in each session. Figure
2 shows this distribution. We observe that not all
prepositions are represented across all sessions and
that the distributions of prepositions are quite differ-
ent. In fact, only three prepositions errors (“of”, “in”
and “to”) appear in all five sessions.

4.2 Turker Motivation

One of the most common problems with using
crowdsourcing solutions like MTurk is that of qual-
ity control. In our study, we excluded 37 Turkers at
the pre-intervention stage for quality control. How-
ever, after that session, no Turkers were excluded
since we wanted all recruited Turkers to finish all
five sessions. Therefore, it is important to exam-
ine the recruited Turkers’ responses provided for all
three intervention sessions for any strange patterns
indicating that a Turker was trying to game the task
by not providing good-faith answers. For example,
a Turker who was only motivated to earn the HIT
payment and not to make a useful contribution to
the task could:

• answer ‘yes’ or ‘no’ to all error detection ques-
tions or at random
• always accept the suggested preposition
• always use a random preposition as their answer
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• always pick the first preposition from a given list
of prepositions

We analyze the Turkers’ error detection responses
all together and their error correction responses by
feedback type.

Figure 2: The distribution of prepositions involved in the
erroneous sentences for each session.

4.2.1 Analyzing Detection Responses
First, we examine the possibility that Turkers may

have answered ‘yes’ or ‘no’ at the error detection
stage for all questions or may have selected one of
those answers at random for each question. To do
this, we simply compute the proportion of sentences
for which each Turker accurately detected the error,
if one was present. The faceted plot in Figure 3
shows that almost all of the Turkers seem to have an-
swered the error detection questions accurately, and
without trying to game the system. Each facet shows
a histogram of the average accuracy (across all sen-
tences) of the Turkers from one of the five feedback
groups and for each of the five sessions. The dotted
line in each plot indicates the accuracy that would

Figure 3: A histogram of the Turkers’ average error de-
tection accuracy for the three intervention sessions. The
dotted and solid lines indicate accuracies that a Turker
would have obtained had they answered every question
in a session with ‘No’ or ‘Yes’, respectively.

have been obtained by a Turker had they simply said
‘no’ to all the error detection questions and the solid
line indicates the accuracy that would have been ob-
tained by answering ‘yes’ to all of them. Note that
these lines are the same across feedback groups be-
cause the sentences are the same for a session, irre-
spective of the feedback group.

4.2.2 Analyzing Correction Responses
In this section, we analyze the Turker error cor-

rection responses by feedback type. First, we ex-
amine the responses from the Turkers in Group 3,
i.e., those who received messages of the Detailed
Feedback 1 type. Figure 4 shows that most of the
Turkers accepted the suggested correction. Note that
since Turkers were not informed that the suggestion
came from an expert, this is still an indicator of good
Turker performance. Furthermore, the figure shows
that even a majority of the Turkers who decided not
to accept the suggestion actually answered with an
alternative correct preposition of their own. The
“Not Accepted - Incorrect (Other)” category in the
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Figure 4: By session and sentence, the proportion of Turkers in Group 3 accepting the (always correct) suggested
preposition, and, if not accepting it, the correctness of their repairs.

Figure 5: By session and sentence, the proportion of Turkers in Group 4 accepting the (possibly incorrect) suggested
preposition, and, if not accepting it, the correctness of their repairs.

Figure 6: By session and sentence, the number of Turkers in Group 5 selecting a preposition at each rank position in
the suggestion list and the correctness of their selection.
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figure refers to rare cases where the Turkers deleted
the erroneous preposition or made other changes in
the sentence instead of fixing the preposition error.

Next, we examine responses from Turkers in
Group 4. Figure 5 shows – similar to Figure 4 –
the proportion of Turkers that simply accepted the
suggestion provided as compared to those who did
not. However, in this case, we have the additional
possibility of the suggested preposition being incor-
rect, since it is generated by an automated system.
Again, we see that most Turkers accept the sug-
gested preposition when it’s correct, but when it’s
incorrect, they answer with a different correct prepo-
sition of their own.

Our analysis for Group 5 shows similar trends,
i.e., most Turkers take the time to find a contextually
accurate answer even if it’s not on the list of sug-
gested prepositions. Therefore, we do not include a
corresponding plot for Group 5 in the paper.

Instead, we thought it would be interesting to
examine the Turkers’ responses from another an-
gle. Since a correct suggestion may not always be
the top-ranked preposition in the suggestion list, it
would be interesting to include suggestion ranks into
the analysis. Figure 6 shows, for each sentence in
each session, the number of Turkers that accepted
each ranked suggestion. The color of the bar indi-
cates whether that particular suggestion was correct
or incorrect. Note that there may be multiple cor-
rect suggestions in a list. Again, we observe that,
although there are some Turkers who accepted the
top ranked answer even if it was incorrect, the great
majority took the time to select a correct preposi-
tion no matter what its rank was. Note that the blank
facets in the figure represent sentences for a session
that did not contain any errors.

4.3 Learning Effects
In this section, we attempt to answer the primary
question for the study, i.e., assuming that sessions
2-4 constitute the intervention, is there a signif-
icant difference in the pre-intervention and post-
intervention Turker performance across the various
feedback conditions?

To answer this question, we first compute the
log-odds of Turkers accurately detecting (and cor-
recting) errors for the pre-intervention and post-
intervention sessions — sessions 1 and 5 respec-

tively — and plot them in Figure 7. We observe that
for detection, the changes in performance between
pre- and post-intervention are similar across feed-
back groups and no group seems to have performed
better than Group 1, post-intervention. As far as cor-
rection is concerned, there is improvement across all
feedback conditions, but the change in Group 3’s
performance seems much more dramatic than that
for the other groups.

However, we need to determine whether these im-
provements are statistically significant or instead can
simply be explained away by sampling error due to
random variation among the Turkers or among the
sentences. To do so, we use a linear mixed-effects
model.2 The advantages of using such a model are
that, in addition to modeling the fixed effects of
the intervention and the type of feedback, it can
also model the random effects represented by the
Turker ID (Turkers have different English proficien-
cies) and the sentence (a sentence may be easier or
more difficult than another). In addition, it can also
help us account for further random effects, e.g., the
effect of Turkers in different groups learning at dif-
ferent rates and the sentences being affected differ-
ently by the different feedback conditions. Specifi-
cally, we fit the following mixed-effects logistic re-
gression model using the lme4 package in R:

accurate ∼ group ∗ session
+ (1 + session | mturkid)
+ (1 + group | sentnum)

where accurate (0 or 1) represents whether a
Turker accurately detected or corrected the error
in the sentence, group represents the feedback
type, and session is either the pre- or the post-
intervention session (1 or 5). The ∗ in the model
indicates the inclusion of the interaction between
group and session, which is necessary since our
model is focused on a second order measure (the dif-
ferences between changes in performance). We fit
two models of this form, one for detection and one
for correction. Examination of the results indicates:

1. In the detection model, there was a significant
effect of session (p < 0.05). However, neither
the effect of group nor any of the interactions of

2cf. Chapter 7, Baayen (2008).
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Figure 7: Log-odds of Turkers accurately detecting or
correcting preposition errors, pre- and post-intervention.

group by session were significant.
2. In the correction model, the effect of group was

significant only for Group 3. In addition, the in-
teraction of group by session was also signif-
icant only for Group 3.

From the above results, we can conclude that:

• Irrespective of the feedback type they were
shown, Turkers exhibited significant improve-
ments in their detection performance between
the pre- and post-intervention sessions, probably
due to practice. This was not the case for correc-
tion.
• Only Turkers from Group 3 (i.e., those shown

expert suggestions as feedback - Detailed Feed-
back 1) exhibited a significantly larger improve-
ment in correction performance due to the inter-
vention, as compared to the Turkers that were
shown minimal feedback (no explicit feedback).

5 Summary

In this paper, we presented a study that uses crowd-
sourcing to evaluate whether the granularity of writ-
ing feedback can have a measurable impact on learn-
ing outcomes. The study yields some interesting re-
sults. In particular, it provides some evidence to sup-
port the finding from Nagata and Nakatani (2010)
that only high precision feedback can help learners
improve their writing. However, the study is quite
preliminary in nature and focuses on the outcomes
for a single writing skill. In addition, there were sev-
eral other deficiencies:

• The distributions of preposition errors across
sessions varied considerably which might have
made it harder for Turkers to generalize what
they learned from one session to another. An-
other possible confounding factor may have
been the fact that the Turker population we re-
cruited was largely located in the U.S. whereas
the sentences were chosen from a corpus of
British English.
• It is clear from the high levels of pre-

intervention error detection and correction per-
formance that the recruited Turkers are not En-
glish language learners. We had hoped to re-
cruit Turkers with varied English proficiencies
by not restricting participation to any specific
countries. However, a more explicit strategy is
likely necessary.
• Even though we were fortunate that the Turkers

were well-motivated throughout our task, en-
forcing quality control in a study of this type is
challenging.
• Note that in our experimental set up, Turkers

receive, as part of the feedback message, an
explicit indication of whether or not their de-
tection answers were correct, but no such indi-
cation is provided for their correction answers.
This could be why session had a significant
effect for detection but not for correction.

We believe that our study, along with all its defi-
ciencies, represents a useful contribution to the field
of assessing the impact of writing feedback, and that
it can help the community design better studies in
the future, whether they be conducted using crowd-
sourcing or with actual students in a classroom.
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Abstract
We examine different ensemble methods, in-
cluding an oracle, to estimate the upper-limit
of classification accuracy for Native Language
Identification (NLI). The oracle outperforms
state-of-the-art systems by over 10% and re-
sults indicate that for many misclassified texts
the correct class label receives a significant
portion of the ensemble votes, often being the
runner-up. We also present a pilot study of hu-
man performance for NLI, the first such experi-
ment. While some participants achieve modest
results on our simplified setup with 5 L1s, they
did not outperform our NLI system, and this
performance gap is likely to widen on the stan-
dard NLI setup.

1 Introduction

Native Language Identification (NLI) is the task of
inferring the native language (L1) of an author based
on texts written in a second language (L2). Ma-
chine Learning methods are usually used to identify
language use patterns common to speakers of the
same L1 (Tetreault et al., 2012). The motivations for
NLI are manifold. The use of such techniques can
help SLA and ESL researchers identify important
L1-specific learning and teaching issues, enabling
them to develop pedagogical material that takes into
consideration a learner’s L1. It has also been used to
study language transfer hypotheses and extract com-
mon L1-related learner errors (Malmasi and Dras,
2014).

NLI has drawn the attention of many researchers in
recent years. With the influx of new researchers, the
most substantive work in this field has come in the
last few years, leading to the organization of the in-
augural NLI Shared Task in 2013which was attended
by 29 teams from the NLP and SLA areas (Tetreault
et al., 2013).

An interesting question about NLI research con-
cerns an upper-bound on the accuracy achievable for
a dataset. More specifically, given a dataset, a selec-
tion of features and classifiers, what is the maximal
performance that could be achieved by an NLI system
that always picks the best candidate? This question,
not previously addressed in the context of NLI to
date, is the primary focus of the present work. Such a
measure is an interesting and useful upper-limit base-
line for researchers to consider when evaluating their
work, since obtaining 100% classification accuracy
may not be a reasonable or even feasible goal. In
this study we investigate this issue with the aim of
deriving such an upper-limit for NLI accuracy.

A second goal of this work is to measure human
performance for NLI, something not attempted to
date. To this end we design and run a crowdsourced
experiment where human evaluators predict the L1
of texts from the NLI shared task.

2 Oracle Classifiers
One possible approach to estimating an upper-bound
for classification accuracy, and one that we employ
here, is the use of an “Oracle” classifier. This method
has previously been used to analyze the limits of
majority vote classifier combination (Kuncheva et
al., 2001). An oracle is a type of multiple classifier
fusion method that can be used to combine the results
of an ensemble of classifiers which are all used to
classify a dataset.

The oracle will assign the correct class label for an
instance if at least one of the constituent classifiers
in the system produces the correct label for that data
point. Some example oracle results for an ensemble
of three classifiers are shown in Table 1. The proba-
bility of correct classification of a data point by the
oracle is:

POracle = 1− P (All Classifiers Incorrect)
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Classifier Output
Instance True Label C1 C2 C3 Oracle
18354.txt ARA TUR ARA ARA Correct
15398.txt CHI JPN JPN KOR Incorrect
22754.txt HIN GER TEL HIN Correct
10459.txt SPA SPA SPA SPA Correct
11567.txt ITA FRE GER SPA Incorrect

Table 1: Example oracle results for an ensemble of three
classifiers.

Oracles are usually used in comparative experi-
ments and to gauge the performance and diversity
of the classifiers chosen for an ensemble (Kuncheva,
2002; Kuncheva et al., 2003). They can help us
quantify the potential upper limit of an ensemble’s
performance on the given data and how this perfor-
mance varies with different ensemble configurations
and combinations.

One scenario is the use of an oracle to evaluate the
utility of a set of feature types. Here each classifier
in the ensemble is trained on a single feature type.
This is the focus of our first experiment (§5).

Another scenario involves the combination of dif-
ferent learning algorithms trained on similar features,
to form an ensemble in order to evaluate the potential
benefits and limits of combining different classifi-
cation approaches. This is the focus of our second
experiment (§6), using all of the entries from the
2013 shared task as systems.

3 Data

Released as part of the 2013 NLI Shared task, the
TOEFL11 corpus (Blanchard et al., 2013) 1 is the first
dataset designed specifically for the task of NLI and
developed with the aim of addressing the deficien-
cies of other previously used corpora. By providing
a common set of L1s and evaluation standards, the
shared task set out to facilitate the direct comparison
of approaches and methodologies. TOEFL11 includes
12,100 learner essays sampled evenly from 11 dif-
ferent L1 backgrounds: Arabic, Chinese, French,
German, Hindi, Italian, Japanese, Korean, Spanish,
Telugu and Turkish.

4 Ensemble Combination Methods

We experiment with several ensemble combination
methods to draw meaningful comparisons.

Oracle The correct label is selected if predicted by
any ensemble member, as described in §2.

1http://catalog.ldc.upenn.edu/LDC2014T06

Plurality Voting This is a standard combination
strategy that selects the label with the highest number
of votes,2 regardless of the percentage of votes it
received (Polikar, 2006).
Accuracy@N To account for the possibility that
a classifier may predict the correct label by chance
(with a probability determined by the random base-
line), we propose an Accuracy@N combiner. This
method is inspired by the “Precision at k” metric
from Information Retrieval (Manning et al., 2008)
which measures precision at fixed low levels of re-
sults (e.g. the top 10 results). Here, it is an extension
of the Plurality vote combiner where instead of se-
lecting the label with the highest votes, the labels
are ranked by their vote counts and an instance is
correctly classified if the true label is in the top N
ranked candidates.3 In other words, it is a more re-
stricted version of the Oracle combiner that is limited
to the top N ranked candidates in order to minimize
the influence of a single classifier having chosen the
correct label by chance. In this study we experiment
with N = 2 and 3. We also note that setting N = 1
is equivalent to the Plurality voting method.
Mean Probability All classifiers provide probabil-
ity estimates for each possible class. Each class’
estimates are summed and the one with the highest
mean wins (Polikar, 2006, §4.2).
Simple Combination combines all features into a
single feature space.

5 Feature Set Evaluation

Our first experiment attempts to derive the potential
accuracy upper-limit of our feature set. We train a sin-
gle linear Support Vector Machine (SVM) classifier
for each feature type to create our classifier ensemble.
Linear SVMs have been shown to be effective for
such text classification problems and was the classi-
fier of choice in the 2013 NLI Shared Task. We do not
experiment with combining different machine learn-
ing algorithms here, instead we focus on gauging the
potential of the feature set. We employ a standard
set of previously used feature types: character/word
n-grams, Part-of-Speech (POS) n-grams, function
words, Context-free grammar production rules, Tree
Substitution Grammar fragments and Stanford De-
pendencies. Descriptions of these features can be

2This differs with a majority vote combiner where a label
must obtain over 50% of the votes.

3In case of ties we choose randomly from the labels with the
same number of votes.
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Accuracy (%)
10-fold CV Test Set

Random Baseline 9.1 9.1
Shared Task Best 84.3 (84.5) 83.6 (85.3)

Oracle 95.6 95.4
Accuracy@3 92.5 92.2
Accuracy@2 88.6 88.0

Plurality Vote 78.2 77.6
Simple Combination 78.2 77.5

Mean Probability 79.4 78.7

Table 2: Oracle results using our feature set.

found in §4.1 of Tetreault et al. (2012).4

We report classification accuracy under 10-fold
cross-validation using the TOEFL11 training data and
also on the test set from the 2013 shared task, shown
in Table 2. For both Tables 2 and 3 we report a
random baseline and the best performances on the
Shared Task: the first number is the top performer
from the shared task (Jarvis et al., 2013), and the
number in parentheses is the best published perfor-
mance after the shared task (Ionescu et al., 2014) .
The cross-validation and test results are very similar,
with the oracle accuracy at 95%, suggesting that for
each document there is in most cases at least one fea-
ture type that correctly predicts it. This drops to 88%
with the Accuracy@2 combiner, still much higher
than the plurality vote and the best results from the
shared task. This suggests that there is a noticeable
tail of feature types dragging the plurality vote down.

6 2013 Shared Task Evaluation

In the second experiment we apply our methods to
the submissions in the 2013 NLI Shared Task, aiming
to quantify the potential upper limit for combining a
range of different systems.

The data comes from the closed-training sub-task.5

Each team was allowed to submit up to 5 different
runs for each task, allowing them to experiment with
different feature and parameter variations of their
system. Each team’s systems produce predictions us-
ing their own set of features and learning algorithms,
with several of these systems using ensembles them-
selves.

In total, 115 runs were submitted by 29 teams,
with the winning entry achieving the highest accu-
racy of 83.6% on the test set. We experiment under

4For features comparisons see Malmasi and Cahill (2015)
5The shared task consisted of three sub-tasks. For each task,

the test set was TOEFL11-TEST; only the type of training data
varied by task where the other two sub-tasks allowed the use of
external training data.

Accuracy (%)
Best Run All Runs

Random Baseline 9.1 9.1
Shared Task Best 84.3 (84.5) 83.6 (85.3)

Oracle 97.9 99.5
Accuracy@3 95.5 95.6
Accuracy@2 92.2 92.5

Plurality Vote 84.5 84.4

Table 3: Oracle results on the shared task systems.

two conditions: using only each team’s best run and
using all 115 runs. Results are compared against the
random baseline and winning entry.

Table 3 shows the results for this experiment. The
oracle results are higher than the previous experi-
ment, which is not unexpected given the much larger
number of predictions per document. Results for the
other combiners are also higher here.

The Accuracy@2 results are 92% in both condi-
tions, much higher than the winning entry’s 83%. Re-
sults from the Accuracy@2 combiner, both here and
in the previous experiment, show that a great major-
ity of the texts are close to being correctly classified:
this value is significantly higher than the plurality
combiner6 and not much lower than the oracle. This
shows that the correct label receives a significant por-
tion of the votes and when not the winning label, it is
often the runner-up.7

One implication of this concerns practical appli-
cations of NLI, e.g. in a manual analysis, where it
may be worthwhile for researchers to also consider
the runner-up label in their evaluation.

This knowledge could also be used to increase
NLI accuracy by aiming to develop more sophisti-
cated classifiers that can take into account the top N
labels in their decision making, similar to discrimina-
tive reranking methods applied in statistical parsing
(Charniak and Johnson, 2005).

Using the Accuracy@2 combiner, we isolate the
cases where the actual label was the runner up and ex-
tract the most frequent pairs of top 2 labels, presented
in Table 4. We see that a quarter of the errors are
confusion between Hindi and Telugu. The Korean
and Turkish confusion could be due to both being
Altaic languages.

We also examine the confusion matrices for the
plurality, Accuracy@2 and oracle combiners,8 shown

6Which is itself equivalent to an Accuracy@1 combiner.
7In approx. 8% of the cases here, to be more precise.
8Where the Accuracy@2 and oracle combiners could not

predict the correct label the plurality vote was used.
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Figure 1: Confusion matrices for the plurality (L), Accuracy@2 (M) and oracle (R) combiners..

Confused Pair Percent Cumulative Percent
HIN–TEL 15.9 15.9
TEL–HIN 10.2 26.1
CHI–KOR 6.8 33.0
JPN–KOR 6.8 39.8

KOR–TUR 4.5 44.3

Table 4: Most commonly predicted top 2 label pairs where
the runner-up is the true label.

in Figure 1. They show that Hindi–Telugu is the
most commonly confused pair and confirm the di-
rectionality of the confusion: more Telugu texts are
misclassified as Hindi than vice versa.

7 Human NLI Performance

While most NLI work has focused on improving
system performance, to our knowledge there has not
been any corresponding study which looks at human
performance for this task. To give our preceding
results more context, as well as the results of the
field, we ran an exploratory study to determine how
accurate humans are for this task.

7.1 Experiment Design
Our initial hypothesis was to use the Amazon Me-
chanical Turk to collect crowdsourced judgments.
However, unlike simpler NLP tasks, e.g. sentiment
analysis and word sense disambiguation, which can
be effectively annotated by untrained Turkers (Snow
et al., 2008), NLI requires raters with knowledge and
exposure to writers with different L1s. Optimally,
one would use a set of ESL teachers and researchers
who have experience in working with ESL writers
from all of the 11 L1s, though such people are rar-
ity. As a reasonable compromise, we chose 10 pro-
fessors and researchers who have varied linguistic
backgrounds, speak multiple languages, and have had
exposure with the particular L1s, either as a speaker
or through working with ESL students. We also con-
strained the task from 11 L1s to 5 (Arabic, Chinese,
German, Hindi, and Spanish) as we believed that
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Figure 2: Prediction accuracy for each of our 10 partici-
pants under both easy and hard conditions.

11 L1s would be too much of an overload on the
judges. The 5 L1s were selected since they all belong
to separate language families.

The experiment consisted of rating 30 essays from
TOEFL11-TEST, 15 of which most Shared Task sys-
tems could predict correctly (easy), and the remain-
ing 15 were essays in which the Shared Task systems
had difficulty (hard). The L1s were distributed evenly
over the essays and easy/hard conditions (3 “easy”
and 3 “hard” essays per L1).

7.2 Results
Figure 2 shows the accuracy for each rater in this pilot
study. The top rater accurately identified 16 out of 30
L1s (53.3%), with the lowest raters at 30.0% overall
and an average of 37.3%. All raters did better on the
“easy” cases than on the “hard.” A paired-samples
t-test was conducted to compare human accuracy in
the easy and hard conditions. A significant difference
was found for easy (M=45.33, SD=11.67) and hard
(M=30, SD=10.06), t(9)=−3.851, p = .004.

Next, we compared human accuracy with our NLI
system, which we re-trained using only the five se-
lected L1s. Results are shown in Table 5. All ensem-
bles outperform human raters and a plurality vote
composed of the human raters. Interestingly, the hu-
man plurality vote was only 3% higher than the top
human score, suggesting that the raters tended to get
the same essays correct.
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Accuracy (%)
Easy Hard All

Random Baseline 20.0 20.0 20.0
NLI Plurality Vote 100.0 33.3 66.7

NLI Mean Probability 100.0 46.7 73.3
Top Human 66.7 40.0 53.3

Human Plurality Vote 73.3 40.0 56.7

Table 5: Comparing human participant performance
against an NLI system on 30 selected texts.

We also note that some L1s received more correct
predictions than others,9 but the difference is not sta-
tistically significant.10 Some participants noted that
while they had familiarity with L1 Spanish/Chinese
non-native writing, they did not have much exposure
to the other L1s, possibly due to international student
cohorts.

Our belief, based on these pilot results, is that
as the number of classes increases, the system will
outpace the human raters by a widening margin. It
should also be noted that we purposefully selected
disparate L1s to make easier for the human raters. As
there are several other L1s in the TOEFL11 that are in
the Romance family class, and others where it is less
likely for raters to have seen student essays (such as
Telugu), including those will also likely affect human
performance.

8 Related Work

Prior work has shown that ensemble classification
can improve NLI performance. Tetreault et al. (2012)
established that ensembles composed of classifiers
trained on different feature types were useful for
NLI and we also take this approach. Several shared
task systems also found improvements using differ-
ent ensemble classifications. Goutte et al. (2013)
used plurality voting in their shared task submission
which placed seventh. Cimino et al. (2013) found that
a meta-classifier approaches outperformed plurality
voting, while both outperformed their basic system.
Malmasi et al. (2013) experimented with 7 different
methods of ensemble classification and found that the
mean probability method performed best, though they
note that all ensemble methods were within about 1%
of each other. This method, performed after the final
submission phase, performed at 83.6%, the same as
the top performing system (Jarvis et al., 2013).

More recently, Bykh and Meurers (2014) extended
their shared task submission (Bykh et al., 2013) by in-

9CHI: 50%, SPA: 46.7%, HIN: 33.3%, GER: 31.7%, ARA: 26.7%
10Our sample size is too small, but this is still suggestive.

vestigating the use of model selection and tuning for
ensemble classification. Their method outperformed
plurality voting, and when combined with improve-
ments to syntactic and n-gram features, produced a
performance of 84.82%. Finally, Ionescu et al. (2014)
used string kernels to achieve the highest reported
result on the TOEFL11-TEST: 85.3% and 10-fold CV:
84.5%.

In contrast to the prior work, our work in combin-
ing the outputs of each system could not make use
of the development set since that would require the
actual code from all 29 systems. If that were avail-
able, then a meta-classifer could be used to further
improve performance.

9 Discussion

We presented a novel analysis for predicting the “po-
tential” upper limit of NLI accuracy on a dataset.
This upper limit can vary depending on which com-
ponents – feature types and algorithms – are used in
the system. Alongside other baselines, oracle perfor-
mance can assist in interpreting the relative perfor-
mance of an NLI system.11

A useful application of this method is to isolate
the subset of wholly misclassified texts for further
investigation and error analysis. This segregated data
can then be independently studied to better under-
stand the aspects that make it hard to classify them
correctly. This can also be used to guide feature en-
gineering practices in order to develop features that
can distinguish these challenging texts. In practice,
this type of oracle measure can be used to guide the
process of choosing the pool of classifiers that form
an ensemble.

We also note that these oracle figures would be pro-
duced by an optimal system that always makes the
correct decision using this pool of classifiers. While
these oracle results could be interpreted as potentially
attainable, this may not be feasible and practical lim-
its could be substantially lower.

A potentially fruitful direction for future work is
the investigation of meta-classification methods that
can overcome the limitations of the plurality voting
methods to achieve higher results. It should be noted
that the human study described in this paper is a
pilot. We plan on conducting a larger rating where
we sample randomly across essays and include more
experts for each L1.

11e.g. an NLI system with 70% accuracy against an Oracle
baseline of 80% is relatively better compared to one with 74%
accuracy against an Oracle baseline of 93%.
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Abstract 
A quasi-experimental study compared the effects 

of feedback condition on eighth-grade students’ 

writing motivation and writing achievement. Four 

classes of eighth-graders were assigned to a 

combined feedback condition in which they 

received feedback on their writing from their 

teacher and from an automated essay evaluation 

(AEE) system called PEGWriting®. Four other 

eighth-grade classes were assigned to a teacher 

feedback condition, in which they solely received 

feedback from their teacher via GoogleDocs. 

Results indicated that students in the combined 

PEGWriting+Teacher Feedback condition 

received feedback more quickly and indicated that 

they were more likely to solve problems in their 

writing. Equal writing quality was achieved 

between feedback groups even though teachers in 

the PEGWriting condition spent less time 

providing feedback to students than in the 

GoogleDocs condition. Results suggest that 

PEGWriting enabled teachers to offload certain 

aspects of the feedback process and promoted 

greater independence and persistence for students.  

 
 

1. Introduction 

 

In the 21st century, possessing strong writing skills 

is essential for success in K-12 education, college 

acceptance and completion, and stable gainful 

employment (National Commission on Writing, 

2004, 2005). Yet, more than two-thirds of students 

in grades four, eight, and twelve fail to achieve 

grade-level proficiency in writing, as indicated by 

recent performance on the National Assessment of 

Educational Progress (NCES, 2012; Salahu-Din, 

Persky, & Miller, 2008). Without sufficient writing 

skills, students are at-risk of performing worse in 

school, suffering lower grades, and experiencing  

school dropout (Graham & Perin, 2007). 

One effective method for improving students’ 

writing skills is providing instructional feedback 

(Graham, McKeown, Kiuhara, & Harris, 2012; 

Graham & Perin, 2007). Struggling writers, in 

particular, need targeted instructional feedback 

because they tend to produce shorter, less-

developed, and more error-filled texts than their 

peers (Troia, 2006). However, instructional 

feedback is often difficult and time-consuming for 

teachers to provide. Indeed, educators in the 

primary and secondary grades report that the time-

costs of evaluating writing are so prohibitive that 

they rarely assign more than one or two paragraphs 

of writing (Cutler & Graham, 2008; Kiuhara, 

Graham, & Hawken, 2009). Consequently, 

educators are increasingly relying on automated 

essay evaluation (AEE) systems (Warschauer & 

Grimes, 2008) to provide students with immediate 

feedback in the form of essay ratings and 

individualized suggestions for improving an 

essay—i.e., automated feedback.  

Previous research on AEE indicates that, in 

isolation of teacher feedback, automated feedback 

appears to support modest improvements in 

students’ writing quality. Findings from studies of 

ETS’s Criterion® (Kellogg, Whiteford, & Quinlan; 

Shermis, Wilson Garvan, & Diao, 2008), Pearson’s 

Summary Street (Franzke, Kintsch, Caccamise, 

Johnson, & Dooley, 2005; Wade-Stein & Kintsch, 

2004), and Measurement Incorporated’s 

PEGWriting® system (Wilson & Andrada, in press; 

Wilson, Olinghouse, & Andrada, 2014), indicate 

that automated feedback assists students in 

improving the overall quality of their essays while 

concomitantly reducing the frequency of their 

mechanical errors.  

Less research has explored the effects of AEE 

on writing motivation. However, in two studies, 

Warschauer and Grimes (2008; 2010), found that 
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teachers and students who had used ETS’ Criterion 

or Pearson’s My Access programs, agreed that AEE 

had positive effects on student motivation.  

Teachers also reported that the AEE systems saved 

them time on grading, and to be more selective 

about the feedback they gave.  

 

1.1 Study purpose 
 

The purpose of the present study was to extend 

previous research in the following ways. First, 

previous studies of AEE have focused on the use of 

automated feedback in isolation of teacher 

feedback, despite the intended use of such systems 

for complementing, not replacing, teacher feedback 

(Kellogg et al., 2010). To date, no research has 

evaluated the effects of a combined AEE-and-

teacher-feedback condition against a teacher-

feedback-only condition. Furthermore, studies have 

employed a weak control condition, typically a no-

feedback condition, to test the effects of AEE on 

writing quality. 

Furthermore, additional research is needed 

regarding the possible effects of AEE on writing 

motivation. Theoretical models of writing (e.g., 

Hayes, 2006; 2012), and empirical research (e.g., 

Graham, Berninger, & Fan, 2007) underscore the 

importance of a student’s motivation and 

dispositions towards writing for promoting writing 

achievement. As AEE systems become more 

widely-used, it is important for stakeholders to 

know the degree, and limitations, of their effect on 

these affective dimensions of writing ability.  

Therefore, the present study compared a 

combined teacher-plus-AEE feedback condition to 

a teacher-feedback-only condition with regards to 

their effect on eighth-grade students’ writing 

motivation and writing quality. The combined 

feedback condition utilized an AEE system called 

PEGWriting. The teacher-feedback-only condition 

utilized the comments function of GoogleDocs to 

provide students with feedback. We hypothesized 

that students in the combined feedback condition 

would report greater motivation due to 

PEGWriting’s capacity to provide immediate 

feedback in the form of essay ratings and 

individualized suggestions for feedback. With 

respect to writing quality, it was difficult to generate 

a priori hypotheses given the aforementioned 

limitations of previous research. Exploratory 

analyses considered whether students in the 

combined feedback condition outperformed their 

peers on measures of writing quality, or whether 

quality was commensurate across groups.  

 

2. Methods 
 

2.1 Setting and Participants 

 

This study was conducted in a middle school in an 

urban school district in the mid-Atlantic region of 

the United States. The district serves approx. 10,000 

students in 10 elementary schools, three middle 

schools, and one high school. In this district, 43% of 

students are African-American, 20% are 

Hispanic/Latino, and 33% White. Approximately 

9% of students are English Language Learners, and 

50% of students come from low income families.  

Two eighth-grade English Language Arts 

(ELA) teachers agreed to participate in this study. 

The teachers were experienced, having taught for a 

total of 12 and 19 years, respectively. One teacher 

had earned a Master’s degree and the other was in 

the process of earning it (Bachelor’s +21 credits). 

Each teacher taught a total of four class periods of 

ELA per day. 

Given that the school did not use academic 

tracking and each class exhibited a range of reading 

and writing ability, teachers were asked to randomly 

select two classes from each of their schedules to 

assign to the combined automated-and-teacher-

feedback condition (hereafter referred to as 

PEG+Teacher), and two classes to assign to a 

teacher-feedback-only condition (hereafter referred 

to as GoogleDocs). Thus, teachers instructed classes 

assigned to both feedback condition. 

A total of 74 students were assigned to the 

PEG+Teacher condition and 77 students to the 

GoogleDocs condition. Though classes were 

randomly assigned to feedback conditions, the study 

sampled intact classes, resulting in a quasi-

experimental design. Table 1 reports demographics 

for each sample. Chi-Square and t-tests confirmed 

that the groups were equal with respect to all 

variables. In addition, all students received free-

lunch. No students received special education 

services. 
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PEG + 

Teacher 
GoogleDocs 

Gender (n)   

Male 41 38 

Female 33 39 

Race (n)   

Hispanic/Latino 20 20 

African 

American 
31 24 

White 22 30 

Asian 1 1 

Unreported 0 2 

ELL (n) 2 0 

Age (months)   

M 169.03 169.51 

SD 5.90 4.90 

 
Table 1: Demographics of Study Participants 

 

2.2 Description of PEGWriting 

 

PEGWriting is a web-based formative writing 

assessment program developed by Measurement 

Incorporated (MI). It is designed to provide students 

and teachers with an efficient and reliable method 

of scoring student writing in order to promote 

students’ writing skills.  

PEGWriting is built around an automated essay 

scoring engine called PEG, or Project Essay Grade. 

PEG was developed by Ellis Batten Page (Page, 

1966; 1994; 2003) and acquired by MI in 2002. PEG 

uses a combination of techniques such as natural 

language processing, syntactic analysis, and 

semantic analysis to measure more than 500 

variables that are combined in a regression-based 

algorithm that predicts human holistic and analytic 

essay ratings. A number of empirical studies have 

established the reliability and criterion validity of 

PEG’s essay ratings (Kieth, 2003; Shermis, 2014; 

Shermis, Koch, Page, Keith, & Harrington, 2002). 

Students and teachers access PEGWriting by 

visiting www.pegwriting.com and inputting their 

individual username and passwords. Teachers can 

assign system-created prompts in narrative, 

argumentative, or informative genres. They can also 

create and embed their own prompts, which can use 

words, documents, images, videos, or even music as 

stimuli. 

Once a prompt is assigned, students can select 

from several embedded graphic organizers to 

support their brainstorming and prewriting 

activities. After prewriting, students have up to 60 

minutes to complete and submit their drafts for 

evaluation by PEG. Once submitted, students 

immediately receive essay ratings for six traits of 

writing ability: idea development, organization, 

style, sentence structure, word choice, and 

conventions. Each of these traits is scored on a 1-5 

scale and combined to form an Overall Score 

ranging from 6-30. In addition, students receive 

feedback on grammar and spelling, as well as trait-

specific feedback that encourages students to review 

and evaluate their text with regard to the features of 

that specific trait. Students also receive customized 

links to PEGWriting’s skill-building mini-lessons. 

These lessons are multimedia interactive lessons on 

specific writing skills such as elaboration, 

organization, or sentence variety.  

Once students receive their feedback, they may 

revise and resubmit their essays up to a total of 99 

times—the default limit is 30—and receive new 

essay ratings, error corrections, and trait-specific 

feedback. Teachers are also able to provide students 

with feedback by embedding comments within the 

students’ essays or through summary comments 

located in a text box following the PEG-generated 

trait-specific feedback. Students may also leave 

comments for their teacher using a similar function. 

 

2.3 Study Procedures 

 

After classes were assigned to feedback conditions, 

all students completed a pretest writing motivation 

survey (Piazza & Siebert, 2008; see Section 2.4). 

Then, teachers began instruction in their district-

assigned curriculum module on memoir writing. 

Teachers introduced the key features of memoir 

writing to all their classes. During this initial 

instructional phase, students in the PEG+Teacher 

condition were given an opportunity to learn how to 

use PEGWriting. Earlier in the school year, the first 

author trained the two teachers on the use 

PEGWriting during three 30 minute training 

sessions. Then, teachers subsequently trained their 

students how to use the program in one 45 minute 

class period following completion of the pretest 

writing motivation survey.  

Teachers then assigned their district-created 

writing prompt for the memoir unit, which read: 
 

We have all had interesting life experiences. 

Some are good, funny, or exciting, while 
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others are bad, sad, or devastating. Choose 

one experience from your life and tell the 

story. Once you have chosen your topic, you 

may choose to turn it into a scary story, 

drama, elaborate fiction, science fiction, 

comedy, or just tell it how it is. Be sure to 

organize your story and elaborate on your 

details. Your audience wasn’t there so you 

need to tell them every little detail. 

 

Students then proceeded to brainstorm, 

organize their ideas, and draft their memoirs using 

the technology available to them. Students in the 

PEG+Teacher condition used the built-in graphic 

organizers to plan out their memoirs. Students in 

the GoogleDocs condition used teacher-provided 

graphic organizers. Subsequent class periods were 

devoted to drafting, revising, and editing the 

memoirs. During this time, teachers delivered 

mini-lessons on features of memoir writing such as 

“Show, not tell,” “Using dialogue in memoirs,” 

and “Using transitions.” Both teachers kept a log 

of their instructional activities, documenting that 

they delivered the same instruction as each other 

and to each of the classes they taught.  

Teachers were instructed to review and 

provide feedback on their students’ writing a 

minimum of one, and a maximum of two times, 

across both conditions. Teachers were allowed to 

provide feedback as they normally would, 

commenting on those aspects of students’ text 

which they deemed necessary. They gave feedback 

to students in the GoogleDocs condition by (a) 

directly editing students’ texts, and (b) providing 

comments similar to the comment feature in 

Microsoft Word. Since students in the 

PEG+Teacher feedback condition were already 

receiving feedback from PEG, teachers could 

supplement the feedback with additional 

comments as they deemed necessary. Feedback 

was delivered in the form of embedded comments 

(similar to the GoogleDocs condition) and in the 

form of summary comments. Students in this 

condition were allowed to receive as much 

feedback from PEG as they wished by revising and 

resubmitting their memoir to PEG for evaluation. 

But, the amount of teacher feedback was held 

constant across conditions. 

At the conclusion of the instructional period 

(approx. three weeks), students submitted the final 

drafts of their memoir. Then, students were 

administered a post-test writing motivation survey 

that mirrored the initial survey with additional 

items that specifically asked about their 

perceptions of the feedback they received. 

Teachers also completed a brief survey regarding 

their experiences providing feedback via 

PEGWriting and GoogleDocs. 

 

2.4 Study Measures 

 

Writing Motivation was assessed using the Writing 

Disposition Scale (WDS; Piazza & Siebert, 2008), 

which consisted of 11 Likert-scale items that are 

combined to form three subscales measuring the 

constructs of confidence, persistence, and passion. 

Cronbach’s Alpha was reported as .89 for the entire 

instrument, and .81, .75, and .91, respectively for 

the three subscales (Piazza & Siebert, 2008). The 

WDS was administered at pretest and at posttest. 

The posttest administration of the WDS also include 

additional researcher-developed items asking 

students to share their perceptions of the feedback 

they received. These items included Likert-scale 

ratings followed by an open-ended response option. 

Writing quality was assessed using the PEG 

Overall Score, PEG trait scores, and teacher grades. 

Details on the PEG Overall Score and the PEG trait 

scores are found in Section 2.2. Teacher grades were 

generated by using a primary trait narrative rubric 

developed by the local school district. The rubric 

evaluated ten traits of personal narrative writing, 

each on a 0-10 scale. Final grades were assigned by 

totaling students’ scores on each of the ten traits 

(range: 0-100). Traits assessed included: the 

presence of a compelling introduction; logical 

organization; establishment of a setting, narrator, 

and point of view; effective conclusion which 

reflects on the life event; sufficient details and 

description; effective use of figurative language and 

dialogue; presence of accurate sentence structure; 

strong and vivid word choice; and absence of errors 

of spelling, punctuation, and usage.  

 

2.5 Data Analysis 

 

Non-parametric analyses were used to estimate 

differences between feedback conditions on 

individual items of the Writing Dispositions Scale 

(WDS). A series of one-way analysis of variance 

(ANOVA) were used to estimate differences 

between groups on the Confidence, Persistence, and 
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 PEG+Teacher  GoogleDocs 

Item SA A N D SD  SA A N D SD 

1. My written work is among the 

best in the class. 

8 17 34 13 2  9 13 39 10 5 

2. Writing is fun for me. 4 25 29 8 8  10 23 15 18 10 

3. I take time to try different 

possibilities in my writing. 

3 33 23 13 2  7 35 20 10 4 

4. I would like to write more in 

school. 

2 11 25 22 14  5 18 18 17 18 

5. I am NOT a good writer. 3 12 23 20 16  6 8 28 25 9 

6. Writing is my favorite subject in 

school. 

3 6 24 31 10  3 11 22 22 18 

7. I am will to spend time on long 

papers. 

3 21 21 14 15  8 23 13 19 13 

8. If I have choices during free 

time, I usually select writing. 

0 4 13 27 30  1 8 8 27 32 

9. I always look forward to writing 

class. 

3 10 27 21 13  1 10 24 18 23 

10. I take time to solve problems 

in my writing. 

11 34 17 8 4  5 34 20 13 4 

11. Writing is easy for me. 10 24 31 2 7  17 22 27 5 5 

 
Table 2: Frequencies of Student Responses to the Pretest Writing Disposition Scale (WDS) by Feedback Condition 

SA = Strongly Agree; A = Agree; N = Neutral; D = Disagree; SD = Strongly Disagree 

 

Passion subscales. Confidence was formed as the 

average of items 1, 5 (reverse coded), and 11. 

Reverse coding was achieved by translating self-

reports of strongly agree to strongly disagree, agree 

to disagree, and vice versa. Neutral responses 

remained the same. Persistence was formed as the 

average of items 3, 4, 7, and 10. Passion was formed 

as the average of items 2, 6, 8, and 9. Finally, a 

series of one-way ANOVAs was used to compare 

conditions with respect to the writing quality 

measures. Full data was available for all students on 

the PEG Overall and Trait scores. Data on teacher 

grades was only available for 62 students in each 

group at the time of this reporting. Data coded from 

open-ended response items from teachers and 

students was used to contextualize the results. 

Missing data for posttest measures of motivation 

and writing quality resulted in listwise deletion of 

cases from analyses 

 

3. Results 
 

3.1 Pretest Analyses of Writing Motivation 

 

Data from the pretest administration of the WDS is 

presented in Table 2 (above). Non-parametric 

analyses performed on the individual survey items 

revealed that the null hypothesis of equal 

distributions across feedback conditions was 

retained in all cases. Thus, it is possible to assume 

that students’ writing motivation did not differ as a 

function of their feedback condition. Means and 

standard deviations for the subscales of Confidence, 

Persistence, and Passion are presented in Table 3. T-

tests indicated no-statistically significant 

differences in subscale scores by feedback 

condition. Hence, at pretest, groups were equivalent 

with respect to their writing motivation and writing 

dispositions. 

 

 PEG+Teacher  GoogleDocs 

Subscale M SD  M SD 

Confidence  2.75 .91  2.58 .78 

Persistence 3.05 .85  2.86 .69 

Passion 3.64 .88  3.42 .76 

    
Table 3: Descriptives for WDS Subscales at Pretest 

 

3.2 Posttest Analyses of Writing Motivation 

 

Non-parametric analyses were performed on the 

individual posttest survey items, examining 
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statistically significant differences in the 

distribution of responses across conditions. All 

contrasts were non-statistically significant, except 

for item 10—“I take time to solve problems in my 

writing.” The mean ranks of the PEG+Teacher and 

GoogleDocs conditions were 62.52 and 75.53, 

respectively: U = 1921.50, Z = -2.03, p = .04. 

Examination of the individual frequency data for 

this item (see Table 4) shows that 66% of students 

in the PEG+Teacher feedback condition agreed or 

strongly agreed with this statement, as compared to 

50% of students in the GoogleDocs condition.  

 

 SA A N D SD 

PEG+Teacher 11 31 17 4 1 

GoogleDocs 7 30 27 7 3 

 
Table 4: Posttest Frequencies to WDS Item 10 

 

       When comparing pre-/posttest responses to 

item 10 (see Figure 1), the percentage of students in 

the PEG+Teacher condition who agreed or strongly 

agreed that they take time to solve problems in their 

writing increased by 5%, whereas those in the 

GoogleDocs condition stayed the same. One-way 

ANOVAs comparing subscale scores across 

condition were not statistically significant. 
 

  
 

Figure 1: Pretest/Posttest Comparison of SA/A 

Responses to WDS Item 10 

 

To further investigate this finding we compared 

the average number of essay drafts completed by 

students in each condition using a one-way 

ANOVA. Results indicated that students in the 

PEG+Teacher condition completed a higher 

average number of essay drafts (M = 11.28, SD = 

6.81) than students in the GoogleDocs condition (M 

= 7.18, SD = 2.29): F (1, 138) = 22.287, p < .001. 

Thus, students’ self-report information and 

behavior appears to be consistent in this regard. 

In addition to the 11 items on the WDS scale, 

seven other Likert-scale items were administered at 

posttest assessing students’ perceptions of the 

feedback they received. Non-parametric analyses 

indicated a statistically significant difference 

between feedback conditions on item 18—“I 

received feedback quickly”—favoring the 

PEG+Teacher feedback condition (Mean rank = 

56.34) as compared to the GoogleDocs condition 

(Mean rank = 79.31): U = 1526.00, Z = -3.57, p < 

.001. A total of 78% of students in the 

PEG+Teacher condition agreed or strongly agreed 

that they received feedback quickly, as compared to 

63% of students in the GoogleDocs condition. 

Examination of the frequency data for the other 

feedback-specific items (see Table 5 following 

page) suggests that students in both conditions 

perceived feedback to be useful for helping them 

improve their writing. Students exhibited greater 

variation with regard to their desire to receive more 

feedback (Item 15). Open-ended response data 

suggests that feedback can serve to both encourage 

and discourage student writers. For some, feedback 

is a supportive and motivating factor.  
 

I wish that because it'll help me make my 

writing pieces better. Than that way I know 

what to do and what mistakes not to do next 

time. (ID #2324) 

  

Yet for others, feedback serves to highlight a 

student’s deficits and cause discomfort.  
 

I got tired of so much feedback. (ID #2403) 

Not really because I wouldn't like people to 

know what I'm writing. (ID #2301) 

 

Still, for some students it is the absence of 

feedback, not the presence of it, which tells them 

that they are doing a good job. 
 

I chose three because yes I would like to 

receive feedback but if I don't I think I'm doing 

fine. (ID #2321)  
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Table 5: Frequencies by Condition of Student Responses to the Posttest Survey Items Regarding Feedback  

 

3.3 Posttest Analyses of Writing Quality 

 

A series of one-way ANOVAs examined the effects 

of feedback condition on the PEG Overall Score and 

PEG trait scores. The null hypothesis of equal 

means was retained in all cases. However, the one-

way ANOVA comparing groups on the 

“Conventions” trait approached statistical 

significance, showing a small effect size favoring 

the PEGWriting group: F (1, 138) = 3.33, p = .07, D 

= .31. There was also a small effect size favoring the 

PEGWriting condition on the Sentence Structure 

trait: D = .18. The one-way ANOVA of Teacher 

Grades was not statistically significant, but a small 

effect size favored the PEGWriting group: D = .19. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Writing Skill Feedback by Condition

 

3.4 Teacher Survey Data 

 

Results of surveys administered to teachers at the 

conclusion of the study indicated that teachers 

varied their feedback across conditions. Teachers 

were asked to rank the following skills in order of 

the frequency with which they were commented on 

in students’ writing: spelling, punctuation, 

capitalization, organization, idea development and 

elaboration, and word choice. For the GoogleDocs 

condition, teachers agreed that they most frequently 

provided feedback on low-level writing skills, such 

as spelling, punctuation, capitalization, and 

grammar. For the PEG+Teacher condition, teachers 

agreed that they most frequently provided feedback 

on high-level writing skills: idea development and 

elaboration, organization, and word choice. Indeed, 

one teacher said she did not need to give any 

feedback on capitalization or grammar. When asked 

to decide which of the two systems—PEGWriting 

or GoogleDocs—enabled them to devote more 

energy to commenting on content, both teachers 

selected PEGWriting.  

Teachers further agreed that they needed to give 

less feedback to students who had been using 

PEGWriting. Consequently, when asked to estimate 

the amount of time spent providing feedback to 

students in each condition, teachers agreed that 

providing feedback in the GoogleDocs condition 

took twice as long as doing so in the PEG+Teacher 

condition. For this reason, both teachers agreed that 

PEGWriting was more efficient for providing 

feedback than GoogleDocs.  

 PEG+Teacher  GoogleDocs 

Item SA A N D SD  SA A N D SD 

12. The Feedback I received 

helped me improve my writing. 

27 31 4 2 0  26 42 4 0 1 

13. I received the right amount of 

feedback. 

24 27 12 1 0  23 36 11 2 1 

14. The feedback I received made 

sense to me. 

23 29 7 4 0  25 39 8 1 0 

15. I wish I had more opportunities 

to receive feedback.  

14 15 16 14 4  17 19 20 11 6 

16. I received feedback about a 

variety of writing skills. 

15 32 9 8 0  14 27 20 9 3 

17. Receiving feedback on my 

essay score helped me improve my 

writing. 

33 25 8 4 2  34 27 7 3 2 

18. I received feedback quickly. 30 20 12 2 0  12 33 17 10 0 

Writing Skills GoogleDocs PEG+Writing

Capitalization

Grammar

Idea Development & Elaboration

Organization

Punctuation

Spelling

Word Choice
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When asked to select which system was easier 

for teachers and students to use, teachers agreed that 

GoogleDocs was easier for teachers, but 

PEGWriting and GoogleDocs were equally easy for 

students to use. However, both teachers agreed that 

PEGWriting was more motivating for students and 

that it promoted greater student independence. 

 

4. Discussion 
 

This study was the first of its kind to compare the 

effects of a combined automated feedback and 

teacher feedback condition and a teacher-feedback-

only condition (GoogleDocs) on writing motivation 

and writing quality. Students in the combined 

feedback condition composed memoirs with the aid 

of feedback from an AEE system called 

PEGWriting® and their teacher (provided within 

the environment of PEGWriting). Students in the 

teacher-feedback-only condition composed their 

texts using GoogleDocs which enabled their teacher 

to edit their text and embed comments.  

Based on prior research (Grimes & Warschauer, 

2010; Warschauer & Grimes, 2008), we 

hypothesized that students would report greater 

writing motivation in the PEG+Teacher feedback 

condition. However, we were unable to generate an 

a priori hypothesis regarding the effects of feedback 

condition on writing quality since prior research has 

not contrasted feedback conditions in the manner 

investigated in the current study.  

With respect to writing motivation, our 

hypothesis was partially confirmed. Students in the 

PEG+Teacher feedback condition reported stronger 

agreement with Item 10 of the WDS—“I take time 

to solve problems in my writing”—than did students 

in the GoogleDocs condition. This self-report data 

was confirmed with a statistically significant 

difference, favoring the PEG+Teacher feedback 

condition, in the number of drafts students 

completed. However, effects on broader constructs 

of writing motivation—confidence, persistence, and 

passion—were not found. This may have been due, 

in part, to the duration of the study. The study 

spanned just over three weeks; hence, it is likely that 

additional exposure and engagement with 

PEGWriting is needed to register effects on these 

broader constructs.  

Nevertheless, it is encouraging that students 

reported greater agreement with Item 10. Revision 

is a challenging and cognitively-demanding task 

(Flower & Hayes, 1980; Hayes, 2012), requiring 

students to re-read, evaluate, diagnose, and select 

the appropriate action to repair the problem. Many 

struggling writers lack the motivation to engage in 

this process, and consequently make few revisions 

to their text (MacArthur, Graham, & Schwartz, 

1991; Troia, 2006). Perhaps, the use of an AEE 

system, such as PEGWriting, provides sufficient 

motivation for students to persist in the face of the 

substantial cognitive demands of revision. Future 

research should explore the use of AEE systems 

over extended timeframes. It may be possible that 

these initial gains in persistence are leveraged to 

increase writing motivation more broadly. 

With respect to writing quality, results showed 

no statistically significant differences between 

conditions for the PEG Overall Score or PEG trait 

scores. While on this surface this may appear to 

indicate that the feedback provided by PEGWriting 

yielded no value-added over simply receiving 

teacher feedback in the form of edits and comments 

via GoogleDocs, we do not believe this to be the 

case.  

First, though AEE systems are designed and 

marketed as supporting and complementing teacher 

feedback, previous research has solely examined the 

use of automated feedback in isolation from teacher 

feedback. Furthermore, prior studies have typically 

employed weak control conditions, such as a no-

feedback condition (Kellogg et al., 2010) or a 

spelling-and-text-length condition (Franzke et al., 

2005; Wade-Stein & Kintsch, 2004). While these 

studies provide important initial evidence of the 

effects of automated feedback and AEE, their 

design lacks ecological validity as they do not 

reflect the intended use of such systems. Lack of 

statistically significant effects on our measures of 

writing quality may simply be due to the presence 

of a stronger counterfactual. Thus, the presence of a 

stronger control condition in our study should not 

be confused with absence of value-added. 

Second, results from the additional posttest 

survey items administered to students (see Table 5) 

and from the survey administered to teachers may 

point to where the value added by AEE. The 

provision of immediate feedback in the form of 

essay ratings, error correction, and trait-specific 

feedback appears to have enabled students to 

increase their persistence and independence in 

solving problems in their writing. Consequently, 

teachers spent half the amount of time providing 
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feedback to students as they did to students in the 

GoogleDocs condition. Moreover, the use of 

PEGWriting enabled teachers to devote attention to 

higher-level skills such as idea development and 

elaboration, organization, and word choice, while 

offloading feedback on lower-level skills to the 

AEE system.  

Thus, the value-added of PEGWriting appears 

to be its ability to promote an equivalent level of 

writing quality as is achieved using a more time 

consuming and effortful method of providing 

feedback (i.e., teacher-feedback-only). In other 

words, by enabling teachers to be more selective 

and focused in their comments, PEGWriting saved 

teachers time and effort without sacrificing the 

quality of students’ writing. Forthcoming analyses 

will determine whether this hypothesis holds true 

across other measures of writing quality. 

 

4.1 Limitations and Future Research 

 

Study findings and implications must be interpreted 

in light of the following limitations. First, though 

teachers randomly assigned classes to feedback 

conditions, in absence of a pretest measure of 

writing ability it is not possible to test whether 

groups were truly equivalent in terms of prior 

writing ability. Nevertheless, the pretest measure of 

writing motivation indicated equivalence across 

conditions with regards to specific writing 

dispositions and subscales of confidence, 

persistence, and passion. It is likely, that if one 

condition exhibited significantly greater writing 

achievement this would also have been reflected in 

the disposition ratings (see Graham et al., 2007). 

Second, the study examined the effects of 

feedback on just a single writing assignment: 

memoir writing. Furthermore, the prompt allowed 

for substantial student choice, both in terms of the 

content of their memoir and the form. Students had 

the freedom to turn their memoir into a comedy, a 

drama, a science fiction story, or simply recount the 

events as they happened. It is unclear whether 

similar results would have been found had a prompt 

been assigned that was more restrictive in terms of 

student choice and that placed greater demands on 

students in terms of background knowledge. Given 

the literature on prompt and task effects in writing 

(Baker, Abedi, Linn, & Niemi, 1995; Chen, Niemi, 

Wang, Wang, & Mirocha, 2007), it is important that 

future research attempt to replicate results across 

different writing tasks.  

Finally, the sample was drawn from classes 

taught by two teachers in a single middle school in 

a school district in the mid-Atlantic region of the 

United States. Therefore, it is unclear the degree to 

which study results reflect generalizable or local 

trends. Nonetheless, study findings on the utility of 

AEE are consistent with prior research which has 

used much larger samples (Warschauer & Grimes, 

2008). Further, since the study utilized a novel 

design—comparing a combined AEE and teacher 

feedback condition to teacher-feedback-only 

condition—it is logical to initially test the design 

using smaller samples. Future research should seek 

to utilize similar feedback conditions in larger 

samples.  

 

5. Conclusion 
 

The increasing application of AEE in classroom 

settings necessitates careful understanding of its 

effects on students’ writing motivation and writing 

quality. Research should continue to illustrate 

methods of how AEE can complement, not replace, 

teacher instruction and teacher feedback. The 

current study provides initial evidence that when 

such a combination occurs, teachers save time and 

effort and they provide greater amounts of feedback 

relating to students’ content and ideas. In addition, 

students receive feedback more quickly, report 

increases in their persistence to solve problems in 

their writing. In sum, AEE may afford the 

opportunity to shift the balance of energy from 

teachers to students without sacrificing the final 

quality of students’ writing. 
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Abstract

This paper identifies computational challenges
in restructuring encyclopedic resources (like
Wikipedia or thesauri) to reorder concepts
with the goal of helping learners navigate
through a concept network without getting
trapped in circular dependencies between con-
cepts. We present approaches that can help
content authors identify regions in the concept
network, that after editing, would have maxi-
mal impact in terms of enhancing the utility of
the resource to learners.

1 Introduction

The digital age opens up the possibility of using a
mix of online resources for self-study. Not all of
these resources have rich pedagogical content, tai-
lored to suit the user’s learning goals. Therefore,
while greedily looking out for pages of interest, a
learner often finds a stop gap solution using a re-
source like Wikipedia, but may need to put in sub-
stantial effort to stitch together a set of content pages
to address her learning needs. In this paper, we dis-
tinguish between two kinds of resources: encyclo-
pedic and pedagogic. Encyclopedic resources like
Wikipedia or thesauri have good reference value and
broad coverage, but are not necessarily structured
with the goal of assisting learning of concepts. An
online textbook, in contrast, is a pedagogic resource
in that it has its content organized to realize specific
tutoring goals. However, textbooks in their current
form have definite limitations. Firstly, the content
is often not dynamic, and does not adapt to learner
requirements. Second, unlike Wikipedia, textbooks

are often not collaboratively authored, some are ex-
pensive, and many subjects have no structured learn-
ing resources at all. This paper is motivated by the
central question - ”How can we effectively create
a pedagogic view of content from encyclopedic re-
sources?”

At the current state of the art, it would be am-
bitious to conceive of fully automated solutions to
this question. The more pragmatic goal would be
to examine the extent to which tools can be devised
that can effectively aid humans in (a) constructing
such views (b) facilitating the learner in navigating
through such views. For the purpose of analysis, we
present an abstraction of an encyclopedic resource
in the form of a concept network, and show how
graph theoretic approaches can be used to restruc-
ture such a network with the goal of making it ped-
agogically useful. While the formal development of
this idea is detailed in Section 2, the central idea is
as follows. Consider a concept network constructed
using Wikipedia articles as concept nodes and hy-
perlinks as directed edges. Since Wikipedia articles
are authored independently, it is not unusual that the
author of an article A assumes that a concept B is
known when the reader is on the Wikipedia page of
A, while the author of concept B assumes exactly
the opposite. This results in a circular definition
of concepts, thus making the learner flip back and
forth between these articles. A pedagogical resource
overcomes this bottleneck by ensuring that the cor-
responding concept network is a directed acyclic
graph. A textbook, for example, structures concepts
in a way that ensures that no concept is used before
being defined (Agrawal et al., 2012) (an exception
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is the set of concepts that the textbook assumes the
learner is already familiar with). Thus, a well writ-
ten textbook, together with a set of such prerequi-
sites, ensures that the concept network is cycle-free.
If experts were to analyse Wikipedia content to cre-
ate pedagogic views on specific subjects, they would
benefit from tools that can potentially make best use
of their time and effort, by identifying regions in the
network that need expert attention.

In the context of this paper, we use a dictionary of
words as an example of an encyclopedic resource,
where a word is treated as a concept, and an edge
exists from a concept to the concept whose defi-
nition mentions it. Using a dictionary as opposed
to Wikipedia simplifies the discussion and allows
us to read into our empirical findings more readily.
Though not much is sacrificed in terms of generality,
we identify issues in scaling the idea to Wikipedia.
We also note that the emphasis of the current paper is
largely on the problem of creating views, and not on
presenting the views to the end user (learner). Thus
we envisage that the current paper is a first in a line
of research aimed at creating tools that complement
both content creators and learners in creating and us-
ing pedagogical resources crafted from diverse start-
ing points.

2 Our Approach

The central assumption in our work is that circular
definitions in the concept network are detrimental
for learning since the learner is led to flip back and
forth between concepts involved in a cycle. The goal
is to identify and help content editors eliminate such
cycles, so that we can eventually create a pedagogi-
cally sound partial order of concepts.

2.1 Mathematical model

We model the concept network as a directed graph
G = (V, E). The nodes (V) represent concepts, and
the edges (E) signify the dependency between these
concepts. More specifically, for any two nodes u
and v in the graph, a directed edge u → v exists if
and only if u is useful or necessary in understand-
ing v. So, while modeling a dictionary, the edges
are from the words (which we assume to have been
sense-disambiguated) in the definition of v ∈ V to
v.

At each concept node v, we can assume a compo-
sition operator Π that composes its in-neighbors by
ordering them and augmenting them appropriately
with stop words like the, of, on, etc to construc-
tively create a definition for v. The operation Π is
assumed to be grounded, in the sense that the terms
used for augmentation do not need definitions them-
selves. We distinguish between two specific compo-
sitions, AND and OR. In the former, all in-neighbors
of a concept node are needed to understand it, and in
the latter any one suffices. Later in this section, we
note that in practice, a combination of (soft)AND
and (soft)OR accounts for most concept definitions.

In the general case, for a given node v, all its in-
neighbors are not required to understand v, as there
can be alternate definitions for a word. More pre-
cisely, if the two definitions of a word according to
the dictionary involve concept sets {a1, a2, . . . an}
and {b1, b2, . . . , bm}, then the user has to know ei-
ther all ais or all bjs to understand the word, which
shows the presence of AND-OR composition. In
practice, the learner does not need to know all ais as
one can guess the word meaning using ais that are
known. Thus by imposing relaxation on AND, we
have a soft AND-OR composition in the network.

Figure 1: An example of a sub-graph of a concept graph
based on a dictionary is shown on the left side and the
corresponding reordering of the concepts needed to un-
derstand the word inference given on the right side.

The left part of Figure 1 depicts an example of a
sub-graph of the concept graph constructed using a
dictionary. Here, we note that the word truth is used
in the definition of verify and vice versa. There are
two other cycles present in this example which re-
sult in circular definitions. However, if the learner
knows the meaning of verify, the circularity involv-
ing truth and verify will not exist any more. We can
capture this idea by defining a learning blanket for
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each learner, which encompasses the set of concepts
in the concept graph that he/she is familiar with. In
Figure 1, all words in bold are assumed to be be-
low the learning blanket with respect to a learner.
We observe that the circularities situated below the
learning blanket do not challenge the learner. Thus,
content editors don’t need to spend effort in resolv-
ing such cycles. For example, hat-trick is defined
as ”three goals scored by one player in one game”.
For a learner who knows the meaning of goal, and
is interested in the definition of hat-trick, we do not
resolve cycles that involve concepts that are used to
define goal. So our focus is to find the regions of in-
terest which are situated above the learning blanket
and then help experts resolve those circularities.

2.2 Methods to resolve circular dependencies
We identify three methods which can be used by
content editors to resolve circular dependencies.
The algorithms discussed later on feed into these.

1. Perceptual grounding: Miller et al. (1990)
distinguish between constructive and discriminatory
definitions. While the former applies to words that
can be easily defined using other words, the latter
is appropriate for words like red, which can be bet-
ter defined by contrasting against other colors. At-
tempts to constructively define such words is a com-
mon cause of circularities (red defined using color,
and vice versa). This grounding involves use of im-
ages, videos, etc. to avoid such circularities.

2. Collapsing : This method provides single defi-
nition simultaneously to a set of concepts. For exam-
ple, we can define the concepts polite and courteous
using a single definition showing good manners.

3. Linguistic grounding : Linguistic grounding
involves redefining a concept. For example, in Fig-
ure 1 the circular definition of opinion can be broken
by redefining it as a personal view instead of the cur-
rent definition a judgment of a person.

Algorithms to discover concepts to be grounded
and concepts to be collapsed are described in Sec-
tions 2.3 and 2.4 respectively

2.3 Greedy discovery of concepts for grounding
In order to discover concepts that need expert atten-
tion, we present a greedy algorithm that ranks the
concepts in the graph based on the extent to which
they adversely affect learning by contributing to cy-

cles. We exploit the idea of Relative Coverage pro-
posed by Smyth and McKenna (1999) and PageRank
proposed by Page et al. (1998) to score concepts.

Relative coverage is used to order concepts ac-
cording to their individual contributions for learn-
ing. In our context we define the terminologies for
finding this measure as follows,

Def 2.1. A concept a helps in understanding another
concept b, abbreviated helpsUnderstand(a, b), if
and only if a occurs in the definition of b.

Def 2.2. The Coverage Set of a concept a is,
Coverage(a) = {b | helpsUnderstand(a, b)}
Def 2.3. The Reachability Set of a concept b is,
Reachability(b) = {a | helpsUnderstand(a, b)}
Def 2.4. The Relative Coverage of a concept a is,
RelativeCoverage(a) =

∑
b∈Coverage(a)

1
|Reachability(b)|

The intuition behind Def 2.4 is as follows: a con-
cept has high relative coverage if it helps in under-
standing concepts that cannot be alternatively ex-
plained using other concepts.

We make two observations regarding the notion
of Relative Coverage. Firstly, it ignores transitive
dependencies. Thus, if a concept A helps in under-
standing B, and B in turns helps in understanding C,
the role of A in understanding C is ignored while
estimating the Relative Coverage of A. The second
observation is that Relative Coverage implicitly as-
sumes an OR composition, or else the presence of
a directed edge from a concept A to a concept B
would suggest that A is imperative for understand-
ing B, irrespective of all other concepts that help
understand B. To overcome the first limitation, we
need a recursive formulation, and we use PageRank
to this end. On the network of web pages, PageRank
estimates the importance of a web page by making
a circular hypothesis that a page is important if it
is pointed to by several important pages. We can
extend the PageRank algorithm to recursively esti-
mate importance of concepts in the concept network.
However, one observation is that the score of a con-
cept increases (decreases) with increase (decrease)
in the score of any of its in-neighbors. While this
monotonicity is desirable, it ignores the fact that a
learner unfamiliar with a concept needed to under-
stand the target concept T can often make up for the
lapse if he knows other in-neighbors of T. We noted
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Algorithm 1: Discover concepts for grounding
Input: Graph G = (V,E), Output: GroundConcepts
Initialize C← Set of cycles in G
ConceptsToGround = φ
while C 6= φ do

N← {n | n ∈ c, c ∈ C} # nodes involved in cycles
Compute Importance(n), ∀n ∈ N
v ← argmaxn∈N Importance(n)
C← C− {c ∈ C|v ∈ c}
V← V− {v}
E← E− {(n1, n2) ∈ E|n1 = v or n2 = v}
ConceptsToGround← ConceptsToGround ∪ v

end

that Relative Coverage captures this aspect, except
that it does not support recursion in its definition.
This leads us to conceptualize a weighted version of
the PageRank that exploits the Relative Coverage of
the concept nodes.

The importance scores can be used to identify
concepts that do not take part in any cycle, and rank
the remaining concepts in a partial order that they
need to be presented to the content editor. Algorithm
1 greedily identifies and ranks concepts till there are
no more cycles in the graph.

2.4 Identifying regions for collapsing

We use the term collapsing to refer to the process
of simultaneously defining multiple concepts. This
method is inspired by the way in which a dictionary
groups together different forms of a word (such as
noun, verb, etc). For example, words like humility,
humble can be grouped together. This idea can be
extended to words which do not share a root as well.

In order to perform collapsing, we first identify
the strongly connected components (SCCs) of the
graph. Only the nodes which are present inside the
same SCC are related well enough to be defined si-
multaneously. Also, the lesser the number of nodes
in an SCC, the stronger the dependency between its
nodes. So, we propose that all the SCCs whose num-
ber of nodes is less than some threshold ε can be
collapsed, where ε is very small (We set it to 5).
However, this may be infeasible if the content in the
resource under consideration is too large. In such
cases, we may need to rank these SCCs based on
the effect in which their collapsing has on the entire
learning graph. We do this by topologically sorting
these SCCs (Haeupler et al., 2012). This process is

Algorithm 2: Identify the regions for collapsing
Input: Graph G, Output: CollapsedSet
CollapsedSet← φ
SCC← StronglyConnectedComponents(G)
SortedSCC← TopologicalOrder(SCC)
for each component c in SortedSCC do

if No of nodes in c < ε then
CollapsedSet← CollapsedSet ∪ c

end
end

depicted in Algorithm 2. It may be noted that the
constraint that nodes belong to a small SCC is gen-
erally a weak compared to the one that requires them
to participate in a cycle.

3 Experiments

In our experiments, we have used standard cor-
pora Brown and Gutenberg as learning resources and
Wordnet (Miller et al., 1990) to obtain the definition
of words. The words present in Indian English text-
books published by NCERT1 are used to come up
with an approximation to the set of words an aver-
age user is expected to know (acts as the average
learning blanket). We tested our experiment across
the different levels of average learning blanket. First
level includes all the words present in English text-
books upto first grade and likewise for higher levels.

We lemmatized the words in the corpus and then
removed the stop words from the standard list in the
Python NLTK package. The remaining words con-
stitute the nodes in our concept graph G. In the next
step, we obtain the dependencies that exist amongst
this set of words by using the definition of the first
sense of these words from WordNet. At the end of
this step, we have the complete concept graph G.

The concept graph contains 18,361 nodes for
Gutenberg corpus and 23,238 nodes for Brown cor-
pus. Then, we labeled each node as blanket or non-
blanket nodes using the data obtained for the average
learning blanket. Then, we implemented Algorithms
1 and 2 after removing blanket nodes from the con-
cept graph. As a crude baseline, we picked concepts
randomly until there are no more cycles in the graph.
This baseline method was then compared against
Algorithm 1 using different estimates for concept

1http://www.ncert.nic.in/ncerts/textbook/textbook.htm
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Avg. level Relative Pagerank Pagerank Random
of learning Coverage (Rel. Cov.)

blanket Brown Gut. Brown Gut. Brown Gut. Brown Gut.
1 13.9 14.7 14.7 14.8 13.6 13.9 28.5 29.5
2 13.0 12.9 12.7 12.5 11.4 11.3 24.1 25.9
3 12.5 12.3 12.5 10.9 10.6 10.7 25.7 23.8
4 11.2 9.9 10.4 9.2 9.0 8.8 19.3 20.3
5 13.4 10.8 9.3 12.2 8.5 12.9 18.1 20.2

Table 1: Comparison of methods in terms of percentage of
concepts flagged to experts (%)

sleeve enfold pasture
armhole enclose herbage

displeasure magnificent tumult
displease grandeur commotion

deceit, deceive stubborn existence
defraud obstinate extant

dishonest tenaciously exist

Table 2: Sample sets of concepts sug-
gested for collapsing

scoring, such as Relative Coverage, PageRank and
weighted PageRank with Relative Coverage. Table
1 shows the comparison of percentage of discovered
concepts for grounding across various levels of aver-
age learning blanket, in Brown and Gutenberg cor-
pora. It is desirable that only a small fraction of the
total concepts are flagged to experts for editing. The
figures in bold correspond to the best reductions. Ta-
ble 1 shows that PageRank with Relative Coverage
outperforms other approaches in most settings, and
all the three scoring methods presented in this paper
beat the baseline approach comprehensively.

The experiment for finding regions for collapsing
is conducted with ε=5. A few sets of concepts iden-
tified for collapsing are shown in Table 2. Each set
looks meaningful as it has closely related words.

4 Discussion and Related Work

This paper is concerned with automating the discov-
ery of concepts that need expert attention. This helps
humans invest their creative resources in the right
direction. Bottom up knowledge of how the con-
cepts are actually used and accessed by learners, and
closing the loop by receiving learner feedback are
also useful components in the big picture, that are
not addressed in the current work. While we have
demonstrated the effectiveness of computational ap-
proaches in creating pedagogic views, there are spe-
cific issues that we have not adequately addressed.
It is not unusual that an attempt to eliminate one cy-
cle by redefining a concept can lead to creation of
fresh cycles. Thus, the user interface used by con-
tent editors should not only flag concepts (or cycles)
identified by the approaches we presented in this pa-
per, but also advise them on choosing a grounding
strategy that minimizes side effects. We also have
to account for a situation where multiple content au-
thors simultaneously edit the concept network.

It would be interesting to extend this work to pro-
pose approaches that help the learner explore the
pedagogic space of concepts effectively. As ob-
served earlier, each learner has a different learning
blanket, and we need to devise interfaces that es-
tablish conversation with the learner to discover her
learning blanket in order to specifically address her
learning needs. In the context of Wikipedia, we can
treat each article name as a concept, which also de-
fines a learning goal. After progressively working
backwards from this goal through the concept net-
work, we generate sub-goals eventually hitting the
learning blanket. We can also aggregate information
from trails followed by learners and such usage pat-
terns can guide content editing by revealing regions
where most learners face difficulties.

While the problem of restructuring the concept
graph to eliminate circularities in concept definitions
is novel, the following papers are related in parts. In
(Agrawal et al., 2013), the goals and underlying hy-
potheses are substantially different, but the authors
formulate a reader model as a random walk over a
concept graph. Levary et al. (2012) analyse loops
and self-reference in dictionaries, though not from
a pedagogic standpoint. Roy (2005) shows the con-
nections between language and perceptual ground-
ing in infant vocabulary acquisition.

5 Conclusion

The paper presented approaches to help experts
construct pedagogical views from encyclopedic re-
sources. The work is based on the assumption that
circularities in concept definitions are an impedi-
ment to learning. Empirical studies are promising
in that the algorithms proposed significantly reduce
the number of concepts that need to be examined by
content editors.
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Abstract

In this paper, we propose to use active learn-
ing for training classifiers to judge the qual-
ity of gap-fill questions. Gap-fill questions are
widely used for assessments in education con-
texts because they can be graded automatically
while offering reliable assessment of learners’
knowledge level if appropriately calibrated.
Active learning is a machine learning frame-
work which is typically used when unlabeled
data is abundant but manual annotation is slow
and expensive. This is the case in many Nat-
ural Language Processing tasks, including au-
tomated question generation, which is our fo-
cus. A key task in automated question gen-
eration is judging the quality of the generated
questions. Classifiers can be built to address
this task which typically are trained on human
labeled data. Our evaluation results suggest
that the use of active learning leads to accurate
classifiers for judging the quality of gap-fill
questions while keeping the annotation costs
in check. We are not aware of any previous ef-
fort that uses active learning for question eval-
uation.

1 Introduction

Recent explosion of massive open online courses
(MOOCs) such as Coursera1 and Udacity2 and the
success of Intelligent Tutoring Systems (ITSs), e.g.
AutoTutor (Graesser et al., 2004) and DeepTutor
(Rus et al., 2013), at inducing learning gains compa-
rable to human tutors indicate great opportunities for

1http://www.coursera.org
2http://www.udacity.com

online education platforms. These systems typically
deliver knowledge to learners via video streaming
or direct interaction with the system, e.g. dialogue
based interaction. If adaptive to individual learners,
such online platforms for learning must assess learn-
ers’ knowledge before, during, and after students’
interaction with the platform. For instance, in or-
der to identify knowledge deficits before and/or af-
ter a session a pre- and/or post-test can be used. The
knowledge deficits discovered based on the pre-test
can guide the online platform to select appropriate
instructional tasks for the learner. Furthermore, the
pre- and post-test can be used to measure the learn-
ing gains with the online platform, e.g. by subtrac-
tic the pre-test score from the post-test score. The
bottom line is that assessment is critical for adap-
tive instruction. Various kinds of questions are used
to assess students’ knowledge levels varying from
True/False questions to multiple choice questions to
open answer questions.

Indeed, a main challenge in online learning plat-
forms such as MOOCs and ITSs is test construc-
tion (assessment question generation). Automated
test construction is a demanding task requiring sig-
nificant resources. Any level of automation in
question generation would therefore be very use-
ful for this expensive and time-consuming process.
In fact, it has been proven that computer-assisted
test construction can dramatically reduce costs as-
sociated with test construction activities (Pollock
et al., 2000). Besides test construction, automatic
question generation are very useful in several other
applications such as reading comprehension (Ea-
son et al., 2012), vocabulary assessment (Brown et

196



al., 2005), and academic writing(Liu et al., 2012).
Consequently, particular attention has been paid
by Natural Language Processing (NLP) and educa-
tional researchers to automatically generating sev-
eral types of questions. Some examples include mul-
tiple choice questions (Mitkov et al., 2006; Niraula
et al., 2014), gap-fill questions (Becker et al., 2012)
and free-response questions (Mazidi and Nielsen,
2014a; Heilman and Smith, 2009). The more gen-
eral problem of question generation has been sys-
tematically addressed via shared tasks (Rus et al.,
2010).

Mitkov et al. (2006) reported that automatic ques-
tion construction followed by manual correction is
more time-efficient than manual construction of the
questions alone. Automated method for judging the
question quality would therefore make the question
generation process much more efficient. To this end,
we present in this paper an efficient method to rank
gap-fill questions, a key step in generating the ques-
tions. We formulate the problem next.

1.1 Gap-fill Question Generation
Gap-fill questions are fill-in-the-blank questions
consisting of a sentence/paragraph with one or
more gaps (blanks). A typical gap-fill question is
presented below:

Newton’s law is relevant after the mover
doubles his force as we just established that there is
a non-zero net force acting on the desk then.

The gap-fill question presented above has a word
missing (i.e. a gap). A gap-fill question can have one
more than one gaps too. Students (test takers) are
supposed to predict the missing word(s) in their an-
swer(s). Gap-fill questions can be of two types: with
alternative options (key and distractors) and without
choices. The former are called cloze questions and
the latter are called open-cloze questions. In this pa-
per, we use the term gap-fill question as an alterna-
tive to open-cloze question.

The attractiveness of gap-fill questions is that they
are well-suited for automatic grading because the
correct answer is simply the original word/phrase
corresponding to the gap in the original sentence.
As a result they are frequently used in educational
contexts such as ITSs and MOOCs.

Figure 1: A pipeline for gap-fill question generation

A typical pipeline to automatically generate gap-
fill questions is shown in Figure 1. It follows the
three steps paradigm for question generation (Rus
and Graesser, 2009) : Sentence Selection, Candidate
Generation (overgeneration) and Candidate Selec-
tion (ranking).
Step 1 - Sentence Selection: To generate gap-fill
questions, a set of meaningful sentences are needed
first. The sentences can be selected from a larger
source, e.g. a chapter in a textbook, using particular
instructional criteria such as being difficult to com-
prehend or more general informationl criteria such
as being a good summary of the source (Mihalcea,
2004) or directly from subject matter experts.
Step 2 - Candidate Generation: This step gener-
ates a list of candidate questions (overgeneration)
from the target sentences selected in Step 1. The
simplest method might be a brute force approach
which generates candidate questions by considering
each word (or a phrase) as a gap. A more advanced
technique may target the content words as gaps or
exploit the arguments of semantic roles for the gaps
(Becker et al., 2012). An example of overgeneration
of questions is shown in Table 1.
Step 3 - Candidate selection: Not all of the ques-
tions generated in the candidate generation step are
of the same quality. The classes can be Good, Okay
and Bad as in Becker et al. (2012) or simply the bi-
nary classes Good and Bad. Good questions are the
questions that ask about key concepts from the sen-
tence and are reasonable to answer, Okay questions
are questions that target the key concepts but are
difficult to answer (e.g. too long, ambiguous), and
Bad questions are questions which ask about unim-
portant aspect of the sentence or their answers are
easy to guess from the context. The candidate selec-
tion step is about rating the question candidates. Su-
pervised machine learning models are typically em-
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Bad ........ net force is equal to the mass times its acceleration.
Good The ........ force is equal to the mass times its acceleration.
Good The net ........ is equal to the mass times its acceleration.
Good ........ is equal to the mass times its acceleration.
Bad The net force ........ equal to the mass times its acceleration.
Okay The net force is ........ to the mass times its acceleration.
Bad The net force is equal ........ the mass times its acceleration.
Good The net force is equal to the ........ times its acceleration.
Okay The net force is equal to the mass ........ its acceleration.
Bad The net force is equal to the mass times ........ acceleration.

Table 1: Typical overgenerated questions from a sentence with their ratings Good, Okay and Bad.

ployed in the form of classifiers to label the candi-
date questions as Good, Okay, or Bad.

1.2 Question Quality

Question quality can be judged linguistically or ped-
agogically. In linguistic evaluation, questions are
evaluated with respect to whether they are grammat-
ically and semantically correct. In pedagogical eval-
uation, questions are evaluated to see whether they
are helpful for understanding and learning the target
concepts. Our focus here is on the pedagogical eval-
uation of automatically generated gap-fill questions
since they are always linguistically correct.

The third step i.e. candidate selection is expen-
sive when supervised approaches are used because
model building in supervised learning requires large
amount of human annotated examples. The advan-
tage of supervised methods, however, is that their
performances are in general better than, for instance,
that of unsupervised methods. As such, ideally,
we would like to keep the advantages of supervised
methods while reducing the costs of annotating data.
Such a method that offers a good compromise be-
tween annotation costs and performance is active
learning, which we adopt in this work. Such models
are always attractive choices especially when there
is a limited budget e.g. fixed annotation time / cost,
a highly probable case.

Active learning and interactive learning are two
well-known approaches that maximize performance
of machine learning methods for a given budget.
They are successfully applied for rapidly scaling di-
alog systems (Williams et al., 2015), parts-of-speech
tagging (Ringger et al., 2007), sequence labeling

(Settles and Craven, 2008), word sense disambigua-
tion (Chen et al., 2006), named entity tagging (Shen
et al., 2004), etc. Instead of selecting and present-
ing to an annotator a random sample of unlabeled
instances to annotate, these approaches intelligently
rank the set of unlabeled instances using certain cri-
teria (see Section 3) and present to the annotator
the best candidate(s). This characteristic of active
learning and interactive labeling hopefully demands
fewer instances than random sampling to obtain the
same level of performance.

In this paper, we propose an active learning based
approach to judge the quality of gap-fill questions
with the goal of reducing the annotation costs. We
are not aware of any previous effort that uses active
learning for question generation. We chose active
learning particularly because it is well-suited when
unlabeled data is abundant but manual annotation is
tedious and expensive. As mentioned, this is the
case in gap-fill question question generation in over-
generation approaches when plenty of questions are
available but their quality needs to be specified. The
remaining challenge is to judge the quality of these
questions. Our plan is to build a probabilistic classi-
fier at reduced costs that would automatically label
each candidate questions as good or bad using an
active learnign approach.

The rest of the paper is organized as follows. In
Section 2, we present the relevant works. In Sec-
tion 3, we present the active learning techniques that
we are going to employ. In Section 4 and Section
5, we describe our experiments and results respec-
tively. We present the conclusions in Section 6.
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2 Related Works

Currently, statistical and machine learning based ap-
proaches are the most popular approaches that are
used to rank the automatically generated questions
of various kinds e.g. free-response (e.g. What,
When etc.) and gap-fill questions. For example,
Heilman et al. (2010) used logistic regression, a
supervised method, to predict the acceptability of
each free-response question candidate. The candi-
date questions were automatically generated by us-
ing a set of rules. They used fifteen native English-
speaking university students for the construction of
training examples required for building the logistic
regression model.

Hoshino and Nakagawa (2005) proposed a ma-
chine learning approach to generate multiple-choice
questions for language testing. They formed a ques-
tion sentence by deciding the position of the gap i.e.
missing word(s). To decide whether a given word
can be left blank (i.e. serve as a gap) in the declar-
ative stem, they trained classifiers using the training
instances which were generated by collecting fill-
in-the-blank questions from a TOEIC preparation
book. The positive examples were the exact blank
positions in the question from the book whereas the
negative examples were generated by shifting the
blank position.

Similarly, Becker et al. (2012) proposed Mind the
Gap system that applied logistic regression to rank
automatically generated gap-fill questions. They
used text summarization technique to select useful
sentences from text articles for which gap-fill ques-
tions are to be generated. From each of the selected
sentence, it generated potential gap-fill candidates
using semantic constraints. Each candidate ques-
tion was then labeled by four Amazon’s Mechani-
cal Turkers to one of Good, Bad and Okay classes.
In total, 85 unique Turkers were involved in the an-
notation. The data set was used to build a logistic
regression classifier and ranked the candidate ques-
tions. They reported that the classifier largely agreed
with the human judgment on question quality.

In recent works Mazidi and Nielsen (2014a;
2014b) generated free-response questions from sen-
tences by using the patterns which were manu-
ally authored by exploiting the semantic role labels.
They evaluated the questions linguistically and ped-

agogically using human annotators and reported that
their systems produced higher quality questions than
comparable systems. The main limitation of their
approaches is that they do not exploit the examples
obtained from the annotation process to evaluate un-
seen (or not yet evaluated) questions. Moreover,
their approaches do not provide any ranking for the
questions they generated using those patterns.

3 Active Learning for Judging Question
Quality

As mentioned before, active learning fits well when
abundant data can be available but manual labeling
costs are high. As a result, the technique has been
applied to many NLP tasks such as text classifica-
tion, Word Sense Disambiguation, sequence label-
ing, and parsing. We use active learning for guiding
our annotation process for judging the quality of au-
tomatically generated gap-fill questions.

3.1 Active Learning Algorithms

An active learning system mainly consists of a clas-
sification model and querying algorithm. Typically
the classification models are the probabilistic classi-
fiers such as Naı̈ve Bayes and Logistic Regression
which provide a class probability distribution for a
given instance. Querying algorithms/functions ac-
tively choose unlabeled instance samples by exploit-
ing these probabilities.

We follow the standard pool-based active learning
algorithm as shown in Algorithm 1. It starts with a
set of initially labeled instances (seed examples) and
a set of unlabeled instances (U ). A new model is
built using the labeled examples in L. Next, a batch
of instances are extracted from the unlabeled set U
using a query function f(.) and then the selected in-
stances are labeled by human judges. The new la-
beled instances are added to the labeled list L. The
process repeats until a stopping criterion is met. The
criteria could be the number of examples labeled,
expected accuracy of the model, or something else.

3.1.1 Querying Algorithms
Many query functions exist. They differ on how

they utilize the class probability distributions. We
use two variants of query functions: uncertainty
sampling and query by committee sampling.
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Input: Labeled instances L, unlabeled
instances U , query batch size B, query function
f (.) ;
while some stopping criterion do

θ = Train the model using L;
for i = 1 to B do

b∗i = arg maxu∈U f(u);
L = L ∪ < b∗i , label(b∗i ) >;
U = U − b∗i ;

end
end

Algorithm 1: Pool-based active learning algo-
rithm

A. Query By Uncertainty or Uncertainty Sam-
pling

Uncertainty sampling chooses the samples for
which the model’s predictions are least certain.
These examples reside very near to the decision
boundary. We use three functions that predict the
samples in the decision boundary.
(a) Least Confidence: This function chooses the
sample x that has the highest fLC(.) score and is
defined as : fLC(x) = 1 − P (y∗|x; θ) where y∗ is
the most likely class predicted by the model (Settles
and Craven, 2008).
(b) Minimum Margin: This function chooses the
sample x that has the least fMM (.) score and is
defined as: fMM (x) = |P (y∗1|x; θ) − P (y∗2|x; θ)|
where y∗1 and y∗2 are the first and the second most
likely classes predicted by the model (Chen et al.,
2006).
(c) Entropy: This function chooses the sample x
that has the highest entropy i.e. fEN (.) score and
is defined as: fEN (x) = −∑C

c=1 P (yc|x; θ) ∗
log(P (yc|x; θ)) where C is the total number of
classes (Chen et al., 2006).
B. Query By Committee

Our query by committee sampling algorithm con-
sists of a committee of models. These models are
trained on the same labeled examples but learn dif-
ferent hypotheses. We compute for a given instance
the class distribution mean over all committee mem-
bers and assume that the mean scores represent the
votes received from the committee. Next we apply
fLC(.) , fMM (.) and fEN (.) over the mean class

distribution and view them as selection scores.

4 Experiments

In this section we describe our experiments in detail.

4.1 Data set

Although an active learning system doesn’t require
all the unannotated instances to be labeled initially,
having such an annotated data set is very useful
for simulations since it allows us to conduct exper-
iments to inverstigate active learning, in our case,
for judging the quality of automatically generated
questions. To this end, we used the existing data
set called Mind the Gap data set which was created
and made publicly available by Becker et al. (2012)
3. The data set consists of 2,252 questions generated
using sentences extracted from 105 Wikipedia’s ar-
ticles across historical, social, and scientific topics.
Each question was rated by four Amazon Mechani-
cal Turkers as Good, Okay, or Bad (see definitions
in Section 1.1).

For our experiments, we binarized the questions
into positive and negative examples. We considered
a question positive when all of its ratings were Good
or at most one rating was Okay or Bad. The rest of
the questions were considered as negative examples.
This way we obtained 747 positive and 1,505 were
negative examples. The chosen requirement for be-
ing a positive example was needed in order to focus
on high quality questions.

4.2 Features

In order to build models to judge the quality of ques-
tions, we implemented five types of features as in
Becker et al. (2012) including Token Count, Lexi-
cal, Syntatic, Semantic and Named Entity. In total
we had 174 features which are summarized in Table
2. The numbers inside parentheses are the indices of
the features used.

Questions with many gaps (with many missing
words) are harder to answer. Similarly, gaps with
many overlapped words with the remaining words
in the question are not suitable since they can be
easily inferred from the context. We used 5 differ-
ent Token Count features to capture such properties.
We also used 9 Lexical features to capture different

3http://research.microsoft.com/s̃umitb/questiongeneration
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Type Features

Token Count - 5 no. of tokens in answer(1) and in sentence(2), % of tokens in answer (3), no.(4)
and %(5) of tokens in answer matching with non-answer tokens

Lexical - 9

% of tokens in answer that are capitalized words(6), pronouns(7), stopwords(8),
and quantifiers(9), % of capitalized words(10) and pronouns(11) in sentence that
are in answer, does sentence start with discourse connectives ?(12), does answer
start with quantifier ?(13), does answer end with quantifier ?(14)

Syntatic - 116

is answer before head verb ? (15), depth of answer span in constituent parse
tree (16), presence/absence of POS tags right before the answer span(17-54),
presence/absence of POS tags right after the answer span(55-92), no. of tokens
with each POS tag in answers(93-130)

Semantic - 34
Answer covered by (131-147), answer contains(148-164) the semantic roles: {A0,
A1, A2, A3, A4, AM-ADV, AM-CAU, AM-DIR, AM-DIS, AM-LOC, AM-MNR,
AM-PNC, AM-REC, AM-TMP, CA0, CA1, Predicate}

Named Entities - 11

does answer contain a LOC(165), PERS(166), and ORG(167) named entities ? does
non-answer span contain a LOC(168), PERS(169), and ORG(164) named entities ?
no. (170) and % (171) of tokens in answer that are named entities, no. (172) and
% (173) of tokens in sentence that are named entities, % of named entities
in sentence present in answer (174)

Table 2: List of features used

statistics of pronouns, stop words, quantifiers, capi-
talized words, and discourse connectives. Similarly,
we used 116 Syntatic features that include mostly
binary features indicating presence/absence of a par-
ticular POS tag just before the gap and just after the
gap, and number of occurrences of each POS tag
inside the gap. Our semantic features includes 34
binary features indicating whether the answer con-
tained a list of semantic roles and whether seman-
tic roles cover the answer. In addition, we used 11
Named Entities features to capture presence/absence
of LOC, PERS and ORG entities inside the answer
and outside the answer. We also computed the en-
tity density i.e. number of named entities present in
the answer. We used Senna tool for getting semantic
roles (Collobert et al., 2011) and Stanford CoreNLP
package (Manning et al., 2014) for getting POS tags
and named entities.

5 Results and Discussions

We conducted a number of experiments to see how
active learning performs at judging the quality of

Figure 2: Full Simulation for Naı̈ve Bayes Accuracy

questions at different settings: type of classifiers
(simple and committee), evaluation metrics (accu-
racy and F-Measure), seed data size, batch size, and
sampling algorithms. An experiment consists of a
number of runs. In each run, we divided the data
set into three folds using stratified sampling. We
considered one of the folds as the test data set and
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Figure 3: Close-up view of Naı̈ve Bayes Accuracy

Figure 4: Full Simulation for Naı̈ve Bayes F1

Figure 5: Close-up view of Naı̈ve Bayes F1

merged the other two to construct the unlabeled data
set (U ). Remember that our data set is already la-
beled but we pretended that it is unlabeled U . Typ-
ically, the selected instances from U have to be la-
beled by a human. Since we already know all the
labels in the data set, we mimic the human labeling

by simply using the existing labels. This allows us
to conduct several experiments very efficiently.

In the first experiment, we compared the various
sampling techniques in terms of their impact of the
overall performance of question quality classifier.
To this end, we randomly selected 8 examples (four
positive and 4 negative) from U for the seed data set,
removed them from U and put them into the labeled
data set (L). We then built a Naı̈ve Bayes model for
judging the quality of questions using L. All the ma-
chine learning algorithms we used are available in
Weka (Hall et al., 2009). Next, we applied a given
sampling strategy to select 4 best examples (i.e. a
batch of size 4) to be labeled. These new labeled
examples were added to L and the question quality
classifier was retrained with this extended data set.
We used the test data subset to evaluate the question
quality classifier at each iteration and report accu-
racy and F-measure. The process was iterated until
the unlabeled data set U was empty.

We used the four sampling algorithms (i.e. least
confidence, minimum margin, entropy and random)
and report results in terms of average across 100 dif-
ferent runs; in each such run we ran the active learn-
ing approach entirely on all the data we had avail-
able. Figure 2 and Figure 4 present the accuracy and
F1 scores of Naı̈ve Bayes for each of the sampling
algorithms with respect to the number of labeled in-
stances used. Figure 3 and Figure 5 are close-ups of
leftmost part of the curves in Figure 2 and Figure 4,
respectively. As we can see, all uncertainty sampling
methods (Min-margin, Entropy and Least confident)
outperformed random sampling for both accuracy
and F1 measures after few annotations were made.
For instance, with 200 examples selected by active
learning, the model provided 10% more in accuracy
and 4% more in F1 measure compared to the case
when the same number of instances were used by
sample randomly. It is a promising observation that
can save annotation budgets significantly. Moreover,
close-up graphs show that all three uncertainty sam-
pling approaches rival each other. Note that all the
sampling methods converged (i.e. have same accu-
racy and F1 measure) at the end of the simulation. It
is normal because they would have the same set of
labeled instances by then.

In the second experiment, we formed a committee
of three probabilistic classifiers provided by Weka:
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Naı̈ve Bayes, Logistic Regression, and SMO. These
classifiers learnt different hypotheses from the same
set of training examples. As discussed in Section
3.1.1, we generated three models from the same la-
beled set of examples and computed mean probabil-
ity distributions. For this experiment, we set seed
size of 8, batch size of 4, and 100 runs as in ex-
periment 1 and measured the performances of the
sampling algorithms. Figure 6 and Figure 8 show
the accuracy and F-measure for several sampling
strategies as a function of the number of annotated
examples. Figure 7 and Figure 9 are the close-up
views for Figure 6 and Figure 8 respectively. Again,
the uncertainty based sampling algorithms are very
competitive to each other and they outperform ran-
dom sampling significantly in both accuracy and F-
measure. This suggests that committee based active
learning is also useful for checking question quality.

To get an idea of the level of annotation sav-
ings when using active learning, consider we have
a budget for annotating about 160 instances. With
this budget (in Figure 6), uncertainty sampling algo-
rithms provide 70% accuracy whereas random sam-
pling provides only 65% accuracy. To attain 70%
accuracy, random sampling needs at least 360 sam-
ples (i.e. 200 examples more) to be labeled. With
360 samples, uncertainty sampling algorithms pro-
vide 74% accuracy. Similar observations can be
made when focusing on the F-measure. These ob-
servations clearly show the effectiveness of using ac-
tive learning for judging the quality of automatically
generated questions.

Figure 6: Full Simulation for Committee Accuracy

In a third experiment, we focused on the effect of

Figure 7: Close-up view of Committee Accuracy

Figure 8: Full Simulation for Committee F1

Figure 9: Close-up view of Committee F1

the batch size on the behavior of the active learn-
ing approach. Note that we generate a new model
as soon as a new batch of labeled instances is ready.
For instance, a batch size of 2 means as soon as the
annotators provide two annotated instances, we add
them to the labeled set and generate a new model
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from all the available labeled instances. The new
model is generally a better one as it is trained on a
larger training set than the previous one. However,
the smaller the batch size the larger the computa-
tional cost because we need to generate a model fre-
quently. So, a balance between the computation cost
and the better model should be determined.

Figure 10: Effect of Batch Size

To this end, we chose Naı̈ve based active learning
with entropy based sampling. We varied the batch
size from 1, 2, 4 and 8 and ran the experiment for
50 runs. The plot can be seen in Figure 10. As the
plot suggests, the performances are less sensitive to
batch sizes. A reasonable choice could be a batch
size of 4. But again, it depends on the amount of
computation cost available for model construction.

Figure 11: Effect of seed data

In the last experiment, we varied initial seed size
to see its effect of the initial seed size on our ac-
tive learning approach. We experimented with seed
sizes of 4, 8, 16 and 32. We applied Naı̈ve based ac-
tive learning with the batch size of 4 and 100 runs.
The plot in Figure 11 shows F1 measures of Entropy
based sampling at different seed set sizes. It can be
seen that the smaller the seed size, the smaller the
F1 score initially. Having a larger seed data initially
is beneficial which is obvious because in general the
larger the training set the better. We also included
a plot of the F1 measure corresponding to random
sampling with 32 seeds in Figure 11. It is interest-
ing to note that although random sampling with 32
seeds has larger F1 score initially, it eventually per-
forms poorly when more data is added.

6 Conclusion

In this paper, we proposed to use active learning for
training classifiers for judging the quality of auto-
matically generated gap-fill questions, which is the
first attempt of its kind to the best of our knowledge.
Our experiments showed that active learning is very
useful for creating cost-efficient methods for train-
ing question quality classifiers. For instance, it is ob-
served that a reasonably good classifier can be built
with 300-500 labeled examples using active learning
(a potential stopping criteria) that can provide about
5-10% more in accuracy and about 3-5% more in
F1-measure than with random sampling. Indeed, the
proposed approach can accelerate the question gen-
eration process, saving annotation time and budget.

Although the proposed method is investigated in
the context of judging the quality of gap-fill ques-
tions, the method is general and can be applied
to other types of questions e.g., stem generation
for multiple choice questions and ranking of free-
response questions. We plan implement the re-
maining steps (i.e. sentence selection and candidate
generation) of the question generation pipeline and
make it a complete system.
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Abstract

Automated scoring of short answers often in-
volves matching a students response against
one or more sample reference texts. Each
reference text provided contains very spe-
cific instances of correct responses and may
not cover the variety of possibly correct re-
sponses. Finding or hand-creating additional
references can be very time consuming and
expensive. In order to overcome this problem
we propose a technique to generate alterna-
tive reference texts by summarizing the con-
tent of top-scoring student responses. We use
a graph-based cohesion technique that extracts
the most representative answers from among
the top-scorers. We also use a state-of-the-art
extractive summarization tool called MEAD.
The extracted set of responses may be used as
alternative reference texts to score student re-
sponses. We evaluate this approach on short
answer data from Semeval 2013’s Joint Stu-
dent Response Analysis task.

1 Introduction

Short answer scoring is a critical task in the field of
automated student assessment. Short answers con-
tain brief responses restricted to specific terms or
concepts. There is a great demand for new tech-
niques to handle large-scale development of short-
answer scoring engines. For example an individual
state assessment may involve building scoring algo-
rithms for over two hundred prompts (or questions).
The past few years have seen a growth in the amount
of research involved in developing better features
and scoring models that would help improve short
answer scoring (Higgins et al., 2014; Leacock and

Table 1: Question text, sample reference and some top-scoring an-
swers from a prompt in the ASAP-SAS (2012) competition.

Prompt question: “Explain how pandas in China are similar to
koalas in Australia and how they both are different from pythons.
Support your response with information from the article.”
Sample reference answer: “Specialists are limited geographi-
cally to the area of their exclusive food source. Pythons are differ-
ent in both diet or eating habits and habitat from koalas. Gener-
alists are favored over specialists. Adaptability to change. Koalas
and pandas are herbivores and pythons are carnivores.”
Some top-scoring student responses: “A panda and a koala are
both vegetarians. Pandas eat bamboo, and koalas eat eucalyptus
leaves. Pythons are not vegetarians they eat meat, and they kill
there pray by strangling them or putting venom into them.”
“Pandas and koalas are both endangered animals. They can only
be found in certain places where their food supply is. They are
different from pythons because they move to a new environment
and adapt as well. They be at a loss of food and climate change.”

Chodorow, 2003). The Automated Student Assess-
ment Prize (ASAP-SAS (2012)) competition had a
short answer scoring component.

Short answer datasets are typically provided with
one or more sample human references, which are
representative of ideal responses. Student responses
that have a high text overlap with these human refer-
ences are likely to get a higher score than those that
have a poor overlap. However often these sample
human references are not representative of �all pos-
sible correct responses. For instance consider the
question, sample reference and a set of top-scoring
student responses for a prompt from the ASAP-SAS
(2012) competition in Table 1. The human reference
provided does not encompass all possible alternative
ways of expressing the correct response.

A number of approaches have been used to extract
regular expressions and score student responses.
Pulman and Sukkarieh (2005) use hand-crafted pat-
terns to capture different ways of expressing the
correct answer. Bachman et al. (2002) extract tags
from a model answer, which are matched with stu-
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dent responses to determine their scores. Mitchell
et al. (2003) use a mark scheme consisting of a
set of acceptable or unacceptable answers. This
marking scheme is similar to a sample reference.
Each student response is matched with these mark-
ing schemes and scored accordingly. The winner of
the ASAP competition spent a lot of time and ef-
fort hand-coding regular expressions from the hu-
man samples provided, in order to obtain better
matches between student responses and references
(Tandalla, 2012). Although hand-crafting features
might seem feasible for a few prompts, it is not an
efficient technique when scoring large datasets con-
sisting of thousands of prompts. Hence there is a
need to develop automated ways of generating alter-
nate references that are more representative of top-
scoring student responses.

We use two summarization techniques to identify
alternative references from top-scoring student re-
sponses for a prompt. Klebanov et al. (2014) use
summarization to generate content importance mod-
els from student essays. We propose a graph-based
cohesion technique, which uses text structure and
semantics to extract representative responses. We
also use a state-of-the-art summarization technique
called MEAD (Radev et al., 2004), which extracts a
summary from a collection of top-scoring responses.
The novelty of our work lies in the utilization of
summarization to the task of identifying suitable ref-
erences to improve short-answer scoring.

2 Approach

Top-scoring responses from each prompt or question
are summarized to identify alternate reference texts
with which student responses could be compared to
improve scoring models.

2.1 Graph-based Cohesion Technique

We use an agglomerative clustering technique to
group lexico-semantically close responses into clus-
ters or topics. The most representative responses are
extracted from each of the clusters to form the set
of alternate references. Just as in a cohesion-based
method only the most well-connected vertices are
taken to form the summary (Barzilay and Elhadad,
1997), likewise in our approach responses with the
highest similarities within each cluster are selected

as representatives.
Steps involved in generating summaries are:
Generating Word-Order Graphs: Each top-
scoring response is first represented as a word-
order graph. We use a word-order graph represen-
tation because it captures structural information in
texts. Graph matching makes use of the ordering of
words and context information to help identify lexi-
cal changes. According to Makatchev and VanLehn
(2007) responses classified by human experts into a
particular semantic class may be syntactically dif-
ferent. Thus word-order graphs are useful to iden-
tify representatives from a set of responses that are
similar in meaning but may be structurally different.

During graph generation, each response is tagged
with parts-of-speech (POS) using the Stanford POS
tagger (Toutanova et al., 2003). Contiguous subject
components such as nouns, prepositions are grouped
to form a subject vertex, while contiguous verbs or
modals are grouped into a verb vertex and so on for
the other POS types. Ordering is maintained with
the edges capturing subject—verb, verb—object,
subject—adjective or verb—adverb type of informa-
tion. Graph generation has been explained in detail
in Ramachandran and Gehringer (2012).
Calculating Similarity: In this step similarities be-
tween all pairs of top-scoring responses are calcu-
lated. Similarities between pairs of responses are
used to cluster them and then identify representative
responses from each cluster. Similarity is the aver-
age of the best vertex and edge matches.

Similarity(A, B) = 1
2
( 1
|VA|+|VB | (

∑
∀VA

argmax
∀VB

{sem(VA, VB)}

+
∑
∀VB

argmax
∀VA

{sem(VB , VA)})+
1

|EA|+|EB | (
∑
∀EA

argmax
∀EB

{seme(EA, EB)}

+
∑
∀EB

argmax
∀EA

{seme(EB , EA)}))

(1)

In equation 1 VA and VB are the vertices and EA

and EB are the edges of responses A and B respec-
tively. We identify the best semantic match for every
vertex or edge in response A with a vertex or edge
in response B respectively (and vice-versa). sem is
identified using WordNet (Fellbaum, 1998).
Clustering Responses: We use an agglomerative
clustering technique to group responses into clus-
ters. The clustering algorithm starts with assigning
every response in the text to its own cluster. Ini-
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tially every cluster’s similarity is set to 0. A cluster’s
similarity is the average of the similarity between all
pairs of responses it contains.

We rank response pairs based on their similarity
(highest to lowest) using merge sort, and assign one
response in a pair to the other’s cluster provided it
satisfies the condition in Equation 2. The condition
ensures that a response (S) that is added to a cluster
(C) has high similarity, i.e., is close in meaning and
context to that cluster’s responses (SC).(
C.clusterSimilarity−

∑
∀SC∈C

Similarity(S, SC)
|C|

)
≤ α (2)

The choice of cluster to which a response is added
depends on the cluster’s similarity, i.e., a response is
added to the cluster with higher similarity. If both
responses (in the pair) have same cluster similari-
ties, then the larger cluster is chosen as the target.
If cluster similarity and the number of responses are
the same, then the target is selected randomly.
Identifying Representatives: In this step the most
representative responses from each cluster are iden-
tified. The aim is to identify the smallest set of rep-
resentatives that cover every other response in the
cluster. We use a list heuristic to handle this prob-
lem (Avis and Imamura, 2007). We order responses
in every cluster based on (a) decreasing order of their
average similarity values, and (b) decreasing order
of the number of responses they are adjacent to.

Our approach ensures that responses with the
highest semantic similarity that cover previously
uncovered responses are selected. Representatives
from all clusters are grouped together to generate the
representative responses for a prompt.

2.2 MEAD

We use MEAD as an alternative summarization ap-
proach. Radev et al. (2004) proposed the use an au-
tomated multi-document summarization technique
called MEAD. MEAD was developed at the Univer-
sity of Michigan as a centroid-based summarization
approach. MEAD is an extractive summarization
approach that relies on three features: position, cen-
troid and the length of sentences to identify the sum-
mary. MEAD’s classifier computes a score for each
sentence in the document using a linear combination
of these three features. Sentences are then ranked

based on their scores and the top ranking sentences
are extracted to generate summaries. The extraction
can be restricted to the top N words to generate a
summary of specified length.

In our study each document contains a list of top-
scoring responses from the dataset, i.e., each top-
scoring response would constitute a sentence. For
our study we use MEAD1 to extract summaries of
length that match the lengths of the summaries gen-
erated by the graph-based cohesion technique.

3 Experiment

3.1 Data

Semeval’s Student Response Analysis (SRA) corpus
contains short answers from two different sources:
Beetle and SciEntsBank (Dzikovska et al., 2013)2.
Beetle contains responses extracted from transcripts
of interactions between students and the Beetle II tu-
toring system (Dzikovska et al., 2010). The SciEnts-
Bank dataset contains short responses to questions
collected by Nielsen et al. (2008).

Beetle contains 47 questions and 4380 student re-
sponses, and SciEntsBank contains 135 questions
and 5509 student responses (Dzikovska et al., 2013).
Each dataset is classified as: (1) 5-way, (2) 3-
way and (3) 2-way. The data in the SRA corpus
was annotated as follows for the 5-way classifica-
tion: correct: student response that is correct, par-
tially correct incomplete: response that is correct
but does not contain all the information in the ref-
erence text, contradictory: response that contradicts
the reference answer, irrelevant: response that is rel-
evant to the domain but does not contain information
in the reference, non domain: response is not rele-
vant to the domain. The 3-way classification con-
tains the contradictory, correct and incorrect classes,
while the 2-way classification contains correct and
incorrect classes.

Dzikovska et al. (2013) provide a summary of the
results achieved by teams that participated in this
task. Apart from the dataset, the organizing com-
mittee also released code for a baseline, which in-
cluded lexical overlap measures. These measures

1We use the code for MEAD (version 3.10) available at
http://www.summarization.com/mead/.

2The data is available at http://www.cs.york.ac.
uk/semeval-2013/task7/index.php?id=data
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Table 2: Comparing performance of system-generated summaries of top-scoring short answers with the performance of sample reference texts
provided for the Semeval dataset.

5-way 3-way 2-way
Data Type System F1-overall Weighted-F1 F1-overall Weighted-F1 F1-overall Weighted-F1

Beetle
Baseline features
(Dzikovska et al., 2013)

0.424 0.483 0.552 0.578 0.788

Graph (∼62 words) 0.436 0.533 0.564 0.587 0.794 0.803
MEAD (∼63 words) 0.446 0.535 0.537 0.558 0.744 0.757

SciEntsBank
Baseline features
(Dzikovska et al., 2013)

0.375 0.435 0.405 0.523 0.617

Graph (∼39 words) 0.372 0.458 0.438 0.567 0.644 0.658
MEAD (∼40 words) 0.379 0.461 0.429 0.554 0.631 0.645

Table 3: Comparing f -measures (f ) and mean cosines (cos) of every class for features generated by graph and MEAD summaries.
5-way 3-way 2-way

Classes Feature correct partially
correct
incomplete

contra-
dictory

non
domain

irrel-
evant

correct contra-
dictory

inco-
rrect

correct inco-
rrect

Beetle
MEAD f 0.702 0.443 0.416 0.667 0.000 0.687 0.400 0.523 0.679 0.809
Graph f 0.736 0.400 0.404 0.640 0.000 0.732 0.422 0.539 0.747 0.840
MEAD cos 0.690 0.464 0.438 0.058 0.319 0.690 0.438 0.387 0.690 0.408
Graph cos 0.720 0.470 0.425 0.065 0.286 0.720 0.425 0.388 0.720 0.404

SciEntsBank
MEAD f 0.601 0.332 0.082 NA 0.500 0.563 0.062 0.661 0.528 0.733
Graph f 0.617 0.302 0.087 NA 0.482 0.605 0.059 0.649 0.548 0.741
MEAD cos 0.441 0.337 0.337 0.138 0.268 0.441 0.337 0.298 0.441 0.305
Graph cos 0.498 0.372 0.350 0.229 0.271 0.498 0.350 0.316 0.498 0.323

compute the degree of overlap between student re-
sponses and sample reference texts and the prompt
or question texts. Both human references as well as
question texts were provided with the dataset. The
lexical overlap measures include: (1) Raw count of
the overlaps between student responses and the sam-
ple reference and question texts, (2) Cosine similar-
ity between the compared texts, (3) Lesk similarity,
which is the sum of square of the length of phrasal
overlaps between pairs of texts, normalized by their
lengths (Pedersen et al., 2002) and (4) f -measure
of the overlaps between the compared texts3. These
four features are computed for the sample reference
text and the question text, resulting in a total of eight
features. We compute these eight features for every
system and compare their raw and weighted (by their
class distributions) f -measure values.

3.2 Results and Discussion
The graph-based cohesion technique produced sum-
maries containing an average of 62 words for Bee-
tle and an average of 39 words for SciEntsBank.

3f -measure is the harmonic mean of the precision and re-
call of the degree of overlaps between two texts. Precision is
computed as the number of overlaps divided by the length of
student response, while recall of overlap is computed as the de-
gree of overlap divided by the number of tokens in the human
reference text.

Therefore, we chose to extract summaries contain-
ing nearly the same number of words using the
MEAD summarization tool.

From the results in Table 24 we see that, com-
pared to the baseline approach, the summarization
approaches are better at scoring short answers. We
also tested the use of all top-scoring student re-
sponses as alternate references (i.e. with no sum-
marization). These models perform worse than the
baseline, producing an average decrease in overall
f -measure of 14.7% for Beetle and 14.3% for Sci-
EntsBank. This suggests the need for a summariza-
tion technique. Our results indicate that the summa-
rizers produce representative sentences that are more
useful for scoring than just the sample reference text.
MEAD performs better on the 5-way task while the
graph-based cohesion approach performs well on 3-
way and 2-way classification tasks.

In the case of both the datasets, the performance
of the graph-based approach on the “correct” class
is higher. We looked at the average cosine sim-
ilarity for data from each class with their corre-

4We report results only on the unseen answers test set from
Semeval because the train and test sets contain data from differ-
ent prompts for the unseen domains and unseen questions sets.
Summaries generated from the top-scoring responses from one
set of prompts or questions in the train set may not be relevant
to different prompts in the other test sets.
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Table 4: Comparing references generated by the summarizers with a sample reference for a prompt from the Beetle dataset.
Sample Reference: “Terminal 1 and
the positive terminal are separated by
the gap OR Terminal 1 and the posi-
tive terminal are not connected. OR
Terminal 1 is connected to the nega-
tive battery terminal. OR Terminal 1
is not separated from the negative bat-
tery terminal. OR Terminal 1 and the
positive battery terminal are in differ-
ent electrical states”

Graph-based Cohesion: “The terminal is not
connected to the positive battery terminal. OR The
terminals are not connected. OR The positive bat-
tery terminal and terminal 1 are not connected. OR
Because there was not direct connection between
the positive terminal and bulb terminal 1. OR Ter-
minal one is connected to the negative terminal and
terminal 1 is separated from the positive terminal
by a gap. OR The positive battery terminal is sepa-
rated by a gap from terminal 1.”

MEAD: “Positive battery terminal is sepa-
rated by a gap from terminal 1. OR Termi-
nal 1 is not connected to the positive termi-
nal. OR Because there was not direct con-
nection between the positive terminal and
bulb terminal 1. OR The terminals are not
connected. OR Because they are not con-
nected. OR Terminal 1 is connected to the
negative battery terminal. OR The two earnt
connected.”

sponding reference texts (Table 3). Magnitude of
the average cosine between student responses and
the reference texts for classes such as non domain
and partially correct incomplete in Beetle and for
non domain, partially correct incomplete, contra-
dictory and irrelevant in SciEntsBank are higher in
case of the graph-based approach than MEAD. As
a result, the graph’s features tend to classify more
data points as correct, leaving fewer data points to
be classified into the other classes, thus producing
lower f -measures in both datasets.

In the case of 3-way and 2-way classifications,
performance on the correct class was higher for the
graph-based approach (Table 3). The cosine simi-
larity between the correct data and the summaries
from the graph-based approach are higher than the
cosines between the correct data and MEAD’s sum-
maries. The graph-based approach tends to predict
more of the correct data points accurately, resulting
in an improvement in the graph-based approach’s
performance. A similar trend was observed in the
case of the 2-way classification.

Sample reference and representatives from the
graph-based approach and MEAD for question
BULB C VOLTAGE EXPLAIN WHY1 from Bee-
tle are listed in Table 4. The samples follow the
structure X and Y are <relation> OR X <relation>
Y. A correct response such as “The terminals are not
connected.” would get a low match with these sam-
ples. Both the graph-based approach and MEAD ex-
tract references that may be structurally different but
have the same meaning.

The team that performed best on the Semeval
competition on both the Beetle and SciEntsBank
datasets for the unseen answers task (Heilman and
Madnani, 2013), used the baseline features (listed
above) as part of their models. CoMeT was another
team that performed well on Beetle on the unseen
answers dataset (Ott et al., 2013). They did not use

the baseline features directly but did use the sample
reference text to generate several text overlap mea-
sures. Since the best performing models used sam-
ple references to generate useful features, the use of
representative sentences generated by a summariza-
tion approach is likely to help boost the performance
of these models. We have not been able to show the
improvement to the best models from Semeval since
the code for the best models have not been made
available. These alternate references also generate
improved baselines, thus encouraging teams partici-
pating in competitions to produce better models.

4 Conclusion

In this paper we demonstrated that an automated
approach to generating alternate references can im-
prove the performance of short answer scoring mod-
els. Models would benefit a great deal from the use
of alternate references that are likely to cover more
types of correct responses than the sample. We eval-
uated two summarization techniques on two short
answer datasets: Beetle and SciEntsBank made
available through the Semeval competition on stu-
dent response analysis. We showed that references
generated from the top-scoring responses by the
graph-based cohesion approach and by MEAD per-
formed better than the baseline containing the sam-
ple reference.

The results indicate that the approach can be suc-
cessfully applied for improving scoring of short an-
swers responses. These results have direct applica-
tions to automated tutoring systems, where students
are in a dialogue with a computer-based agent and
the system must match the student dialogue against
a set of reference responses. In each of these cases,
the technique provides a richer set of legal refer-
ence texts and it can be easily incorporated as a pre-
processing step before comparisons are made to the
student responses.
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Abstract

Various measures have been used to evalu-
ate the effectiveness of automated text scor-
ing (ATS) systems with respect to a human
gold standard. However, there is no system-
atic study comparing the efficacy of these met-
rics under different experimental conditions.
In this paper we first argue that measures of
agreement are more appropriate than mea-
sures of association (i.e., correlation) for mea-
suring the effectiveness of ATS systems. We
then present a thorough review and analysis of
frequently used measures of agreement. We
outline desirable properties for measuring the
effectiveness of an ATS system, and experi-
mentally demonstrate using both synthetic and
real ATS data, that some commonly used mea-
sures (e.g., Cohen’s kappa) lack these prop-
erties. Finally, we identify the most ap-
propriate measures of agreement and present
general recommendations for best evaluation
practices.

1 Introduction

Automated assessment of text was introduced in the
early 1960s in an attempt to address several issues
with manual assessment (e.g., expense, speed, and
consistency). Further advantages become more pro-
nounced when it comes to scoring extended texts
such as essays, a task prone to an element of subjec-
tivity. Automated systems enable rigid application
of scoring criteria, thus reducing the inconsistencies
which may arise, in particular, when many human
examiners are employed for large-scale assessment.

There is a substantial literature describing and
evaluating ATS systems (Page, 1968; Powers et al.,
2002; Rudner and Liang, 2002; Burstein et al., 2003;
Landauer et al., 2003; Higgins et al., 2004; Attali
and Burstein, 2006; Attali et al., 2008; Williamson,
2009; Briscoe et al., 2010; Chen and He, 2013).
Such systems are increasingly used but remain con-
troversial. Although a comprehensive comparison
of the capabilities of eight existing commercial es-
say scoring systems (Shermis and Hamner, 2012)
across five different performance metrics in the re-
cent ATS competition organised by Kaggle1 claimed
that ATS systems grade similarly to humans, critics
(Wang and Brown, 2007; Wang and Brown, 2008;
Perelman, 2013) have continued to dispute this.

For the evaluation of ATS systems (Williamson,
2009; Williamson et al., 2012), emphasis has
been given to the “agreement” of machine-predicted
scores (ordinal grades) with that of a human gold
standard; that is, scores assigned by human exam-
iners to the same texts that the machine is eval-
uated on. Various metrics have been used, the
most prominent being Pearson’s correlation, per-
centage of agreement, and variations of Cohen’s
kappa statistic. Inconsistencies in the reporting of,
and misconceptions in the interpretation of, these
metrics in published work makes cross-system com-
parisons on publicly-available datasets more diffi-
cult. The lack of careful motivation of any metric
fuels opposition to the deployment of ATS. To date,
several ATS systems are being used operationally
for high-stakes assessment in addition to them be-
ing part of self-assessment and self-tutoring sys-

1https://www.kaggle.com/c/asap-aes
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tems, underscoring the need for common and well-
motivated metrics that establish true system perfor-
mance.

In this paper, we define the task of ATS as the
accurate prediction of gold-standard scores (pre-
defined ordinal grades), and we experimentally ex-
amine the robustness and efficacy of measures of
agreement for a number of different conditions un-
der two different experimental setups. First, we use
synthetic data to simulate various experimental con-
ditions, and second, we use real ATS data to assess
the effectiveness of the metrics under realistic sce-
narios. For the latter, we run a series of experiments
on the output of state-of-the-art ATS systems. We
outline some deficiencies in commonly used met-
rics that have been previously overlooked, and con-
sequently we propose more appropriate metrics for
evaluating ATS systems focusing primarily on op-
timising system effectiveness and facilitating cross-
system comparison.

The focus on measures of agreement is motivated
by their use as the primary metric for evaluating sys-
tem effectiveness in the recent Kaggle essay scoring
competition. To the best of our knowledge, there is
no systematic study comparing the efficacy of dif-
ferent measures of agreement under different exper-
imental conditions. Although we focus on the task
of ATS, the recommendations regarding the metrics
covered in this paper extend naturally to many sim-
ilar NLP tasks, i.e., those where the task is to accu-
rately predict a gold-standard score.

The remainder of the paper is structured as fol-
lows: Section 2 defines our task and objectives. Sec-
tion 3 reviews a number of performance metrics rel-
evant to the ATS task. Section 4 describes a set of
desired metric properties and presents an analysis of
some prominently used metrics for the ATS task that
uses the output of both simulated and real systems.
Section 5 concludes with a discussion, general rec-
ommendations for evaluation practices and an out-
line of future work.

2 Task Definition

In the standard ATS evaluation, there exists a set of n
texts where each text is indexed t1 to tn. Each text ti
is assigned a gold standard score gs(ti) by a human
assessor (or group of human assessors). This score

is one of g ordinal scores, which for convenience we
index 1 to g. It is worth noting that, in general, it is
not a requirement that the differences in scores are
uniform. Furthermore, there exists some number of
ATS systems atsj indexed j = 1 to j = m that
predict scores atsj(ti) for each of the n texts.

Given two ATS systems ats1 and ats2, we would
like to determine a metric M that returns a mea-
sure of performance for ats1 and ats2 for which
M(ats1, gs, t) > M(ats2, gs, t) when ats1 is a
better system than ats2. Note that we have not de-
fined what “better” means at this stage. We will re-
turn to describing some desirable properties ofM in
Section 4.

From an educational point of view, our task is
to ascertain whether the writing abilities required to
warrant a particular score/grade have been attained.
From this perspective, measures of agreement seem
the appropriate type of measurement to apply to the
output of ATS systems to address the accuracy of the
(numerical) solution compared to the gold standard.

3 Measuring Performance of ATS systems

In this section, we review and critique metrics that
have been frequently used in the literature to ascer-
tain the performance of ATS systems. These per-
formance metrics can be broadly categorised into
measures of association and measures of agreement
(e.g., see Williamson et al. (2012)).

3.1 Measures of Association

Measures of association (i.e., correlation coeffi-
cients) have been widely used in ATS (e.g., Yan-
nakoudakis et al. (2011)), with Pearson’s product-
moment correlation coefficient being the most com-
mon. Pearson’s correlation is a parametric measure
of association that quantifies the degree of linear de-
pendence between two variables and, more specif-
ically, describes the extent to which the variables
co-vary relative to the degree to which they vary in-
dependently. The greater the association, the more
accurately one can use the value of one variable
to predict the other. As the data depart from the
coefficient’s assumptions (e.g., unequal marginals),
its maximum values may not be attainable (Carroll,
1961). For ordinal data, unequal marginals will al-
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ways involve ties.2 As the number of ties increases
relative to the number of observations, its appropri-
ateness largely diminishes.3

Spearman’s rank correlation coefficient is a non-
parametric measure of association that has the same
range as Pearson, and it is calculated by ranking the
variables and computing Pearson on the ranks rather
than the raw values. In contrast to Pearson, it as-
sesses the strength of a monotonic rather than lin-
ear relation between two variables, and has the ad-
vantage of independence from various assumptions.
Unlike Pearson, it exhibits robustness to outliers;
however, its reliability also decreases as the num-
ber of ties increases. It is worth noting at this point
Kendall’s τb, which is a more effective tie-adjusted
non-parametric bivariate coefficient that quantifies
the degree of agreement between rankings, and it is
defined in terms of concordant and discordant pairs,
although ties also affect its reliability.

3.1.1 Discussion
In essence, non-parametric measures are mea-

sures of rank correlation. In the context of the eval-
uation of ATS, they measure agreement with respect
to the ranks, that is, whether an ATS system ranks
texts similarly to the gold standard. However, this
is not an appropriate type of measurement given the
task definition in Section 2, where we would like
to ascertain actual agreement with respect to the
scores. Furthermore, correlation coefficients do not
account for any systematic biases in the data; for ex-
ample, a high correlation can be observed even if
the predicted scores are consistently n points higher
than the gold standard.

In the presence of outliers, the coefficient can be
misleading and pulled in either direction. For ex-
ample, for Pearson’s correlation an outlier can influ-
ence the value of the correlation to the extent that
a high correlation is observed even though the data
may not be linearly dependent. Furthermore, it is
well known that the value of the correlation will be
greater if there is more variability in the data than
if there is less. This is caused by the mathematical

2Of course, ties exist even when the marginals are identi-
cal if the number of observations is larger than the number of
scores.

3For more details see (Maimon et al., 1986; Goodwin and
Leech, 2006; Hauke and Kossowski, 2011) among others.

constraints in their formulation, and does not nec-
essarily reflect the true relationship of predicted to
gold standard scores. Finally, their reliability de-
creases as the number of ties increases. We come
back to the appropriateness and recommended use
of correlation metrics in Section 5.

In summary, (non-parametric) correlation mea-
sures are more apt at measuring the ability of the
ATS system to correctly rank texts (i.e., placing a
well written text above a poorly written text), rather
than the ability of the ATS system to correctly as-
sign a score/grade. In other words, correlation mea-
sures do not reward ATS systems for their abil-
ity to correctly identify the thresholds that separate
score/grade boundaries (1 : 2 to g − 1 : g).

3.2 Measures of Agreement
A simple way of gauging the agreement between
gold and predicted scores is to use percentage agree-
ment, calculated as the number of times the gold and
predicted scores are the same, divided by the total
number of texts assessed. A closely-related variant
is percentage of adjacent agreement, in which agree-
ment is based on the number of times the gold and
predicted scores are no more than n points apart.

Despite its simplicity, it has been argued (Cohen,
1960) that this measure can be misleading as it does
not exclude the percentage of agreement that is ex-
pected on the basis of pure chance. That is, a cer-
tain amount of agreement can occur even if there is
no systematic tendency for the gold and predicted
scores to agree. The kappa coefficient (Cκ) was in-
troduced by Cohen (1960) as a measure of agree-
ment adjusted for chance. Let Pa denote the percent-
age of observed agreement and Pe the percentage of
agreement expected by chance, Cohen’s kappa coef-
ficient is calculated as the ratio between the “true”
observed agreement and its maximum value:

Cκ =
Pa − Pe(κ)
1− Pe(κ) (1)

where Pe(κ) is the estimated agreement due to
chance, and is calculated as the inner-product of the
marginal distribution of each assessor (a worked ex-
ample of this follows in Section 3.2.1). The values
of the coefficient range between −1 and 1, where
1 represents perfect agreement and 0 represents no
agreement beyond that occurring by chance. Most
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measures of agreement that are corrected for chance
agreement, of which there are many, follow the gen-
eral formula above where Pe varies depending on
the specific measure. The disadvantage of this basic
measure applied to ordinal data (scores in our case)
is that it does not allow for weighting of different
degrees of disagreement.

Weighted kappa (Cohen, 1968) was developed to
address this problem. Note that this was the main
metric used for evaluation and cross-system com-
parison of essay scoring systems in the recent Kag-
gle shared-task competition on ATS. It is commonly
employed with ordinal data and can be defined ei-
ther in terms of agreement or disagreement weights.
The most common weights used are the (absolute)
linear error weights and the quadratic error weights
(Fleiss, 1981). The linear error weights are propor-
tional to the actual difference between the predicted
scores and the gold standard, while the quadratic
error weights are proportional to the squared ac-
tual difference between these scores. The choice of
weights is important as they can have a large effect
on the results (Graham and Jackson, 1993).

In what follows, we discuss two of the main prob-
lems regarding the kappa coefficient: its dependency
on trait prevalence and on marginal homogeneity.
We note that the properties kappa exhibits (as shown
below) are independent of the type of data on which
it is used, that is, whether there is a categorical or an
ordinal (gold standard) scale.

3.2.1 Trait Prevalence
Trait prevalence occurs when the underlying char-

acteristic being measured is not distributed uni-
formly across items. It is usually the case that gold
standard scores are normally distributed in the ATS
task (i.e., the scores/grades are biased towards the
mean).

Table 1 shows an example of the effect of
trait prevalence on the Cκ statistic using a contin-
gency table. In this simple example there are two
scores/grades (i.e., pass P or fail F) for two different
sets of 100 essays with different gold-score distribu-
tions, gs1 and gs2. The rows of the matrix indicate
the frequency of the scores predicted by the ATS,
while the columns are the gold-standard scores. Al-
though percentage agreement (along the main diag-
onal) in both cases is quite high, Pa = 0.8, the Cκ

ats \gs1 P F
P 40 10 50
F 10 40 50

50 50 100

ats \gs2 P F
P 64 4 68
F 16 16 32

80 20 100

Table 1: Cohen’s κ for an ats system on two sets
of essays. Although percentage agreement is 0.8 for
both sets of essays, Cκ = 0.6 (left) and Cκ = 0.49
(right).

statistic varies quite considerably. As the observed
marginals (i.e., the totals either vertically or hori-
zontally, or otherwise, the distribution of the scores
/ grades) in ats\gs1 are uniformly distributed, the
correction for chance agreement is much lower (i.e.,
Pe(κ) = 0.5×0.5+0.5×0.5 = 0.5) than for ats\gs2

(i.e., Pe(κ) = 0.68× 0.8 + 0.32× 0.2 = 0.61) with
unequal marginals, which leads to a lower absolute
Cκ value for ats\gs2. In this example, it is not clear
why one would want a measure of agreement with
this behaviour, where Pe is essentially artificially in-
creased when the marginals are unequal.

Fundamentally, this implies that the comparison
of systems across datasets (or indeed the comparison
of datasets given the same system) is very difficult
because the value of Cκ not only depends on actual
agreement, but crucially also on the distribution of
the gold standard scores.

3.2.2 Marginal Homogeneity
A second problem with Cκ is that the difference

in the marginal probabilities affects the coefficient
considerably. Consider Table 2, which shows two
different ATS system ratings (ats1 and ats2) along
the same gold standard scores. The value of Cκ
for ats2 is much smaller (and actually it is 0) com-
pared to that for ats1 (0.12), even though ats2 has
higher percentage and marginal agreement; that is,
ats2 predicts scores with frequencies that are more
similar to those in the gold standard.4 The root cause
of this paradox is similar to the one described earlier,
and arises from the way Pe is calculated, and more
specifically the assumption that marginal probabili-
ties are classification propensities that are fixed, that
is, they are known to the assessor before classify-
ing the instances/texts into categories/scores. This

4Of course higher marginal agreement does not translate to
overall higher agreement if percent agreement is low.
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ats1 \gs P F
P 20 0 20
F 60 20 80

80 20 100

ats2 \gs P F
P 60 15 75
F 20 5 25

80 20 100

Table 2: Cκ for two systems ats1 and ats2 for the
same set of gold scores. Although percentage agree-
ment for ats1 and ats2 is 0.4 and 0.65 respectively,
Cκ for ats1 and ats2 isCκ = 0.12 (left) andCκ = 0
(right).

is clearly not the case for ATS systems, and there-
fore the dependence of chance agreement on the
level of marginal agreement is questionable when
the marginals are free to vary (Brennan and Predi-
ger, 1981).5

Essentially, the end result when a system predicts
scores with a marginal distribution that is more sim-
ilar to the gold standard (i.e., ats2), is that any mis-
classification is penalised more severely even though
percent agreement may be high. This is not the be-
haviour we want in a performance metric for ATS
systems. Using kappa as an objective function in
any machine learning algorithm could easily lead to
learning functions that favour assigning distributions
that are different to that of the gold standard (e.g.,
Chen and He (2013)).

3.2.3 Discussion
Previous work has also demonstrated that there

exist cases where high values of (quadratic) kappa
can be achieved even when there is low agreement
(Graham and Jackson, 1993). Additionally, Bren-
ner and Kliebsch (1996) investigated the effect of
the score range on the magnitude of weighted kappa
and found that the quadratic weighted kappa coef-
ficient tends to have high variation and increases as
the score range increases, particularly in ranges be-
tween two and five distinct scores. In contrast, lin-
early weighted kappa appeared to be less affected,
although a slight increase in value was observed as
the range increased.

The correction for chance agreement in Cohen’s
kappa has been the subject of much controversy
(Brennan and Prediger, 1981; Feinstein and Cic-
chetti, 1990; Uebersax, 1987; Byrt et al., 1993;

5However, we would like to penalise trivial systems that e.g.,
always assign the most prevalent gold score, in which case the
marginals are indeed fixed.

Gwet, 2002; Di Eugenio and Glass, 2004; Sim and
Wright, 2005; Craggs and Wood, 2005; Artstein and
Poesio, 2008; Powers, 2012). Firstly, it assumes
that when assessors are unsure of a score, they guess
at random according to a fixed prior distribution of
scores. Secondly, it includes chance correction for
every single prediction instance (i.e., not only when
an assessor is in doubt). Many have argued (Bren-
nan and Prediger, 1981; Uebersax, 1987) that this
is a highly improbable model of assessor error and
vastly over-estimates agreement due to chance, es-
pecially in the case when prior distributions are free
to vary. Although it is likely that there is some agree-
ment due to chance when an assessor is unsure of a
score (Gwet, 2002), it is unlikely that human asses-
sors simply guess at random, and it is unlikely that
this happens for all predictions. For the task of ATS,
the distribution of scores to assign are not fixed a pri-
ori. Although trained assessors may have a certain
expectation of the final distribution, it is certainly
not fixed.6

Consequently, there are a number of different
agreement metrics – for example, Scott’s π (Scott,
1955), which is sensitive to trait prevalence but not
the marginals, and Krippendorff’s α (Krippendorff,
1970) which is nearly equivalent to π (Artstein and
Poesio, 2008) – all of which vary in the manner in
which chance agreement (i.e., Pe) is calculated, but
have similar problems (Zhao, 2011; Gwet, 2014).
It is also worth noting that weighted versions of
kappa do not solve the issues of trait prevalence and
marginal homogeneity.

The two most noteworthy variants are the agree-
ment coefficient AC (Gwet, 2002) and the Brennan-
Prediger (BP) coefficient (Brennan and Prediger,
1981), which both estimate Pe more conservatively
using more plausible assumptions. In particular,
the BP coefficient estimates Pe using 1/g, with
the assumption that the probability that an asses-
sor would guess the score of an item by chance is
inversely related to the number of scores g in the
rating scale.7 Substituting Pe in equation (1) gives
(Pa − 1/g)/(1− 1/g), which is better suited when
one or both of the marginals are free to vary. When

6See Brennan and Prediger (1981) for a more detailed dis-
cussion.

7We note that this is equivalent to the S coefficient (Bennett
et al., 1954) discussed in (Artstein and Poesio, 2008).
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the grades are not uniformly distributed, Pe may
be higher than 1/g; nevertheless, it can be a useful
lower limit for Pe (Lawlis and Lu, 1972). Note that
in the example in Table 1, BP would be the same for
both ats\gs1 and ats\gs2, (0.8 − 0.5)/(1 − 0.5) =
0.6, and thus effectively remains unaltered under the
effects of trait prevalence.8

The AC coefficient calculates Pe as follows:

Pe =
1

(g − 1)

∑g

k=1
πk(1− πk) (2)

πk = (pa,k + pb,k)/2 (3)

where πk represents the probability of assigning
grade/score k to a randomly selected item by a ran-
domly selected assessor, calculated based on pa,k
and pb,k, which are the marginal probabilities of
each assessor a and b respectively for grade/score
k. More specifically, pa,k = na,k/n and pb,k =
nb,k/n, where na,k refers to the number of instances
assigned to grade k by assessor a, nb,k refers to
the number of instances assigned to grade k by as-
sessor b, and n refers to the total number of in-
stances. Gwet (2002;2014) defines chance agree-
ment as the product of the probability that two asses-
sors agree given a non-deterministic instance,9 de-
fined as 1/g, by the propensity for an assessor to
assign a non-deterministic grade/score, estimated as∑g

k=1πk(1− πk)/(1− 1/g).10

In the example in Table 1, Pe = (0.5×(1−0.5)+
0.5 × (1 − 0.5))/(2 − 1) = 0.5 for ats\gs1 (for
which πpass = πfail = 0.5), and Pe = (0.74× (1−
0.74)+0.26×(1−0.26))/(2−1) = 0.38 for ats\gs2,
which is in contrast to Cκ that overestimated Pe for
ats\gs2 with unequal marginals. More specifically,
the AC coefficient would be higher for ats\gs2 than
for ats\gs1: 0.67 versus 0.60 respectively.11

4 Metric Properties

On the basis of the discussion so far, we propose the
following list of desirable properties of an evaluation

8However, it can be artificially increased as the scoring scale
increases.

9That is, it is a hard-to-score instance, which is the case
where random ratings occur.

10See (Gwet, 2014) for more details regarding the differences
between AC and Aickin’s alpha (Aickin, 1990).

11The reader is referred to (Gwet, 2014; Brennan and Predi-
ger, 1981) for more details on AC and BP and their extensions
to at least ordinal data and to more than two assessors.

measure for an ATS system:

• Robustness to trait prevalence

• Robustness to marginal homogeneity

• Sensitivity to magnitude of misclassification

• Robustness to score range

In this section, we analyse the aforementioned
metrics of agreement (with different weights) with
respect to these properties using both synthetic and
real ATS-system scores (where applicable).

4.1 Robustness to Trait Prevalence

In order to test metrics for robustness to trait preva-
lence, we simulated 5,000 gold standard scores on
a 5-point scale using a Gaussian (normal) distribu-
tion with a mean score at the mid-point. By con-
trolling the variance of this Gaussian, we can create
gold standard scores that are more peaked at the cen-
ter (high trait prevalence) or more uniform across all
grades (low trait prevalence). We simulated systems
by randomly introducing errors in these scores. The
system output in Figure 1 (left) was created by ran-
domly sampling 25% of the gold standard scores and
perturbing them by 2 points in a random direction.12

This led to a simulated system with 75% percent-
age agreement, which also translates to a constant
mean absolute error (MAE) of 0.5 (i.e., on average,
each predicted score is 0.5 scores away from its gold
counterpart).

Figure 1 (left) shows that nearly all evaluation
measures are very sensitive to the distribution of the
gold standard scores, and the magnitude of the met-
rics does change as the distribution becomes more
peaked. The AC measure is less sensitive than Cκ
(and actually rewards systems), but the only measure
of agreement that is invariant under changes in trait
prevalence is the BP coefficient, which actually is
in line with percentage agreement and assigns 75%
agreement using quadratic weights.

To study the effect of trait prevalence on real sys-
tems, we replicated an existing state-of-the-art ATS
system (Yannakoudakis et al., 2011). The model

12If this could not be done (i.e., a score of 4 cannot be
changed by +2 on a 5-point scale), a different score was ran-
domly sampled.
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Figure 1: Effect of trait prevalence on metrics of agreement for synthetic (left) and real (right) ATS scores.

evaluates writing competence on the basis of lexi-
cal and grammatical features, as well as errors, and
achieves a correlation of around 0.75 on the publicly
available First Certificate in English (FCE) examina-
tion scripts, that have been manually annotated with
a score in the range 1 to 40 (with 40 being the high-
est). In this setting, robustness to trait prevalence
was evaluated by plotting the magnitude of the met-
rics as a function of the prevalence rate, calculated
as the proportion of passing scores in the data, as
judged by both the ATS system and the examiner, as
we varied the passing threshold from 1 to 40.

In Figure 1 (right) we can see that all metrics
are sensitive to trait prevalence.13 In order to get
a clearer picture on the effect of trait prevalence on
real systems, it is important we plot percent agree-
ment (PA) along with the metrics. The reason is
that chance-corrected agreement measures should
remain reasonably close to the quantity that they ad-
just for chance, as this quantity varies (Gwet, 2014).
AC and BP remain reasonably close to PA as the
prevalence rate increases. On the other hand, Cκ is
further away, and at times considerably lower. The
behaviour of kappa is difficult to explain, and in fact,
even when the prevalence rate approaches 1, Cκ still
produces very low results. Note that in the binary
pass/fail case, linear and quadratic weights do not
affect the value of kappa and produce the same re-
sults.

13Curve fitting is performed to be able to observe the ten-
dency of the metrics.

4.2 Robustness to Marginal Homogeneity

In order to test the metrics for robustness to marginal
homogeneity, we simulated 5,000 gold standard
scores on a 10-point scale using a Gaussian distribu-
tion with a mean score at the mid-point and a stan-
dard deviation of one score. We simulated differ-
ent systems by randomly introducing errors in these
scores. In particular, we simulated outputs that had
distributions different to that of the gold standard by
drawing a number of incorrect scores from a differ-
ent Gaussian centred around a different mean (0–9 in
Figure 2). We kept percentage agreement with lin-
ear weights constant, which again also translates to a
constant MAE (1.0). We are looking for metrics that
are less sensitive to varying marginals, and ideally
which promote systems that distribute scores simi-
larly to the gold standard when agreement is other-
wise identical.

For the measures of agreement, as expected, Co-
hen’s kappa (both linear and quadratic) penalises
systems that distribute scores similarly to those of
the gold standard. However, AC (with linear and
quadratic weights) and quadratic BP promote sys-
tems that distribute scores similarly to the gold
scores. On the other hand, BP linear remains un-
changed.

To study the sensitivity of the metrics to the vari-
ations in the marginal distributions in real ATS sys-
tems, we plot their variation as a function of the sim-
ilarity of the passing-score distributions, where the
similarity is calculated as simpass = 1−|pgold,pass−
pats,pass|, which is based on the absolute difference
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Figure 2: Sensitivity of metrics on the marginal distribution of synthetic (left) and real (right) ATS scores.

between the marginal probabilities of the gold and
predicted passing scores. The higher the value of
sim, the more similar the distributions are. Again,
we employ Yannakoudakis et al. (2011)’s ATS sys-
tem.

Similarly to the simulated experiments, we ob-
serve increases in the magnitude of AC and BP
as the similarity increases, whereas Cκ is consid-
erably lower and has a decreasing tendency which
does not stay close to PA. In fact, marginal homo-
geneity does not guarantee the validity of the re-
sults for Cohen’s kappa. This can be seen more
clearly in Figure 3, where we plot the magnitude
of the metrics as a function of the overall probabil-
ity of assigning a passing score, as judged by both
the human assessor and the ATS system. That is,
(pgold,pass + pats,pass)/2. As the overall probability
of a passing score becomes very large or very small,
Cκ yields considerable lower results, regardless of
whether the marginal probabilities are equal or not.

4.3 Sensitivity to Magnitude of
Misclassification

It is common that human assessors disagree by
small margins given the subjectivity of the ATS task.
However, larger disagreements are usually treated
more seriously. Therefore, given two ATS systems,
we would prefer a system that makes more small
misclassifications over a system that makes a few
large misclassifications when all else is equal. A
metric with quadratic-weighting is likely to adhere
to this property.

To test the sensitivity of the metrics to the mag-

nitude of misclassification, we simulated 5,000 gold
standard scores on a 10-point scale using a Gaussian
(normal) distribution with a mean score at the mid-
point. Again, we simulated systems by randomly in-
troducing errors to the scores. For each system, we
varied the magnitude of the misclassification while
the total misclassification distance (i.e., MAE or PA)
was kept constant. Figure 4 confirms that measures
of agreement that use quadratic weights decrease as
the magnitude of each error increases. The met-
rics of agreement that use linear weights actually in-
crease slightly.14

4.4 Robustness to score scales

Robustness of the metrics to the score range or scale
was tested by binning the gold and predicted scores
at fixed cutpoints and re-evaluating the results. In
the FCE dataset, the scale was varied between 40
and 3 points by successively binning scores. Met-
rics that are less sensitive to scoring scales facilitate
cross-dataset comparisons.

All metrics were affected by the scale, al-
though those with quadratic weights appeared to
be more sensitive compared to those with linear
ones. Quadratic Cκ was the most sensitive met-
ric and showed larger decreases compared to the
others as the scoring scale was reduced, while AC
quadratic exhibited higher stability compared to BP
quadratic.15

14Note that such an experiment cannot be controlled and re-
liably executed for real systems.

15Detailed results omitted due to space restrictions.
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distribution of real ATS-model scores.
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Figure 4: Change in the magnitude of performance
metrics as only the size of each misclassification in-
creases.

5 Recommendations and Conclusion

Our results suggest that AC and BP (with quadratic
weights) overall are the most robust agreement co-
efficients. On the basis of this analysis, we make the
following recommendations:

• We recommend against using Cohen’s kappa.
Interpretation of the magnitude of kappa within
/ across system and dataset comparisons is
problematic, as it depends on trait prevalence,
the marginal distributions and the scoring scale.
It is worth noting at this point that the inefficacy
of kappa is independent on the type of data that
it is being used on, that is, whether there is a
categorical or ordinal (gold standard) scale.

• We recommend using the AC coefficient with
quadratic weights. Although BP is a good al-
ternative as it adjusts percent agreement simply
based on the inverse of the scoring scale, it is
more sensitive to, and directly affected by the
scoring scale.

• We recommend reporting a rank correlation co-
efficient (Spearman’s or Kendall’s τb rank cor-
relation coefficient), rather than using it for sys-
tem evaluation and comparison, as it can facil-
itate error analysis and system interpretation;
for example, low agreement and high rank cor-
relation would indicate a large misclassification
magnitude, but high agreement with respect to

the ranking (i.e., the system ranks texts simi-
larly to the gold standard); high agreement and
low rank correlation would indicate high accu-
racy in predicting the gold scores, but small
ranking errors.16 Kendall’s τb may be pre-
ferred, as it is a more effective tie-adjusted co-
efficient that is defined in terms of concordant
and discordant pairs; however, further experi-
ments beyond the scope of this paper would be
needed to confirm this.

It is worth noting that given the generality of the
ATS task setting as presented in this paper (i.e.,
aiming to predict gold standard scores on an or-
dinal scale) and the metric-evaluation setup (us-
ing synthetic data in addition to real output), the
properties discussed and resulting recommendations
may be more widely relevant within NLP and may
serve as a useful benchmark for the wider commu-
nity (Siddharthan and Katsos, 2010; Bloodgood and
Grothendieck, 2013; Chen and He, 2013; Liu et al.,
2013, among others) as well as for shared task or-
ganisers.

An interesting direction for future work would be
to explore the use of evaluation measures that lie
outside of those commonly used by the ATS com-
munity, such as macro-averaged root mean squared
error that has been argued as being suitable for ordi-
nal regression tasks (Baccianella et al., 2009).

16A low correlation could also point to effects of the under-
lying properties of the data as the metric is sensitive to trait
prevalence (see Section 3.1.1).
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Abstract

Automated scoring of student essays is in-
creasingly used to reduce manual grading ef-
fort. State-of-the-art approaches use super-
vised machine learning which makes it com-
plicated to transfer a system trained on one
task to another. We investigate which cur-
rently used features are task-independent and
evaluate their transferability on English and
German datasets. We find that, by using our
task-independent feature set, models transfer
better between tasks. We also find that the
transfer works even better between tasks of the
same type.

1 Introduction

Having students write an essay is a widely used
method for assessment, e.g. universities use essay
writing skills as a proxy for the prospects of appli-
cants. As manually grading essays is costly, auto-
mated essay grading systems are increasingly used
becasue they – once developed – do not introduce
additional costs for grading new essays.

Automated essay grading systems usually follow
a supervised approach and yield a quality of holistic
grading comparable to human performance (Valenti
et al., 2003; Dikli, 2006). These systems make use
of certain properties of essays (called features) in
order to estimate the essay quality. In the grading
process, these features are extracted and ratings are
assigned according to the manifestations of the fea-
tures (Attali and Burstein, 2006). In order to auto-
matically learn the association between feature val-
ues and ratings a high amount of manually rated es-
says is required for training. Hence, it seems desir-
able to develop systems that work without this initial

input, which means – expressed in terms of machine
learning – that features should not be defined by the
present task but by general essay grading. A task
is defined here as prompting a group of humans to
solve a particular writing task. Tasks differ in at-
tributes such as the grade-level of underlying sub-
jects or characteristics of the prompt.

Many kinds of features have been proposed for
essay grading (Valenti et al., 2003; Dikli, 2006).
They differ in the degree of dependency to the task at
hand. There are features that are strongly dependent
on a task, e.g. when they detect important words or
topics (Chen and He, 2013). Other features are less
dependent, e.g. when they capture general character-
istics of essays like the number of words in the essay
(Östling, 2013; Lei et al., 2014), usage of connectors
(Burstein and Chodorow, 1999; Lei et al., 2014), etc.

We assume that a system which considers only
task-independent features should perform well no
matter what task it is trained on. However, it is un-
clear how much explanatory power the model might
lose in this step. In this paper, we test this hypothe-
sis by performing experiments with a state-of-the-
art essay grading system on English and German
datasets. We categorize features into task-dependent
and task-independent ones and evaluate the differ-
ence in grading accuracy between the corresponding
models. We find that the task-independent models
show a better performance for both languages tested,
but the resulting losses are relatively high in general.
Moreover, we examine the tasks more closely and
group them according to whether they offer a tex-
tual source as a reference point. We show that the
transfer works better if the model is derived from
the same task type.
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2 Features

In this section, we describe state-of-the-art features
and how they relate to the quality of an essay. For
each feature, we discuss whether it belongs to the
strongly task-dependent or weakly task-dependent
group.

2.1 Length Features

This very simple but quite valuable feature deals
with the essay length (Mahana et al., 2012; Chen
and He, 2013; Östling, 2013; Lei et al., 2014). The
core idea is that essays are usually written under a
time limit. So the amount of produced text can be a
useful predictor of the productivity of the writer and
thus the quality of the essay (Shermis and Burstein,
2002). Therefore, we measure the text length by
counting all tokens and sentences in an essay. The
degree of task-dependence of this feature is directly
connected to the time limit.

The average sentence length in words and word
length in characters can be an indicator for the de-
gree of complexity a writer can master (Attali and
Burstein, 2006; Mahana et al., 2012; Chen and He,
2013; Östling, 2013). As this is not particularly tied
to a specific task, these features are weakly task-
dependent.

2.2 Occurrence Features

According to Mahana et al. (2012) the occurrences
of linguistic phenomena such as commas, quota-
tions, or exclamation marks can serve as valuable
features in a grade prediction. These features fo-
cus more on the structuring of an essay and are thus
weakly task-dependent.

For tasks that are source-based (i.e. a source text
is provided on which the task is based), we augment
this approach by also counting formal references
like citations and line references. Source-based fea-
tures are obviously strongly task-dependent.

Using third party sources to support an argu-
ment can be a valuable hint for evidence (Bergler,
2006). Therefore, we use the approach of Krestel et
al. (2008) to detect direct, indirect, and reported
speech in essays. The approach relies on set of re-
porting verbs and rules to identify and distinguish
these forms.

If a task is based on a certain text source, the oc-
currence of core concepts in the essay should be an
indicator for high quality (Foltz et al., 1999). We de-
termine core concepts from the source using words
or phrases with a high tf.idf weight. Again these fea-
tures are just meaningful if the related task offers a
textual source.

2.3 Syntax Features

Variation in the syntactic structures used in an essay
may indicate proficiency in writing (Burstein et al.,
1998). Following Chen and He (2013), we opera-
tionalize this by measuring the ratio of distinct parse
trees to all the trees and the average depths of the
trees to compute syntactic variation features.

Further, the parsing trees are used to measure the
proportion of subordinate, causal and temporal
clauses. Causal and temporal clauses are detected
by causal or temporal conjunctions that could be
found in subordinate-clauses. For example, a sub-
ordinate clause beginning with when is considered
as temporal. The detection of causal- and temporal
clauses is used to enrich the syntactic variability by
a discourse element (Burstein et al., 1998; Chen and
He, 2013; Lei et al., 2014). As syntactic features
are relatively independent of the task, we categorize
them as weakly task-dependent.

2.4 Style Features

Another important aspect of essay quality is an
appropriate style. Following Östling (2013), we
use the relative ratio of POS-tags to detect style
preferences of writers. We complemented this by a
feature that measures the formality F of an essay
(Heylighen and Dewaele, 2002) defined as:

F =

∑
i∈A

c(i)
n

− ∑
j∈B

c(j)
n

+ 100

2

where A = {N, ADJ, PP, DET}, B = {PR, V,
ADV, UH}, and n is the number of tokens in the
text. The formality-feature should be strongly task-
dependent, as the correct style depends on the task
and the target audience.

The words used in the essay tell us something
about the vocabulary the writer actively uses. In ac-
cordance with Chen and He (2013), we measure the
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type-token-ratio to estimate whether an essay has a
relatively rich or rather poor vocabulary.

As noted by Breland et al. (1994), word knowl-
edge of a writer is highly tied to the corpus fre-
quency of the words used. The lower the frequency
the higher the writer’s language proficiency. We
model this idea by calculating the average word
frequency in the Web1T-corpus (Brants and Franz,
2006). We expect this average frequency to be
relatively stable and thus categorize the feature as
weakly task-dependent.

2.5 Cohesion Features

The structure of an essay reflects the writer’s abil-
ity to organize her ideas and compose a cohesive re-
sponse to the task. Following Lei et al. (2014) the
use of connectives (like therefore or accordingly)
can be a hint for a cohesive essay. We count oc-
currences of connectives (from a fixed list) and nor-
malize by the total number of tokens. As cohesion
is relatively independent from the topic of an essay,
we categorize this feature as weakly task-dependent.

2.6 Coherence Features

In order to make an essay understandable, writers
need to ensure that the whole text is coherent and the
reader can follow the argumentation (Chen and He,
2013; Lei et al., 2014). Features based on Rhetori-
cal Structure Theory (William and Thompson, 1988)
could be used (Burstein et al., 2001), but there are
no reliable parsers available for German and per-
formance is also not yet robust enough for English.
Instead, we operationalize coherence measuring the
topical overlap between adjacent sentences. We use
similarity measures based on n-gram overlap and re-
dundancy (e.g. of nouns). This operationalization of
coherence is weakly task-dependent, as the degree
of topical overlap is independent of the actual topic.

2.7 Error Features

Grammatical or spelling errors are one of the most
obvious indicators of bad essays, but have been
found to have only little impact on scoring quality
(Chen and He, 2013; Östling, 2013). We add a sim-
ple rule-based grammar error feature in our system
based on LanguageTool.1 We do not expect gram-

1https://www.languagetool.org

mar errors to be bound to specific topics and catego-
rize the feature as weakly task-dependent.

2.8 Readability Features

We use a set of established readability fea-
tures (Flesch, Coleman-Liau, ARI, Kincaid, FOG,
Lix, and SMOG), that rely on normalized counts
of words, letters, syllables or other phenomena
(like abbreviations) which affect the readability
(McLaughlin, 1969; McCallum and Peterson, 1982;
Smith and Taffler, 1992). Depending on which writ-
ing style is considered as appropriate, high scoring
essays might be associated with different levels of
readability. However, a certain level of formal writ-
ing is required for most essays and very simple or
very complex writing are both indicators for bad es-
says. Thus, we categorize the features as weakly
task-dependent.

2.9 Task-Similarity Features

For source-based essays, we can determine the task
similarity of an essay by computing the similarity
between essay and the task specific source (Östling,
2013). There should be a certain degree of simi-
larity between the source and the essay, but if the
similarity is too high the essay might be plagia-
rized. We use Kullback–Leibler divergence between
source and essay.

A variant of this feature computes the corpus
similarity to a neutral background corpus (Brown
corpus (Marcus et al., 1993) in our case) in order
to determine whether the essay was written specific
enough.

While the corpus similarity should be weakly
task-dependent, the task similarity is of course
strongly dependent on the task.

2.10 Set-Dependent Features

So far, all features have only used the characteris-
tics of a single essay, but it is also useful to take the
whole set of essays into account. Instead of detect-
ing characteristics of an individual essay the differ-
ences between essays in the set is examined. Set-
based features can be based on topics (Burstein et
al., 1998) or n-grams (Chen and He, 2013). We use
word n-gram features for the 1,000 most frequent
uni-, bi- and tri-grams in the essay set. Following
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Chen and He (2013), we further use the same num-
ber of POS n-grams as features.

As a consequence of writing conventions, word-
ing in an essay usually differs between regions in a
text. For example, words that indicate a summary or
a conclusion are indicators for a good essay only if
they occur at the end, not at the beginning. Thus, we
partition the essay in n equally sized parts based on
word counts (we found five parts to work well) and
compute partition word n-grams using the same
settings as described above.

As all features described in this section deal with
frequent wording or essay topics, they are strongly
task-dependent.

3 Experimental Setup

We now describe the experimental setup used
to examine our research question regarding task-
independent models.

3.1 Datasets
As we want to compare models across tasks, we
need datasets that contain different tasks.

English A suitable English dataset is the ASAP
essay grading challenge.2 The dataset contains eight
independent tasks of essay-writing with each about
1,800 graded essays (except the last one with only
723). The essays were written by students in grade
levels between 7 and 10 of a US high-school. The
tasks cover a wide range of different settings and
can be grouped on whether they were source-based
or not:

The source-based tasks have in common that the
participants first received a text as input and then had
to write an essay that refers to this source. The fol-
lowing task belong to this group:

• Task 3: Given a source of someone who is trav-
eling by bicycle, students should describe how
the environment influences the narrator.

• Task 4: On the basis of the text ‘winter hibis-
cus’ participants should explain why the text
ends in a particular way.

• Task 5: Students were requested to describe the
mood of a given memoir.

2https://www.kaggle.com/c/asap-aes

• Task 6: Based on an excerpt on the construction
of the Empire State Building, participants had
to describe the obstacles the builders faced.

The opinion tasks ask for an opinion about a cer-
tain topic, but without referring to a specific source
text.

• Task 1: Students should convince readers of a
local newspaper of their opinion on the effects
computers have on people.

• Task 2: Participants were asked to write about
their opinion on whether certain media should
be banned from libraries. They were prompted
to include own experiences.

• Task 7: Participants should freely write on ‘pa-
tience’. They could either write entirely free or
about a situation in which they or another per-
son proved patience.

• Task 8: Participants were told to tell a true story
in which laughter was a part.

As the different tasks use different scoring schemes,
we use holistic scores and normalize to a scale from
0 to 9 in order to make the trained model exchange-
able.

German The German dataset contains two inde-
pendent tasks each with 197 and 196 annotated es-
says. The essays were written by first-year univer-
sity students of degree programs for future teachers.
Both writing tasks had in common that the partici-
pants first received a text as an input. After reading
the given text they were supposed to write an essay
by summarizing the argumentative structure of the
text. However, students were also asked to include
their own pro and contra arguments.

• T1: Students were requested to summarize and
to discuss a newspaper article of a national
German newspaper which deals with an edu-
cational topic.

• T2: Participants were asked to summarize and
to discuss a newspaper article of a national Ger-
man newspaper which focusses on the quality
of contributions in the participatory media.

Again, we use the holistic scores. No normalization
was necessary as both tasks use the same 6-point
scoring scale.
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Group Feature

strongly task-
dependent

essay length
partition word n-gram
POS n-gram
word n-gram
*core concepts
*formal references
*task similarity

weakly task-
dependent

connectives
commas/quotations/exclamation
corpus similarity
direct, indirect and reported speech
formality
grammar error
readability
subordinate, causal & temporal clauses
syntactic variation
topical overlap
type-token-ratio
word frequency
word/sentence length

Table 1: List of features grouped into strongly
and weakly task-dependent. Source-based features
(marked with a *) are not used in our experiments.

3.2 Strongly vs. Weakly Dependent Features

Our theoretic considerations on the commonly used
features show that they differ in their degree of de-
pendence on a specific essay writing task. As not
all tasks refer to a source, we exclude – for the sake
of comparability – features that rely heavily on the
source text, i.e. features like core concepts. We ar-
gue that set-dependent features are strongly task-
dependent and most others are weakly dependent.
Table 1 gives an overview of the two feature groups
used in our experiments. The full feature set uses
both strongly and weakly task-dependent features,
while the reduced set only uses the weakly task-
dependent ones.

3.3 Essay Grading System

In order to ensure a fair comparison, we re-
implemented a state-of-the-art essay grading system
based on DKPro TC (Daxenberger et al., 2014)3

which ensures easy reproducibility and replicability.
Our system takes a set of graded essays and

3version: 0.7

performs preprocessing using tokenization, POS-
tagging, stemming, and syntactic parsing.4 The fea-
ture extraction takes a list of features (either the full
or reduced set of features) and extracts the corre-
sponding feature values from the instances. The ma-
chine learning algorithm5 then learns a model of es-
say quality from the extracted features.

In a second and independent step, the learned
model is applied in order to grade essays. In the
usual in-task setting (our baseline), we train on a part
of the available data for a specific essay writing task
and then evaluate on the held-out rest (10-fold cross
validation). In our task-adaptation setting, we train
the model on all the data for one task, but evaluate
on another task.

For the German essays, we need to adapt some
components of the system. For example, the lists of
connectives, causal and temporal clause detection
were replaced by German equivalents. The detection
of direct, indirect, and reported speech was done
following Brunner (2013). Further, corpus similar-
ity was computed based on the Tiger corpus (Brants
et al., 2004) instead of the Brown corpus, and the
word frequency was calculated using the German
part of Web1T. In all other aspects, the English and
German setups are equal.

3.4 Evaluation Metric
Following the recommendation of the ASAP chal-
lenge, we use as evaluation metric quadratic
weighted kappa computed as:

κ = 1−
∑

i,j wi,jOi,j∑
i,j wi,jEi,j

with Oi,j as the number of times one annotator
graded j and the other i, with Ei,j as the expected
grades given a random distribution and with

wi,j =
(i− j)2

(N − 1)2

as the weight of the grades. The metric produces
a value for the agreement between the human gold
standard and the machine grading.

4The preprocessing was realized with the DKPro Core 1.7.0
components used within DKPro TC: BreakIterator, TreeTagger,
SnowballStemmer and StanfordParser.

5Support Vector Machine provided by DKPro TC
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Figure 1: ASAP dataset: Comparison of the full and
reduced model.

4 Results

We now report and discuss the results of our task
adaptation experiments. The difference in perfor-
mance will be an indicator of how well the mod-
els can be transferred from one essay set to another.
We first establish the within-task results as a baseline
and then compare them with the cross-task results.

4.1 Baseline: Within-Task Models

Figure 1 gives an overview of the results obtained
when training a dedicated model for each task, either
with the strongly task-dependent full model or the
weakly task-dependent reduced model. Task8 shows
very low performance due to the much smaller
amount of available training data. We expected that
the full model would always perform better than the
reduced model, but we get a mixed picture instead.
It seems that even within a task, the full feature set
overfits on specific words used in the training data
while they do not need to be necessarily mentioned
in order to write a good essay.

Figure 2 shows the results for the German essays.
The kappa values are much lower than for the En-
glish essays. This can be explained by the fact that
the German tasks focus more on content issues than
on language proficiency aspects, as the German es-
says are targeted towards university students com-

T1 T2
0

0.2

0.4

0.6

0.8

1

κ

full reduced

Figure 2: German dataset: Comparison of the full
and reduced model

pared to school students for the English essays. As
content issues are hardly covered by our features,
the results could probably be improved by adding
content features like the occurrence of core concepts
(see 2.2). However, for both German tasks we see
the expected drop in performance when going from
the full to the reduced model although it is rather
small.

After having calculated the baselines, we can now
transfer the models and determine the loss associ-
ated with the transfer.

4.2 Experiment: Cross-Task Models

We now examine the task-adaptivity of models by
training on one task and testing on another, and then
compare the result to the baseline established above.

Table 2 shows the resulting loss in performance
for the full model. The table rows represent the
tasks on which the model has been trained and the
columns the tasks on which the trained model was
tested. The average loss over all model transfers is
.42, which shows that the full models do not work
very well when transferred to another task.6 For
most cases, the observed behavior is symmetric, i.e.
we see a similar drop when training on task 5 and
testing on 4 or training on 4 and testing on 5. Though
there are some remarkable exceptions. The model

6Note that the average loss in terms of quadratic weighted
kappa is not equal the mean, as Fishers-Z transformation
(Fisher, 1915) has to be performed before averaging variance
ratios like quadratic weighted kappa.
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Opinion Source-based
3 4 5 6 1 2 7 8

Opinion

3 - -0.41 -0.24 -0.44 -0.42 -0.56 -0.34 -0.43
4 -0.35 - -0.48 -0.48 -0.35 -0.55 -0.38 -0.41
5 -0.41 -0.47 - -0.55 -0.13 -0.46 -0.25 -0.35
6 -0.46 -0.59 -0.61 - -0.43 -0.36 -0.45 -0.13

Source-based

1 -0.45 -0.60 -0.55 -0.65 - +0.01 -0.37 -0.12
2 -0.46 -0.60 -0.60 -0.63 -0.40 - -0.61 -0.10
7 -0.39 -0.49 -0.42 -0.53 -0.28 -0.19 - -0.19
8 -0.41 -0.53 -0.50 -0.60 -0.52 -0.24 -0.33 -

Table 2: Loss of the full models compared with using the tasks own model (loss >-0.3 highlighted)

Opinion Source-based
3 4 5 6 1 2 7 8

Opinion

3 - -0.11 -0.29 -0.25 -0.66 -0.61 -0.31 -0.46
4 -0.04 - -0.24 -0.24 -0.67 -0.60 -0.29 -0.46
5 -0.23 -0.18 - +0.03 -0.54 -0.60 -0.16 -0.44
6 -0.41 -0.34 -0.24 - -0.39 -0.57 -0.06 -0.40

Source-based

1 -0.54 -0.43 -0.45 -0.37 - -0.12 -0.07 -0.20
2 -0.48 -0.40 -0.48 -0.43 -0.35 - -0.36 -0.05
7 -0.54 -0.39 -0.39 -0.38 -0.09 -0.28 - -0.25
8 -0.56 -0.49 -0.57 -0.50 -0.49 -0.25 -0.31 -

Table 3: Loss of the reduced models compared with using the tasks own model (loss >-0.3 highlighted)

trained on set 1 performs even better on set 2 than its
own model, while training on set 2 and testing on set
1 results in a .4 drop. In addition, all source-based
models (1, 2, and 7) work quite well as models for
set 8 – the drop is only about .1 in all those cases.
However, set 8 has relatively little training data so
that this might be rather an effect of the other models
being generally of higher quality than a task transfer
effect.

The same procedure was carried out for the model
with the reduced feature set that excludes task-
dependent features. The results are shown in table 3.
We see that the average loss is reduced (.36 com-
pared to .42 for the full model) which is in line with
our hypothesis that the reduced feature set should
transfer better between tasks. However, the effect is
not very strong when averaged over all tasks.

We also observe noticeable difference in the
transferability between the groups (source-based vs.
opinion tasks). Looking only within the source-
based tasks the loss falls between +.03 and -.41,
while for training on the opinion tasks and yields
much higher losses (from -.37 to -.57 ). The same

Opinion Source-based

Opinion -0.22 -0.46
Source-based -0.47 -0.23

Table 4: Average loss of reduced model by task type

effect can be found for the opinion tasks (with the
exceptions of set 7). In order to better see the dif-
ference, we show the average loss for each group
in table 4. It is obvious that a transfer within
source-based or opinion tasks works much better
than across the groups. Within a group, the loss is
only half as big as between groups.

We perform the same set of experiments on the
German data set. The results of the full model are
shown in table 5a and the results of the reduced
model are shown in figure 5b. Again the losses of
the reduced model are much smaller than of the full
model confirming our results on the English dataset.

5 Conclusion

In this work, we investigated the research question to
what extend supervised models for automatic essay
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T1 T2

T1 - -0.15
T2 -0.47 -

(a) Full

T1 T2

T1 - -0.07
T2 -0.28 -

(b) Reduced

Table 5: Loss on the German dataset

grading can be transferred from one task to another.
We discussed a wide range of features commonly
used for essay grading regarding their task depen-
dence and found that they can be categorized into
strongly and weakly task-dependent. Our hypothe-
sis was that the latter model should transfer better
between tasks. In order to test that, we implemented
a state-of-the-art essay grading system for English
and German and examined the task transferability
by comparing the baseline performance (training on
the actual task) with the models trained on the other
tasks. We found, consistent with our hypothesis,
that the reduced models performed better on aver-
age. The transfer worked even better if the underly-
ing tasks are similar in terms of being source-based
or opinionated. The fact that the losses on average
are still quite high raises the question of whether a
more fine-grained discrimination of features is nec-
essary or whether models for essay grading can be
transferred at all.

In future work we plan to further investigate
the connection of task attributes to their task-
transferability (e.g. the language proficiency level of
participants or differences in the task description).
In addition, we think that there are facets of quality
that are independent of tasks, like the complexity of
essays. Grading essays not only holistically, but ac-
cording to facets is likely to transfer better between
tasks and at the same time provides teachers with
reliable sub-scores that may support their decisions
without the demand of training data.
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Abstract

This paper presents a novel approach to error
correction in content words in learner writing
focussing on adjective–noun (AN) combina-
tions. We show how error patterns can be used
to improve the performance of the error cor-
rection system, and demonstrate that our ap-
proach is capable of suggesting an appropri-
ate correction within the top two alternatives
in half of the cases and within top 10 alterna-
tives in 71% of the cases, performing with an
MRR of 0.5061. We then integrate our error
correction system with a state-of-the-art con-
tent word error detection system and discuss
the results.

1 Introduction

The task of error detection and correction (EDC) on
non-native texts, as well as research on learner lan-
guage in general, has attracted much attention re-
cently (Leacock et al., 2014; Ng et al., 2014; Ng et
al., 2013; Dale et al., 2012). The field has been dom-
inated by EDC for grammatical errors and errors in
the use of articles and prepositions (Ng et al., 2013;
Rozovskaya and Roth, 2011; Chodorow et al., 2010;
Gamon et al., 2008; Brockett et al., 2006; Han et al.,
2006).

More recently, however, the need to address
other error types has been recognised (Kochmar and
Briscoe, 2014; Ng et al., 2014; Rozovskaya et al.,
2014; Sawai et al., 2013; Dahlmeier and Ng, 2011).
Among these, errors in content words are the third
most frequent error type after errors in articles and
prepositions (Leacock et al., 2014; Ng et al., 2014).

The correct use of content words is notoriously hard
for language learners to master, while importance
of the correct word choice for successful writing
has long been recognised (Leacock and Chodorow,
2003; Johnson, 2000; Santos, 1988).

The major difficulty is that correct word choice
is not governed by any strictly defined rules: native
speakers know that powerful computer is preferred
over strong computer, while strong tea is preferred
over powerful tea (Leacock et al., 2014), but lan-
guage learners often find themselves unsure of how
to choose an appropriate word. As a result, they
often confuse words that are similar in meaning or
spelling, overuse words with general meaning, or se-
lect words based on their L1s (Kochmar and Briscoe,
2014; Dahlmeier and Ng, 2011).

Previous work on EDC for content words has also
demonstrated that since these error types are sub-
stantially different from errors with function words,
they require different approaches. The most widely
adopted approach to EDC for function words relies
on availability of finite confusion sets. The task
can then be cast as multi-class classification with
the number of classes equal to the number of pos-
sible alternatives. Detection and correction can be
done simultaneously: if the alternative chosen by the
classifier is different from the original word, this is
flagged as an error. However, content word errors
cannot be defined in terms of a general and finite set
of confusion pairs, and the set of alternatives in each
case depends on the choice of original word. More-
over, it has been argued that error detection for con-
tent words should be performed independently from
error correction (Kochmar and Briscoe, 2014).

233



In this work, we focus on error correction in con-
tent words and, in particular, investigate error cor-
rection in adjective–noun (AN) combinations using
several publicly-available learner error datasets for
this type of construction. At the same time, we be-
lieve that a similar approach can be applied to other
types of content word combinations. Specifically,
we make the following contributions:

1. We explore different ways to construct the cor-
rection sets and to rank the alternatives with re-
spect to their appropriateness. We report the
coverage of different resources and assess the
ranked lists of suggestions.

2. We show that learner text is a useful source of
possible corrections for content words. In ad-
dition, we demonstrate how error patterns ex-
tracted from learner text can be used to improve
the ranking of the alternatives.

3. We present an EDC system for AN combina-
tions which compares favourably to the pre-
vious published approaches of which we are
aware.

4. We explore the usefulness of self-propagating
for an error correction system.

2 Related work

Leacock et al. (2014) note that the usual approach
to EDC in content words relies on the idea of com-
paring the writer’s choice to possible alternatives, so
that if any of the alternatives score higher than the
original combination then the original combination
is flagged as a possible error and one or more alter-
natives are suggested as possible corrections. The
performance of an EDC algorithm that uses this ap-
proach depends on:

• the choice of the source of alternatives;

• the choice of the metric for ranking the alterna-
tives.

The source of alternatives defines the coverage of
the error correction algorithm, while the quality of
the system suggestions depends on the choice of an
appropriate metric for ranking the alternatives.

Early work on EDC for content words (Wible
et al., 2003; Shei and Pain, 2000) relied on the
use of reference databases of known learner errors
and their corrections. While such approaches can
achieve good quality, they cannot provide good cov-
erage.

Previous research considered semantically related
confusions between content words as the most fre-
quent type of confusion in learner writing and used
WordNet (Miller, 1995), dictionaries and thesauri to
search for alternatives (Östling and Knutsson, 2009;
Futagi et al., 2008; Shei and Pain, 2000). Since
these resources cannot cover alternatives that are not
semantically related to the original words, other re-
sources have been considered as well: for example,
Dahlmeier and Ng (2011) consider spelling alterna-
tives and homophones as possible corrections.

L1-specific confusions have been reported to
cover a substantial portion of errors in content words
for some groups of language learners (Chang et
al., 2008; Liu, 2002), and some previous EDC ap-
proaches have considered using parallel corpora and
bilingual dictionaries to generate and rank alterna-
tives (Dahlmeier and Ng, 2011; Chang et al., 2008).
L1-specific approaches have shown the best results
in EDC for content words so far, but it should be
noted that their success relies on availability of high-
quality L1-specific resources which is hard to guar-
antee for the full variety of learner L1s.

At the same time, good performance demon-
strated by L1-specific approaches shows the impor-
tance of taking learner background into considera-
tion. In contrast to the other resources like Word-
Net and thesauri, which can only cover confusions
between words in the L2, use of parallel corpora
and bilingual dictionaries gives access to the types
of confusions which cannot be captured by any L2
resources. Learner corpora and databases of text re-
visions can be used to similar effect.

For example, Rozovskaya and Roth (2011) show
that performance of an EDC algorithm applied to ar-
ticles and prepositions can be improved if the classi-
fier uses L1-specific priors, with the priors being set
using the distribution of confusion pairs in learner
texts. Sawai et al. (2013) show that an EDC sys-
tem that uses a large learner corpus to extract confu-
sion sets outperforms systems that use WordNet and
roundtrip translations. Madnani and Cahill (2014)
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use a corpus of Wikipedia revisions containing an-
notated errors in the use of prepositions and their
corrections to improve the ranking of the sugges-
tions.

Finally, we note that a number of previous ap-
proaches to errors in content words have combined
error detection and correction, flagging an original
choice as an error if an EDC algorithm is able to find
a more frequent or fluent combination (Östling and
Knutsson, 2009; Chang et al., 2008; Futagi et al.,
2008; Shei and Pain, 2000), while some focussed
on error correction only (Dahlmeier and Ng, 2011;
Liu et al., 2009). Kochmar and Briscoe (2014) argue
that error detection and correction should be per-
formed separately. They show that an EDC algo-
rithm is prone to overcorrection, flagging originally
correct combinations as errors, if error detection is
dependent on the set of alternatives and if some of
these alternatives are judged to be more fluent than
the original combination.

We follow Kochmar and Briscoe (2014) and treat
error detection and error correction in content words
as separate steps. We focus on the correction step,
and first implement a simple error correction algo-
rithm that replicates previous approaches to EDC for
content words. We believe that performance of this
algorithm on our data reflects the state-of-the-art in
content error correction. Next, we show how learner
data and distribution of confusion pairs can be used
to improve the performance of this algorithm.

3 Data

In our experiments, we use three publicly-available
datasets of learner errors in AN combinations: the
AN dataset extracted from the Cambridge Learner
Corpus (CLC)1 and annotated with respect to the
learner errors in the choice of adjectives and
nouns;2 the AN dataset extracted from the CLC-
FCE dataset;3 and the set of errors in ANs that we
have extracted for the purposes of this work from the

1http://www.cup.cam.ac.uk/gb/elt/
catalogue/subject/custom/item3646603/
Cambridge-International-Corpus-Cambridge-
Learner-Corpus/

2http://ilexir.co.uk/media/an-dataset.
xml

3http://ilexir.co.uk/applications/
adjective-noun-dataset/

training and development sets used in the CoNLL-
2014 Shared Task on Grammatical Error Correc-
tion.4 We discuss these datasets below.

3.1 Annotated dataset

We use the dataset of AN combinations released by
Kochmar and Briscoe (2014). This dataset presents
typical learner errors in the use of 61 adjectives that
are most problematic for language learners. The ex-
amples are annotated with respect to the types of er-
rors committed in the use of adjectives and nouns,
and corrections are provided.

Kochmar and Briscoe note that learners often con-
fuse semantically related words (e.g., synonyms,
near-synonyms, hypo-/hypernyms). Examples (1)
and (2) from Kochmar and Briscoe (2014) illustrate
the confusion between the adjective big and seman-
tically similar adjectives large and great:

(1) big*/large
quantity

(2) big*/great im-
portance

In addition, in Kochmar and Briscoe (2014) we
note that the adjectives with quite general meaning
like big, large and great are often overused by lan-
guage learners instead of more specific ones, as is
illustrated by examples (3) to (6):

(3) big*/long
history

(4) bigger*/wider
variety

(5)
greatest*/highest
revenue

(6) large*/broad
knowledge

Words that seem to be similar in form (either re-
lated morphologically or through similar pronuncia-
tion) are also often confused by learners. Examples
(7) and (8) illustrate this type of confusions:

(7)
classic*/classical
dance

(8)
economical*/economic
crisis

The dataset contains 798 annotated AN combina-
tions, with 340 unique errors.

Table 1 presents the statistics on the error types
detected in this dataset. The majority of the errors

4http://www.comp.nus.edu.sg/˜nlp/
conll14st.html

235



Error type Distribution
S 56.18%
F 25.88%
N 17.94%

Table 1: Distribution of error types in the annotated
dataset.

involve semantically related words (type S). Form-
related confusions occur in 25.88% of the cases
(type F); while 17.94% are annotated as errors com-
mitted due to other reasons (type N), possibly related
to learners’ L1s.

3.2 CLC-FCE dataset

The CLC-FCE AN dataset is extracted from the
publicly-available CLC-FCE subset of the CLC re-
leased by Yannakoudakis et al. (2011). The CLC
error coding (Nicholls, 2003) has been used to ex-
tract the correctly used ANs and those that are an-
notated as errors due to inappropriate choice of an
adjective or/and noun, but the error subtypes for the
AN errors are not further specified. We have ex-
tracted 456 combinations that have adjective–noun
combinations as corrections.

3.3 NUCLE dataset

We have also used the training and development sets
from the CoNLL-2014 Shared Task on Grammatical
Error Correction (Ng et al., 2014) to extract the in-
correct AN combinations. The data for the shared
task has been extracted from the NUCLE corpus, the
NUS Corpus of Learner English (Dahlmeier et al.,
2013). Unlike the other two datasets it represents a
smaller range of L1s, and similarly to the CLC-FCE
dataset the errors are not further annotated with re-
spect to their subtypes.

We have preprocessed the data using the RASP
parser (Briscoe et al., 2006), and used the error an-
notation provided to extract the AN combinations
that contain errors in the choice of either one or both
words. Additionally, we have also checked that the
suggested corrections are represented by AN combi-
nations. The extracted dataset contains 369 ANs.

Table 2 reports the distribution of the errors with
respect to the incorrect choice of an adjective, noun
or both words within AN combinations in all three
datasets.

Word Ann. data CLC-FCE NUCLE
A 63.24% 43.20% 34.15%
N 30.29% 52.63% 60.16%
Both 6.47% 4.17% 5.69%

Table 2: Distribution of errors in the choice of adjectives
(A), nouns (N) or both words in the datasets.

4 Error Correction Algorithm

First, we implement a basic error correction algo-
rithm that replicates the previous approaches to er-
ror correction overviewed in §2, and investigate the
following aspects of the algorithm:

1. We explore different resources to retrieve alter-
natives for the adjectives and nouns within in-
correct ANs and report the coverage of these
resources;

2. The alternative ANs are generated by crossing
the sets of alternatives for the individual words,
and ranked using a metric assessing AN fre-
quency or fluency in native English. We assess
the quality of the ranking using mean recipro-
cal rank (MRR) by comparing the system sug-
gestions to the gold standard corrections;

3. Finally, we also show how the confusion sets
extracted from the learner data can help im-
prove the ranking and the quality of the sug-
gested corrections.

When reporting the results, we specifically focus
on two aspects of the error correction algorithm: the
coverage estimated as the proportion of gold stan-
dard corrections that can be found in any of the re-
sources considered, and the ability of the algorithm
to rank the more appropriate corrections higher than
the less appropriate ones measured by MRR of the
gold standard corrections in the system output.

4.1 Word alternatives
We extract word alternatives using three resources:

1. We use the notion of Levenshtein distance
(henceforth, Lv) (Levenshtein, 1966) to find
the words that learners might have acciden-
tally confused or misspelled. These alterna-
tives can cover errors annotated as form re-
lated. To avoid introducing too much change
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to the original words, we only consider alter-
natives that differ from the original words by
no more than 1/3 of the characters in the orig-
inal word and that start with the same letter as
the original word. The generated alternatives
are checked against the British National Cor-
pus (BNC)5 and the ukWaC corpus6 to avoid
generating non-words. This allows the algo-
rithm to find alternatives like customer for cos-
tumer (in *important costumer), metropolis for
metropole (in *whole metropole), or electronic
for electric (in *electric society).

2. We look for further alternatives in WordNet
(henceforth, WN) (Miller, 1995), which has pre-
viously been widely used to find semantically
related words. For each original noun, we ex-
tract a set of synonyms and hypo-/hypernyms.
For each original adjective, we extract syn-
onyms and the adjectives related via the WN re-
lation similar-to. This allows us to cover se-
mantically related confusions, and find alterna-
tives such as luck for fate (in *good fate) and
steep for heavy (in *heavy decline).

3. Both Lv and WN cover confusions that occur
in L2, but none of them can cover confusions
that occur due to L1-transfer. Therefore, we
extract the corrections provided by the annota-
tors in the Cambridge Learner Corpus (hence-
forth, CLC). This approach is similar to that of
Madnani and Cahill (2014), but it uses learner
data as the database. We believe that the confu-
sion pairs extracted this way cover a substantial
portion of errors committed due to L1-transfer,
while, computationally, it is much less expen-
sive than the use of bilingual dictionaries or
parallel corpora as in Dahlmeier and Ng (2011)
or Chang et al. (2008). This approach allows
us to extract confusion pairs that are covered
by the CLC only, for example, novel for roman
(in *historical roman), narrow, short and brief
for small (in *small interruption) or big, high
and loud for strong (in *strong noise).

5http://www.natcorp.ox.ac.uk
6http://wacky.sslmit.unibo.it/doku.php?

id=corpora

Setting Ann. data CLC-FCE NUCLE
Lv 0.1588 0.0833 0.0897
WN 0.4353 0.3904 0.2880
CLC 0.7912 0.8684 0.5625
CLC+Lv 0.7971 0.8706 0.5951
CLC+WN 0.8558 0.8904 0.6141
All 0.8618 0.8925 0.6467

Table 3: Coverage of different sets of alternatives.

We assess how many of the gold standard correc-
tions can be found in each of these confusion sets as
well as in different combinations of these sets. Cov-
erage of the different resources is reported in Table
3. We note that the CLC as a single source of cor-
rections provides the highest coverage: for example,
79% of erroneous ANs from the annotated dataset
and 87% of erroneous ANs in the CLC-FCE can po-
tentially be corrected using only the previous cor-
rections for the content words from the CLC. We
note that although the ANs in the annotated dataset
have been extracted from the CLC, they have been
error-annotated independently. The lower figure of
56% on the NUCLE dataset can be explained by
the difference between the CLC and NUCLE cor-
pora since the distribution of errors in these cor-
pora is also different (see Table 2). Nevertheless, we
note that the corrections extracted from the CLC still
cover a substantial amount of the errors in the NU-
CLE dataset. A combination of the corrections from
the CLC and semantically related words from Word-
Net covers an additional 6% of ANs in the annotated
dataset, 5% in the NUCLE dataset, and 2% in the
CLC-FCE dataset, which demonstrates that the ma-
jority of the semantically related confusions are al-
ready covered by the corrections extracted from the
CLC, so WordNet improves the coverage of this re-
source only marginally. Addition of the form related
words (Lv) does not improve coverage significantly.

4.2 Alternative ANs ranking

Once the alternatives for the words within the com-
binations are collected, the alternative AN combina-
tions are generated by the Cartesian product of the
sets of alternatives for the adjectives and the nouns.
The alternatives then need to be ranked with respect
to their appropriateness.
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We apply two simple methods to rank the alterna-
tives: we use the frequency of the generated ANs
in a combined BNC and ukWaC corpus, and we
also measure collocational strength of the alterna-
tive combinations using normalised pointwise mu-
tual information (NPMI) since PMI-based metrics
have been widely used before (see §2):

NPMI(AN) =
PMI(AN)
−log2(P (AN))

(1)

where

PMI(AN) = log2
P (AN)

P (A)P (N)
(2)

We have noticed that when the full sets of al-
ternatives for the adjectives and nouns are used to
generate the AN alternatives, the resulting sets of
ANs contain many combinations, with both origi-
nal words changed to alternative suggestions, that
are dissimilar in meaning to the original ANs while
often being quite frequent or fluent. As a result,
such alternatives are ranked higher than the appro-
priate corrections. To avoid this, we only consider
the alternative ANs where one of the original words
is kept unchanged, i.e.:
{alternative ANs} = ({alternative adjs} ×

noun) ∪ (adj × {alternative nouns})
We evaluate the ranking using the mean recipro-

cal rank (MRR):

MRR =
1
|N |

|N |∑
i=1

1
ranki

(3)

where N is the total number of erroneous ANs
considered by our algorithm. MRR shows how high
the gold standard alternative is ranked in the whole
set of alternatives provided.

The results are reported in the upper half of the
Table 4. We note that often the wider sets of alter-
natives for the individual words yield lower ranks
for the gold standard corrections since some other
frequent AN alternatives are ranked higher by the
algorithm.

4.3 Exploitation of confusion probabilities
Next, we consider a novel approach to ranking the
alternative ANs. Since we are using the CLC correc-
tions for the adjectives and nouns within the ANs, in

Setting Ann. set CLC-FCE NUCLE
CLCfreq 0.3806 0.3121 0.2275
CLCNPMI 0.3752 0.2904 0.1961
(CLC+Lv)freq 0.3686 0.3146 0.2510
(CLC+Lv)NPMI 0.3409 0.2695 0.1977
(CLC+WN)freq 0.3500 0.2873 0.2267
(CLC+WN)NPMI 0.3286 0.2552 0.1908
Allfreq 0.3441 0.2881 0.2468
AllNPMI 0.3032 0.2407 0.1943
Allfreq′ 0.5061 0.4509 0.2913
AllNPMI′ 0.4843 0.4316 0.2118

Table 4: MRR for the alternatives ranking.

addition to the possible corrections themselves we
can also use the confusion probabilities – probabil-
ities associated with the words used as corrections
given the incorrect word choice – for the pairs of
words that we extract from the CLC.

We use a refined formula to rank the possible cor-
rections:

M ′ = M × CP (aorig → aalt)
× CP (norig → nalt)

(4)

where M is the measure for ranking the alterna-
tives (frequency or NPMI, as before), and CP is the
confusion probability of using the alternative word
(possible correction) instead of the original one (er-
ror) estimated from the examples in the CLC. We set
CP (a/norig → a/norig) to 1.0.

For instance, consider an incorrect AN *big en-
joyment and its gold standard correction great plea-
sure. Table 5 shows some alternatives for the words
big and enjoyment with the corresponding correc-
tions and their probabilities extracted from the CLC.
If we use these sets of confusion pairs to generate the
alternative ANs and rank them with raw frequency,
the algorithm will choose great fun (7759 in the na-
tive corpus) over the gold standard correction great
pleasure (2829 in the native corpus). However, if we
use the confusion probabilities with the new mea-
sure (4) the gold standard correction great pleasure
(Freq′ = 3.8212) will be ranked higher than great
fun (Freq′ = 1.1620). The new measure helps take
into account not only the fluency of the correction
in the native data but also the appropriateness of a
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Original Alternatives CP(orig→ alt)
big great 0.0144

large 0.0141
wide 0.0043
... ...
significant 5.1122 ∗ 10−5

enjoyment pleasure 0.0938
entertainment 0.0313
fun 0.0104
happiness 0.0052

Table 5: CLC confusion pairs

particular correction given a learner error.
In addition, this algorithm allows us to consider

both words as possibly incorrectly chosen: equation
(4) ensures that the alternative combinations where
both original words are changed are only ranked
higher if they are both very frequent in the native
corpus and very likely as a confusion pair since
CP (a/norig → a/norig) is set to 1.0.

Finally, if no confusion pairs are found for either
an adjective or a noun in the CLC, the algorithm con-
siders the alternatives from other resources and uses
standard measures to rank them.

The lower half of Table 4 presents the results of
this novel algorithm and compares them to the pre-
vious results from §4.2. The new metric consistently
improves performance across all three datasets, with
the difference in the results being significant at the
0.05 level.

5 Discussion

5.1 Analysis of the results
An MRR of 0.4509 and 0.5061 reported in §4.3 im-
plies that for a high number of the ANs from the
CLC-FCE and annotated dataset the gold standard
correction is ranked first or second in the list of all
possible corrections considered by the system. Table
6 presents the breakdown of the results and reports
the proportion of ANs for which the gold standard
correction is covered by the top N alternatives.

We note the small difference between the num-
ber of cases covered by the top 10 system alter-
natives for the annotated dataset (71.18%) and the
upper bound – the total number of corrections that
can potentially be found by the system (74.71%)

Top N Ann. data CLC-FCE NUCLE
1 41.18 34.21 21.20
2 49.12 45.18 27.99
3 56.77 50.88 33.70
4 61.77 55.04 38.04
5 65.29 58.55 40.49
6 66.18 61.40 42.39
7 67.35 62.28 43.21
8 68.53 63.60 44.29
9 69.71 65.35 45.38
10 71.18 66.45 46.20
Not found 25.29 19.96 48.64

Table 6: Results breakdown: % of errors covered.

Type S F N
MRRfound 0.6007 0.8486 0.6507
Not found 0.1990 0.1705 0.5410

Table 7: Subtype error analysis for the annotated dataset.

– which shows that the system reaches its poten-
tial around the top 10 suggestions. These results
also compare favourably to those reported in pre-
vious research (Chang et al., 2008; Dahlmeier and
Ng, 2011), although direct comparison is not possi-
ble due to the differences in the data used.

We also further investigate the performance of the
error correction algorithm on the different error sub-
types in the annotated dataset (see Table 1). Table
7 presents the proportion of the gold standard cor-
rections for each subtype that are not found by the
algorithm, as well as the MRR for those corrections
that are identified. We see that the highest propor-
tion of gold standard corrections that are not found
by the algorithm are the corrections that are not re-
lated to the originally used words (type N). This re-
sult is not surprising: if the original words and their
corrections are not related semantically or in form,
it is hard to find the appropriate suggestions. The
results also suggest that the system performs best
on the errors of type F: a possible reason for this
is that errors of this type are more systematic and
have smaller confusion sets. For example, the aver-
age MRR on the set of ANs involving errors in the
use of the adjective elder in the annotated dataset is
0.875 since most often such ANs require changing
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Corpus MRRadj MRRnoun

Ann 0.5188 0.4312
CLC 0.3986 0.4665
NUCLE 0.3191 0.2608

Table 8: Average MRR on the sets of ANs with the errors
in the choice of adjectives and nouns.

the adjective for form related alternatives elderly or
older.

At the same time, we note that the results on the
NUCLE dataset are lower than on the two other
datasets. In Table 3 we report that about 35% of
the gold standard corrections from this dataset are
not covered by any of the available sets of alterna-
tives for adjectives and nouns, while the confusion
sets extracted from the CLC can only cover about
56% of the cases. We conclude that there might be
a substantial difference between the two learner cor-
pora in terms of topics, vocabulary used, learner lev-
els and the distribution of the L1s. We assume that
a high number of errors in NUCLE dataset can be
caused by reasons other than semantic or form sim-
ilarity of the words in L2. For example, our system
does not suggest the gold standard correction bill for
*debt in *medical debt, or infrastructural for *archi-
tectural in *architectural development because these
suggestions are not originally covered by any of the
sets of alternatives, including the set of confusion
pairs extracted from the CLC.

Table 8 reports the average MRR on the sets of
ANs involving errors in the choice of adjectives and
nouns separately. The NUCLE dataset contains ANs
with 105 adjectives and 185 nouns, with 76 adjec-
tives and 145 nouns occurring in the NUCLE ANs
only. The low overlap between the sets of individ-
ual words explains the differences in performance.
Since the annotated dataset contains ANs within a
set of frequent adjectives, the algorithm achieves
highest performance in correcting adjective-specific
errors in this dataset.

5.2 Augmenting sets of alternatives

We investigate whether self-propagation of the sys-
tem can mitigate the problem of gold standard sug-
gestions not covered by the original sets of alterna-
tives. Some previous research (Shei and Pain, 2000;

Setting Ann. set CLC-FCE NUCLE
CLC 0.3806 0.3121 0.2275
CLC+Lv 0.3686 0.3146 0.2510
Augm 0.4420 0.3533 0.2614

Table 9: Augmented sets of alternatives.

Chang et al., 2008) has suggested that if an error cor-
rection system is implemented in an interactive way,
learners can be asked to accept the suggested correc-
tions so that the error–correction pairs can be added
to the error database for future reference. We add
the gold standard suggestions for the adjectives and
nouns from all three datasets to the sets of alterna-
tives and run our error correction system using the
augmented sets. For example, we add bill to the set
of alternatives for debt and infrastructural to the set
of alternatives for architectural and check whether
the results of the error correction system improve.

Table 9 reports the results. Since we focus on the
effect of the sets of alternatives, we run the experi-
ments using one setting of the system only. We note
that, since the datasets contain only a few examples
for each adjective and noun, we cannot expect to see
a significant change in the results if we updated the
confusion probabilities and used the refined measure
from §4.3. Therefore, we rank the AN alternatives
using frequency of occurrence in the corpus of na-
tive English. For ease of comparison, we copy the
relevant results from Table 4.

The best results obtained in experiments in §4.2
with the original sets of alternatives are underlined,
while the results obtained with the augmented sets
of alternatives are marked in bold. We note that the
results improve, although the difference is not statis-
tically significant across the three datasets.

5.3 Error Detection and Correction System

Finally, we combine the error correction algorithm
from §4.3 with the error detection algorithm from
Kochmar and Briscoe (2014): the error correction
algorithm is applied to the set of erroneous ANs cor-
rectly detected by the error detection algorithm.

In Kochmar and Briscoe (2014) we report preci-
sion of 0.6850 and recall of 0.5849 on the incorrect
examples in the annotated dataset. Some of the er-
rors identified cannot be further corrected by our al-
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gorithm since the corrections are longer than two
words. MRR of the error correction system ap-
plied to the set of detected errors is 0.2532, while
for 24.28% of the cases the system does not find
a gold standard correction. If these cases are not
considered, MRRfound = 0.6831. We believe that
these results reflect state-of-the-art performance for
the combined EDC system for AN combinations.

6 Conclusion

In this paper, we have addressed error correction in
adjective–noun combinations in learner writing us-
ing three publicly available datasets. In particular,
we have explored different ways to construct the cor-
rection sets and to rank the suggested corrections,
and showed that the confusion patterns extracted di-
rectly from the learner data not only provide the
highest coverage for the system, but can also be used
to derive confusion probabilities and improve the
overall ranking of the suggestions. We have shown
that an error correction system can reach an MRR
of 0.5061 which compares favourably to the results
reported previously.

Further analysis shows that the majority of er-
rors not covered by the algorithm involve confusion
between words that are not related semantically or
in form and, therefore, cannot be found in L2 re-
sources like WordNet. Our experiments with the
augmented sets of alternatives, where we use known
learner confusion pairs to further extend the sets of
correction candidates, show improvement in the re-
sults and suggest that extension of the learner corpus
can help system find appropriate corrections. At the
same time, the difference in the results obtained on
the datasets extracted from the CLC and the NU-
CLE corpora can be explained by the difference in
the topics, learner levels and L1s represented by the
two learner corpora. Future research should explore
further ways to extend the learner data.

We also note that in the current work we do not
consider the wider context for error detection and
correction in ANs. In future work we plan to inves-
tigate the use of surrounding context for EDC for
ANs.

Finally, we have integrated our error correction
system with a state-of-the-art content word error de-
tection system. To the best of our knowledge, this

is the first attempt to combine two such systems,
and we believe that the results obtained – an MRR
of 0.2532 on the set of errors identified by the error
detection algorithm – reflect state-of-the-art perfor-
mance on the EDC task for AN combinations. Our
future work will also extend this approach to other
types of content word combinations.
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Abstract

Marking student responses to short answer
questions raises particular issues for human
markers, as well as for automatic marking sys-
tems. In this paper we present the Amati sys-
tem, which aims to help human markers im-
prove the speed and accuracy of their marking.
Amati supports an educator in incrementally
developing a set of automatic marking rules,
which can then be applied to larger question
sets or used for automatic marking. We show
that using this system allows markers to de-
velop mark schemes which closely match the
judgements of a human expert, with the ben-
efits of consistency, scalability and traceabil-
ity afforded by an automated marking system.
We also consider some difficult cases for auto-
matic marking, and look at some of the com-
putational and linguistic properties of these
cases.

1 Introduction

In developing systems for automatic marking,
Mitchell et al. (2002) observed that assessment
based on short answer, free text input from stu-
dents demands very different skills from assessment
based upon multiple-choice questions. Free text
questions require a student to present the appropri-
ate information in their own words, and without the
cues sometimes provided by multiple choice ques-
tions (described respectively as improved verbalisa-
tion and recall (Gay, 1980)). Work by Jordan and
Mitchell (2009) has demonstrated that automatic,
online marking of student responses is both feasible
(in that marking rules can be developed which mark

at least as accurately as a human marker), and help-
ful to students, who find the online questions a valu-
able and enjoyable part of the assessment process.
Such automatic marking is also an increasingly im-
portant part of assessment in Massive Open Online
Courses (MOOCs) (Balfour, 2013; Kay et al., 2013).

However, the process of creating marking rules
is known to be difficult and time consum-
ing (Sukkarieh and Pulman, 2005; Pérez-Marı́n et
al., 2009). The rules should usually be hand-crafted
by a tutor who is a domain expert, as small differ-
ences in the way an answer is expressed can be sig-
nificant in determining whether responses are cor-
rect or incorrect. Curating sets of answers to build
mark schemes can prove to be a highly labour-
intensive process. Given this requirement, and the
current lack of availability of training data, a valu-
able progression from existing work in automatic as-
sessment may be to investigate whether NLP tech-
niques can be used to support the manual creation of
such marking rules.

In this paper, we present the Amati system, which
supports educators in creating mark schemes for au-
tomatic assessment of short answer questions. Am-
ati uses information extraction-style templates to en-
able a human marker to rapidly develop automatic
marking rules, and inductive logic programming to
propose new rules to the marker. Having been devel-
oped, the rules can be used either for marking further
unseen student responses, or for online assessment.

Automatic marking also brings with it further ad-
vantages. Because rules are applied automatically,
it improves the consistency of marking; Williamson
et al. (2012) have noted the potential of automated
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marking to improve the reliability of test scores. In
addition, because Amati uses symbolic/logical rules
rather than stochastic rules, it improves the trace-
ability of the marks (that is, the marker can give an
explanation of why a mark was awarded, or not), and
increases the maintainability of the mark scheme,
because the educator can modify the rules in the
context of better understanding of student responses.
The explanatory nature of symbolic mark schemes
also support issues of auditing marks awarded in as-
sessment. Bodies such as the UK’s Quality Assur-
ance Agency1 require that assessment be fully open
for the purposes of external examination. Tech-
niques which can show exactly why a particular
mark was awarded (or not) for a given response fit
well with existing quality assurance requirements.

All experiments in this paper were carried out us-
ing student responses collected from a first year in-
troductory science module.

2 Mark Scheme Authoring

Burrows et al. (2015) have identified several differ-
ent eras of automatic marking of free text responses.
One era they have identified has treated automatic
marking as essentially a form of information extrac-
tion. The many different ways that a student can
correctly answer a question can make it difficult to
award correct marks2. For example:

A snowflake falls vertically with a con-
stant speed. What can you say about the
forces acting on the snowflake?

Three student responses to this question were:

(1) there is no net force

(2) gravitational force is in equilibrium with air re-
sistance

(3) no force balanced with gravity

The question author considered both responses
(1) and (2) correct. However, they share no com-
mon words (except force which already appears in

1http://www.qaa.ac.uk
2Compared with multiple choice questions, which are easy

to mark, although constructing suitable questions in the first
place is far from straightforward (Mitkov et al., 2006).

the question, and is). And while balance and equi-
librium have closely related meanings, response (3)
was not considered a correct answer to the ques-
tion3. These examples suggest that bag of words
techniques are unlikely to be adequate for the task of
short answer assessment. Without considering word
order, it would be very hard to write a mark scheme
that gave the correct mark to responses (1)-(3), par-
ticularly when these occur in the context of several
hundred other responses, all using similar terms.

In fact, techniques such as Latent Semantic Anal-
ysis (LSA) have been shown to be accurate in grad-
ing longer essays (Landauer et al., 2003), but this
success does not appear to transfer to short answer
questions. Haley’s (2008) work suggests that LSA
performs poorly when applied to short answers, with
Thomas et al. (2004) demonstrating that LSA-based
marking systems for short answers did not give
an acceptable correlation with an equivalent human
marker, although they do highlight the small size of
their available dataset.

Sukkarieh and Pulman (Sukkarieh and Pulman,
2005) and Mitchell et al. (2002) have demonstrated
that hand-crafted rules containing more syntactic
structure can be valuable for automatic assessment,
but both papers note the manual effort required to
develop the set of rules in the first place. To ad-
dress this, we have started to investigate techniques
to develop systems which can support a subject spe-
cialist (rather than a computing specialist) in devel-
oping a set of marking rules for a given collection of
student responses. In addition, because it has been
demonstrated (Butcher and Jordan, 2010) that mark-
ing rules based on regular expressions can mark ac-
curately, we have also investigated the use of a sym-
bolic learning algorithm to propose further marking
rules to the author.

Enabling such markers to develop computational
marking rules should yield the subsequent benefits
of speed and consistency noted by Williamson et al.,
and the potential for embedding in an online systems
to provide immediate marks for student submissions
(Jordan and Mitchell, 2009). This proposal fits with
the observation of Burrows et al. (2015), who sug-
gest that rule based systems are desirable for “re-

3As with all examples in this paper, the “correctness” of an-
swers was judged with reference to the students’ level of study
and provided teaching materials.
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term(R, Term, I) The Ith term in R is
Term

template(R, Template, I) The Ith term in R
matches Template

precedes(Ii, Ij) The Ith
i term in a re-

sponse precedes the
Ith
j term

closely precedes(Ii, Ij) The Ith
i term in a re-

sponse precedes the
Ith
j within a specified

window

Figure 1: Mark scheme language

peated assessment” (i.e. where the assessment will
be used multiple times), which is more likely to re-
pay the investment in developing the mark scheme.
We believe that the framework that we present here
shows that rule-based marking can be more tractable
than suggested by Burrows.

2.1 The Mark Scheme Language
In this paper, I will describe a set of such marking
rules as a “mark scheme”, so Amati aims to support
a human marker in hand crafting a mark scheme,
which is made up of a set of marking rules. In Am-
ati, the mark schemes are constructed from sets of
prolog rules, which attempt to classify the responses
as either correct or incorrect. The rule syntax closely
follows that of Junker et al. (1999), using the set of
predicates shown in figure 1.

The main predicate for recognising keywords is
term(R, Term, I), which is true when Term is the
Ith term in the response R. Here, we use “term”
to mean a word or token in the response, subject to
simple spelling correction. This correction is based
upon a Damerau-Levenshtein (Damerau, 1964) edit
distance of 1, which represents the replacement, ad-
dition or deletion of a single character, or a transpo-
sition of two adjacent characters. So for example, if
R represented the student response:

(4) no force ballanced with gravity

then term(R, balanced, 3) would be true, as the 3rd

token in R is ballanced, and at most 1 edit is needed
to transform ballanced to balanced.

The predicate template allows a simple form of
stemming (Porter, 1980). The statement template(R,
Template, I) is true if Template matches at the be-
ginning of the Ith token in R, subject to the same
spelling correction as term. So for example, the
statement:

template(R, balanc, 3)

would match example (4), because balanc is a sin-
gle edit from ballanc, which itself matches the be-
ginning of the 3rd token in R. (Note that it would
not match as a term, because ballance is two edits
from balanc.) Such templates allow rules to be writ-
ten which match, for example, balance, balanced,
balancing and so on.

The predicates precedes and closely precedes,
and the index terms, which appear as the variables
I and J in figure 1, capture a level of linear prece-
dence, which allow the rules to recognise a degree of
linguistic structure. As discussed in section 2, tech-
niques which do not capture some level of word or-
der are insufficiently expressive for the task of rep-
resenting mark schemes. However, a full grammat-
ical analysis also appears to be unnecessary, and in
fact can lead to ambiguity. Correct responses to the
Rocks question (see table 1) required the students
to identify that the necessary conditions to form the
rock are high temperature and high pressure. Both
temperature and pressure needed to be modified to
earn the mark. Responses such as (5) should be
marked correct, with an assumption that the modi-
fier should distribute over the conjunction.

(5) high temperature and pressure

While the precedence predicate is adequate to
capture this behaviour, using a full parser creates an
ambiguity between the analyses (6) and (7).

(6) (high (pressure)) and temperature ×
(7) (high (pressure and temperature))

√

The example suggest that high accuracy can be diffi-
cult to achieve by systems which commit to an early,
single interpretation of the ambiguous text.

So a full example of a matching rule might be:
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term(R, oil, I) ∧
term(R, less, J) ∧
template(R, dens, K)
precedes(I , J)→ correct(R)

which would award the correct marks to responses
(8) and (9):

(8) oil is less dense than water
√

(9) water is less dense than oil ×

The use of a template also ensures the correct mark
is awarded to the common response (10), which
should also be marked as correct:

(10) oil has less density than water

2.2 Incremental rule authoring

The Amati system is based on a bootstrapping
scheme, which allows an author to construct a rule-
set by marking student responses in increments of
50 responses at a time, while constructing marking
rules which reflect the marker’s own judgements.
As the marker develops the mark scheme, he or she
can correct the marks awarded by the existing mark
scheme, and then edit the mark scheme to more ac-
curately reflect the intended marks.

The support for these operations are illustrated in
figures 2 and 3. To make the system more usable
by non-specialists (that is, non-specialists in com-
puting, rather than non-specialists in the subject be-
ing taught), the authors are not expected to work di-
rectly with prolog. Rather, rules are presented to the
user via online forms, as shown in figure 2. As each
rule is developed, the system displays to the user the
responses which the rule marks as correct.

As increasingly large subsets of the student re-
sponses are marked, the system displays the set of
imported responses, the mark that the current mark
scheme awards, and which rule(s) match agains each
response (figure 3). This allows the mark scheme
author to add or amend rules as necessary.

2.3 Rule Induction

As the marker constructs an increasingly large col-
lection of marked responses, it can be useful to use
the marked responses to induce further rules auto-
matically. Methods for learning relational rules to

Figure 2: Form for entering marking rules

Figure 3: Application of rule to the Oil response set

perform information extraction are now well estab-
lished (Califf and Mooney, 1997; Soderland, 1999),
with Inductive Logic Programming (ILP) (Quinlan,
1990; Lavrač and Džeroski, 1994) often proving a
suitable learning learning technique (Aitken, 2002;
Ramakrishnan et al., 2008). ILP is a supervised
learning algorithm which attempts to generate a log-
ical description of a set of facts in the style of a pro-
log program. Amati embeds the ILP system Aleph
(Srinivasan, 2004) as the rule learner, which itself
implements the Progol learning algorithm (Muggle-
ton, 1995), a bottom up, greedy coverage algorithm.
This allows an author to mark the current set of ques-
tions (typically the first or second block of 50 re-
sponses), before using the ILP engine to generate a
rule set which he or she can then modify. We return
to the question of editing rule sets in section 4.1.
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Our use of ILP to support markers in develop-
ing rules has several parallels with the Powergrad-
ing project (Basu et al., 2013). Both our work and
that of Basu et al. focus on using NLP techniques
primarily to support the work of a human marker,
and reduce marker effort. Basu et al. take an ap-
proach whereby student responses are clustered us-
ing statistical topic detection, with the marker then
able to allocate marks and feedback at the cluster
level, rather than at the individual response level.
Similarly, the aim of Amati is that markers should
be able to award marks by identifying, via generated
rules, commonly occurring phrases. The use of such
phrases can then be analysed at the cohort level (or at
least, incrementally at the cohort level), rather than
at the individual response level.

In practice, we found that markers were likely
to use the predicted rules as a “first cut” solution,
to gain an idea of the overall structure of the final
mark scheme. The marker could then concentrate on
developing more fine-grained rules to improve the
mark scheme accuracy. This usage appears to reflect
that found by Basu et al., of using the machine learn-
ing techniques to automatically identify groups of
similar groups of responses. This allows the marker
to highlight common themes and frequent misunder-
standings.

3 Evaluation

The aim of the evaluation was to determine whether
a ruleset built using Amati could achieve perfor-
mance comparable with human markers. As such,
there were two main aims. First, to determine
whether the proposed language was sufficiently ex-
pressive to build successful mark schemes, and sec-
ond, to determine how well a mark scheme devel-
oped using the Amati system would compare against
a human marker.

3.1 Training and test set construction

A training set and a test set of student responses were
built from eight questions taken from an entry-level
science module, shown in table 1. Each student re-
sponse was to be marked as either correct or incor-
rect. Two sets of responses were used, which were
built from two subsequent presentations of the same
module. Amati was used to build a mark scheme us-

Short name Question text
Sandstone A sandstone observed in the field

contains well-sorted, well rounded,
finely pitted and reddened grains.
What does this tell you about the
origins of this rock?

Snowflake A snowflake falls vertically with
a constant speed. What can you
say about the forces acting on the
snowflake?

Charge If the distance between two electri-
cally charged particles is doubled,
what happens to the electric force
between them?

Rocks Metamorphic rocks are existing
rocks that have “changed form”
(metamorphosed) in a solid state.
What conditions are necessary in
order for this change to take place?

Sentence What is wrong with the following
sentence? A good idea.

Oil The photograph (not shown here)
shows a layer of oil floating on top
of a glass of water. Why does the
oil float?

Table 1: The questions used

ing a training set of responses from the 2008 student
cohort, and then that scheme was applied to an un-
seen test set constructed from the responses to the
same questions from the 2009 student cohort.

The difficulties in attempting to build any cor-
pus in which the annotations are reliable are well
documented (Marcus et al.’s (1993) discussion of
the Penn Treebank gives a good overview). In
this case, we exploited the presence of the orig-
inal question setter and module chair to provide
as close to a “ground truth” as is realistic. Our
gold-standard marks were obtained with a multiple-
pass annotation process, in which the collections
of responses were initially marked by two or more
subject-specialist tutors, who mainly worked inde-
pendently, but who were able to confer when they
disagreed on a particular response. The marks were
then validated by the module chair, who was also
called upon to resolve any disputes which arose as
a result of disagreements in the mark scheme. The
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cost of constructing a corpus in this way would usu-
ally be prohibitive, relying as it does on subject ex-
perts both to provide the preliminary marks, and
to provide a final judgement in the reconciliation
phase. In this case, the initial marks (including the
ability to discuss in the case of a dispute) were gen-
erated as part of the standard marking process for
student assessment in the University4.

3.2 Effectiveness of authored mark schemes

To investigate the expressive power of the represen-
tation language, a set of mark schemes for the eight
questions shown in table 1 were developed using the
Amati system. The training data was used to build
the rule set, with regular comparisons against the
gold standard marks. The mark scheme was then
applied to the test set, and the marks awarded com-
pared against the test set gold standard marks.

The results are shown in table 2. The table shows
the total number of responses per question, and the
accuracy of the Amati rule set applied to the unseen
data set. So for example, the Amati rule set correctly
marked 98.42% of the 1711 responses to the Sand-
stone question. Note that the choice of accuracy as
the appropriate measure of success is determined by
the particular application. In this case, the impor-
tant measure is how many responses are marked cor-
rectly. That is, it is as important that incorrect an-
swers are marked as incorrect, as it is that correct
answers are marked as correct.

To compare the performance of the Amati rule-
set against the human expert, we have used Krip-
pendorf’s α measure, implemented in the python
Natural Language Toolkit library (Bird et al., 2009)
following Artstein and Poesio’s (2008) presenta-
tion. The rightmost column of table 2 shows the
α measure between the Amati ruleset and the post-
reconciliation marks awarded by the human expert.
This column shows a higher level of agreement
than was obtained with human markers alone. The

4We have not presented inter-annotator agreement measures
here, as these are generally only meaningful when annotators
have worked independently. This model of joint annotation
with a reconciliation phase is little discussed in the literature,
although this is a process used by Farwell et al. (2009). Our
annotation process differed in that the reconciliation phase was
carried out face to face following each round of annotation, in
contrast to Farwell et al.’s, which allowed a second anonymous
vote after the first instance.

Question # responses accuracy/% α/%

Sandstone 1711 98.42 97.5
Snowflake 2057 91.0 81.7
Charge 1127 98.89 97.6
Rocks 1429 99.00 89.6
Sentence 1173 98.19 97.5
Oil 817 96.12 91.5

Table 2: Accuracy of the Amati mark schemes on unseen
data, and the Krippendorf α rating between the marks
awarded by Amati and the gold standard

agreement achieved by independent human markers
ranged from a maximum of α = 88.2% to a mini-
mum of α = 71.2%, which was the agreement on
marks awarded for the snowflake question. It is no-
table that the human marker agreement was worst
on the same question that the Amati-authored rule-
set performed worst on; we discuss some issues that
this question raises in section 4.3.

The marks awarded by the marker supported with
Amati therefore aligned more closely with those of
the human expert than was achieved between inde-
pendent markers. This suggests that further devel-
opment of computer support for markers is likely
to improve overall marking consistency, both across
the student cohort, and by correspondence with the
official marking guidance.

4 Observations on authoring rulesets

It is clear from the performance of the different rule
sets that some questions are easier to generate mark
schemes for than others. In particular, the mark
scheme authored on the responses to the snowflake
question performed with much lower accuracy than
the other questions. This section gives a qualitative
overview of some of the issues which were observed
while authoring the mark schemes.

4.1 Modification of generated rules

A frequently cited advantage of ILP is that, as a
logic program, the output rules are generated in a
human-readable form (Lavrač and Džeroski, 1994;
Mitchell, 1997). In fact, the inclusion of templates
means that several of the rules can be hard to inter-
pret at first glance. For example, a rule proposed to
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mark the Rocks question was:

template(R, bur,I) ∧
template(R, hea,J)→ correct(R)

As the official marking guidance suggests that High
temperature and pressure is an acceptable response,
hea can easily be interpreted as heat. However, it is
not immediately clear what bur represents. In fact,
a domain expert would probably recognise this as a
shortened form of buried (as the high pressure, the
second required part of the solution, can result from
burial in rock). As the training set does not contain
terms with the same first characters as burial, such as
burnished, Burghundy or burlesque, then this term
matches. However, a mark scheme author might pre-
fer to edit the rule slightly into something more read-
able and so maintainable:

template(R, buri,I) ∧
term(R, heat,J)→ correct(R)

so that either buried or burial would be matched, and
to make the recognition of heat more explicit.

A more complex instance of the same phe-
nomenon is illustrated by the generated rule:

term(R, high,I) ∧
term(R, temperature,J)→ correct(R)

Although the requirement for the terms high and
temperature is clear enough, there is no part of this
rule that requires that the student also mention high
pressure. This has come about because all the stu-
dent responses that mention high temperature also
explicitly mention pressure. Because Progol and
Aleph use a greedy coverage algorithm, in this case
Amati did not need to add an additional rule to cap-
ture . Again, the mark scheme author would proba-
bly wish to edit this rule to give:

term(R, high,I) ∧
term(R, temperature,J) ∧
term(R, pressure,K) ∧
precedes(I ,J)→ correct(R)

which covers the need for high to precede temper-
ature, and also contain a reference to pressure. A
similar case, raised by the same question, is the fol-
lowing proposed rule:

term(R, high,I) ∧
term(R, pressure,J) ∧
term(R, and,K) ∧
precedes(I ,K)→ correct(R)

which requires a conjunction, but makes no mention
of temperature (or heat or some other equivalent).
In this case, the responses (11) and (12):

(11) (high (pressure and temperature))
√

(12) (high (pressure and heat))
√

are both correct, and both appeared amongst the stu-
dent responses. However, there were no incorrect
responses following a similar syntactic pattern, such
as, for example, (13) or (14):

(13) high pressure and altitude ×

(14) high pressure and bananas ×

Students who recognised that high pressure and
something else were required, always got the some-
thing else right. Therefore, the single rule above had
greater coverage than rules that looked individually
for high pressure and temperature or high pressure
and heat.

This example again illustrates the Amati philoso-
phy that the technology is best used to support hu-
man markers. By hand-editing the proposed solu-
tions, the marker ensures that the rules are more in-
tuitive, and so can be more robust, and more main-
tainable in the longer term. In this case, an author
might reasonably rewrite the single rule into two:

term(R, high,I) ∧
term(R, pressure,J) ∧
term(R, temperature,K) ∧
precedes(I ,K)→ correct(R)

term(R, high,I) ∧
term(R, pressure,J) ∧
term(R, heat,K) ∧
precedes(I ,K)→ correct(R)

removing the unnecessary conjunction, and provid-
ing explicit rules for heat and temperature.
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4.2 Spelling correction
It is questionable whether spelling correction is al-
ways appropriate. A question used to assess knowl-
edge of organic chemistry might require the term
butane to appear in the solution. It would not be
appropriate to mark a response containing the to-
ken butene (a different compound) as correct, even
though butene would be an allowable misspelling of
butane according to the given rules. On the other
hand, a human marker would probably be inclined to
mark responses containing buttane or butan as cor-
rect. These are also legitimate misspellings accord-
ing the table, but are less likely to be misspellings of
butene.

The particular templates generated reflect the lin-
guistic variation in the specific datasets. A template
such as temp, intended to cover responses contain-
ing temperature (for example), would also poten-
tially cover temporary, tempestuous, temperamen-
tal and so on. In fact, when applied to large sets
of homogenous response-types (such as multiple re-
sponses to a single question), the vocabulary used
across the complete set of responses turns out to
be sufficiently restricted for meaningful templates to
be generated. It does not follow that this hypoth-
esis language would continue to be appropriate for
datasets with a wider variation in vocabulary.

4.3 Diversity of correct responses
As illustrated in table 2, the Snowflake question was
very tricky to handle, with lower accuracy than the
other questions, and lower agreement with the gold
standard. The following are some of the student re-
sponses:

(15) they are balanced

(16) the force of gravity is in balance with air resis-
tance

(17) friction is balancing the force of gravity

(18) only the force of gravity is acting on the hail-
stone and all forces are balanced

The module chair considered responses (15), (16)
and (17) to be correct, and response (18) to be incor-
rect.

The most straightforward form of the answer is
along the lines of response (15). In this case, there
are no particular forces mentioned; only a general
comment about the forces in question. Similar cases
were there are no net forces, all forces balance, the
forces are in equilibrium and so on.

However, responses (16) and (17) illustrate that
in many cases, the student will present particular
examples to attempt to answer the question. In
these cases, both responses identify gravity as one
of the acting forces, but describe the counteracting
force differently (as air resistance and friction re-
spectively). A major difficulty in marking this type
of question is predicting the (correct) examples that
students will use in their responses, as each correct
pair needs to be incorporated in the mark schemes.
A response suggesting that air resistance counter-
acts drag would be marked incorrect. As stated pre-
viously, developing robust mark schemes requires
that mark scheme authors use large sets of previous
student responses, which can provide guidance on
the range of possible responses.

Finally, response (18) illustrates a difficult re-
sponse to mark (for both pattern matchers and lin-
guistic solutions). The response consists of two con-
joined clauses, the second of which, all forces are
balanced, is in itself a correct answer. It is only
in the context of the first clause that the response is
marked incorrect, containing the error that it is only
the force of gravity which acts.

This question highlights that the ease with which
a question can be marked automatically can depend
as much on the question being asked as the answers
received. Of course, this also applies to questions
intended to be marked by a human; some questions
lead to easier responses to grade. So a good eval-
uation of a marking system needs to consider the
questions (and the range of responses provided by
real students) being asked; the performance of the
system is meaningful only in the context of the na-
ture of the questions being assessed, and an under-
standing of the diversity of correct responses. In this
case, it appears that questions which can be correctly
answered by using a variety of different examples
should be avoided. We anticipate that with increas-
ing maturity of the use of automatic marking sys-
tems, examiners would develop skills in setting ap-
propriate questions for the marking system, just as
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experienced authors develop skills in setting ques-
tions which are appropriate for human markers.

4.4 Anaphora Ambiguity

The examples raise some interesting questions about
how anaphora resolution should be dealt with. Two
responses to the oil question are:

(19) The oil floats on the water because it is lighter

(20) The oil floats on the water because it is heavier

These two responses appear to have contradictory
meanings, but in fact are both marked as correct.
This initially surprising result arises from the am-
biguity in the possible resolutions of the pronoun it:

(21) [The oil]i floats on the water because iti is
lighter.

(22) The oil floats on [the water]j because itj is
heavier.

When marking these responses, the human mark-
ers followed a general policy of giving the benefit of
the doubt, and, within reasonable limits, will mark a
response as correct if any of the possible interpreta-
tions would be correct relative to the mark scheme.

As with the ambiguous modifier attachment seen
in responses (6) and (7), this example illustrates that
using a different (possibly better) parser is unlikely
to improve the overall system performance. Re-
sponses such (21) and (22) are hard for many parsers
to handle, because an early commitment to a single
interpretation can assume that it must refer to the
oil or the water. Again, this example demonstrates
that a more sophisticated approach to syntactic am-
biguity is necessary if a parsing-based system is to
be used. (One possible approach might be to use un-
derspecification techniques (König and Reyle, 1999;
van Deemter and Peters, 1996) and attempt to reason
with the ambiguous forms.)

5 Discussion and Conclusions

We have presented a system which uses informa-
tion extraction techniques and machine learning to
support human markers in the task of marking free
text responses to short answer questions. The results

suggest that a system such as Amati can help mark-
ers create accurate, reusable mark schemes.

The user interface to Amati was developed in col-
laboration with experienced markers from the Open
University’s Computing department and Science de-
partment, who both gave input into the requirements
for an effective marking system. We intend to carry
out more systematic analyses of the value of us-
ing such systems for marking, but informally, we
have found that a set of around 500-600 responses
was enough for an experienced marker to feel satis-
fied with the performance of her own authored mark
scheme, and to be prepared to use it on further un-
seen cases. (This number was for the Snowflake
question, which contained approximately half cor-
rect responses. For the other questions, the marker
typically required fewer responses.)

The work described in this paper contrasts with
the approach commonly taken in automatic mark-
ing, of developing mechanisms which assign marks
by comparing student responses to one or more tar-
get responses created by the subject specialist (Ziai
et al., 2012). Such systems have proven effective
where suitable linguistic information is compared,
such as the predicate argument structure used by c-
rater (Leacock and Chodorow, 2003), or similarity
between dependency relationships, as used by Au-
toMark (now FreeText (Mitchell et al., 2002)) and
Mohler et al. (2011). Our own experiments with
FreeText found that incorrect marks were often a re-
sult of an inappropriate parse by the embedded Stan-
ford parser (Klein and Manning, 2003)), as illus-
trated by the parses (6) and (7). In practice, we have
found that for the short answers we have been con-
sidering, pattern based rules tend to be more robust
in the face of such ambiguity than a full parser.

A question over this work is how to extend the
technique to more linguistically complex responses.
The questions used here are all for a single mark,
all or nothing. A current direction of our research
is looking at how to provide support for more com-
plicated questions which would require the student
to mention two or more separate pieces of infor-
mation, or to reason about causal relationships. A
further area of interest is how the symbolic analysis
of the students’ responses can be used to generate
meaningful feedback to support them as part of their
learning process.
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Abstract

In this work, we explore applications of auto-
matic essay scoring (AES) to a corpus of es-
says written by college freshmen and discuss
the challenges we faced. While most AES sys-
tems evaluate highly constrained writing, we
developed a system that handles open-ended,
long-form writing. We present a novel corpus
for this task, containing more than 3,000 es-
says and drafts written for a freshman writing
course. We describe statistical analysis of the
corpus and identify problems with automati-
cally scoring this type of data. Finally, we
demonstrate how to overcome grader bias by
using a multi-task setup, and predict scores as
well as human graders on a different dataset.
Finally, we discuss how AES can help teach-
ers assign more uniform grades.

1 Introduction

Automatic essay scoring (AES) is the task of au-
tomatically predicting the scores of written essays.
AES has primarily focused on high-stakes standard-
ized tests and statewide evaluation exams. In this
paper, we consider a classroom application of AES
to evaluate a novel corpus of more than 3,000 essays
written for a first-year writing program.

Many colleges have first-year writing programs,
which are typically large courses divided into mul-
tiple sections taught by different teachers. These
essays are more representative of college writing
than assessment-based datasets used for AES, and
we wish to examine how AES can help students and
teachers in the classroom. These preliminary experi-

ments could help teachers evaluate students and col-
leges gain insight into variance across instructors.

This corpus may be more difficult to model com-
pared to previous datasets because it lacks multiple
grades to establish validity and the essays are not
constrained by a prompt. Foltz et al. (2013) reported
that prompt-independent scoring generally had 10%
lower reliability than prompt-specific scoring.

We address several issues surrounding automati-
cally scoring essays of this nature:

1. Is it possible to model essays graded by several
different teachers with no overlapping grades?

2. ...even when scores given by each teacher have
different distributions?

3. Can a single model predict the scores of long
essays that are (a) not constrained by an essay
prompt and (b) written in different styles?

4. How can AES provide constructive feedback to
teachers and administrators?

In this work, we describe how multi-task learning
can accommodate the differences in teacher scoring
patterns by jointly modeling the scores of individual
teachers, while sharing information across all teach-
ers. Our multi-task model correlates strongly with
actual grades. We also provide an example of how
to provide feedback to help teachers grade more uni-
formly, using the weights learned by a linear model.

Our corpus is described in Section 3. In Section 4
we describe our experimental setup and the features
used. Section 5 presents results from our system that
achieve human-like levels of correlation. Section 6
discusses our results and proposes a new way to pro-
vide feedback to teachers about their grading.
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Target word
Project count Description

1 600-770 A personal narrative that describes an experience and uses that experience to
tell readers something important about the writer.

2 600 A bibliographic essay that asks you to understand the conversation surround-
ing your chosen topic by examining four relevant sources. Two of these
sources must be at least ten years apart so that you can see how interpreta-
tions of an event, concept, or person evolve over time and that textual schol-
arship is an ongoing conversation.

3 600–800 A reflection that asks you to think carefully about how audience and purpose,
as well as medium and genre, affect your choices as composers and reflect
carefully on a new dimension of your topic.

4 1000–1200 A polished essay that asserts an arguable thesis that is supported by research
and sound reasoning.

Table 1: Brief description of the assignments in the FWC, as provided by the syllabus.

2 Related Work

While AES has traditionally been used for grading
tests, there are some previous applications of AES
in a non-testing environment. For example, Elliot
et al. (2012) used AES to assist with placement and
Chali and Hasan (2012) automatically graded essays
written for an occupational therapy course by com-
paring them to the course material.

Corpora for AES include English-language
learner writing, specifically the First Certification
Exam corpus (FCE), a portion of the Cambridge
Learner Corpus consisting of 1,244 essays written
for an English-language certification exam (Yan-
nakoudakis et al., 2011), and the International Cor-
pus of Learner English (ICLE), 6,085 essays writ-
ten by university students across the world (Granger,
2003). The Kaggle ASAP–AES dataset has pri-
marily native-English writing, with 22,000 short es-
says written by middle- and high-school students the
United States (Shermis and Hamner, 2013). The
FCE and Kaggle data were collected during exam-
inations while the ICLE data was written during an
exam or as part of a class assignment.

Student writing collections not suitable for AES
include the Michigan Corpus of Upper-level Student
Papers, with 829 academic papers that received an A
grade, written by college seniors and graduate stu-
dents across several disciplines (Mic, 2009). A sep-
arate corpus of freshman writing was collected at
University of Michigan containing 3,500 ungraded
pre-entrance essays (Gere and Aull, 2010).

Methods previously used for AES include lin-

Draft Tokens Sentences Paragraphs
Intermed. 840.3 35.6 5.2

Final 938.5 39.6 5.7

Table 2: Average length of essays from the Fall 2011
semester.

ear regression (Attali and Burstein, 2006), rank al-
gorithms (Yannakoudakis et al., 2011; Chen and
He, 2013), LSA (Pearson, 2010; Chali and Hasan,
2012), and Bayesian models (Rudner and Liang,
2002). Recent approaches focus on predicting spe-
cific aspect of the score by using targeted features
such as coherence (McNamara et al., 2010; Yan-
nakoudakis and Briscoe, 2012).

Multi-task learning jointly models separate tasks
in a single model using a shared representation. It
has been used in NLP for tasks such as domain
adaptation (Finkel and Manning, 2009), relation ex-
traction (Jiang, 2009), and modeling annotator bias
(Cohn and Specia, 2013).

3 Data

The Freshman Writing Corpus (FWC) is a new cor-
pus for AES that contains essays written by college
students in a first-year writing program. The unique
features of this corpus are multiple essay drafts,
teacher grades on a detailed rubric, and teacher feed-
back. The FWC contains approximately 23,000 es-
says collected over 6 semesters. To our knowledge,
this is the first collection of take-home writing as-
signments that can be used for AES.

In this work, we consider one semester of es-
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Possible
Category Weight Level Points Brief Description

Focus 25% Basics 0–4 Meeting assignment requirements
Critical thinking 0–4 Strength of thesis and analysis

Evidence 25% Critical thinking 0–4 Quality of sources and how they are pre-
sented

Organization 25% Basics 0–4 Introduction, supporting sentences,
transitions, and conclusion

Critical thinking 0–4 Progression and cohesion of argument

Style 20% Basics 0–4 Grammar, punctuation, and consistent
point of view

Critical thinking 0–4 Syntax, word choice, and vocabulary
Format 5% Basics 0–4 Paper formatting and conformance with

style guide

Table 3: The rubric for grading essays. The teachers used a more detailed rubric that provided guidelines at each
possible score.

says from the FWC, for a total of 3,362 essays writ-
ten by 639 students during the Fall 2011 semester.1

Students were enrolled in the same Composition I
course, which was divided into 55 sections taught
by 21 teachers. All sections had the same curricu-
lum and grading rubric.

The course had four writing projects, and for each
project students could hand in up to three drafts:
Early, Intermediate, and Final. Each project focused
on a different type of essay, specifically a personal
narrative, a bibliographic essay, a remediation, and
a thesis-driven essay, but the topic was open-ended.
A description of the requirements for each essay is
found in Table 1.

Submission and grading was done on My Review-
ers.2 Students uploaded PDF versions of their essays
to the site, where teachers graded them. Teachers
could also comment on the PDFs to provide feed-
back to the students.

We downloaded the essays in PDF format from
MyReviewers, extracted text from PDFs using the
PDFMiner library3, and automatically labeled text
by document section based on its (x, y) position on
the page. Document sections include header, title,
paragraph, page number, and teacher annotation.

To anonymize the data, we replaced student and
teacher names with numeric IDs. We ran sentence

1There were 3,745 graded essays in total, but we were un-
able to automatically extract text from 383 of the PDFs.

2www.myreviewers.com/
3http://www.unixuser.org/∼euske/python/pdfminer/index.html

segmentation on the paragraphs using Splitta (Read
et al., 2012) and added several layers of annota-
tion to the sentences: constituent and dependency
parses, named entities, and coreference chains us-
ing Stanford Core NLP (Manning et al., 2014); 101
discourse markers with the Explicit Discourse Con-
nectives Tagger4; and 6,791 opinion words defined
by Hu and Liu (2004).

In this work, we only consider the Intermediate
and Final drafts. We leave out Early drafts be-
cause less than half of Final essays have an Early
draft (80% have an Intermediate draft) and Early
drafts are typically short outlines or project propos-
als, while Intermediate drafts generally have a sim-
ilar form to the Final draft. The average essay has
899 words, 38 sentences, and 5.5 paragraphs (Table
2 has lengths by draft).

3.1 Scores

All essays were graded on the same rubric, which
has five categories broken into eight sub-categories,
with bulleted requirements for each. The overall
score is a weighted combination of the individual
category scores that ranges from 0–4, which corre-
sponds to a letter grade. (A condensed version of the
rubric is shown in Table 3, and the correspondence
between score and grade is shown in Figure 1.) This
grading scheme has two immediate advantages, the
first that students have a clear sense of how differ-
ent aspects of their paper contributes to the grade,

4http://www.cis.upenn.edu/∼epitler/discourse.html
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Figure 1: Number of essays by grade. Each letter grade
corresponds to a range of numeric scores, in parentheses.

Project Intermediate Final Change
1 1.94 3.02 +1.08
2 2.51 2.98 +0.70
3 2.31 3.09 +0.87
4 2.35 3.02 +0.69

All 2.35 3.03 +0.86

Table 4: Average score for each draft by project, includ-
ing the average change in score between the Intermediate
and Final drafts. The standard deviation of the Intermedi-
ate and Final draft scores are 0.92 and 0.68, respectively.

and the second to promote consistent grading across
teachers (Graham et al., 2012).

The grade “curve” is different for Intermediate
and Final drafts (Kolmogorov-Smirnov test, D =
0.332, p < 10−10) and the scores of neither draft
are normally distributed by the Shapiro-Wilk test
(Intermediate: W = 0.948, p < 10−10, Final:
W = 0.932, p < 10−10). Figure 2 illustrates the
distribution of grades across projects and drafts. In-
termediate scores have higher variance and tend to
be below 2.5 (corresponding to a B grade), while Fi-
nal scores are more tightly distributed, the majority
of them at least a B grade (Figure 5 and Table 4).
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Figure 2: Distribution of scores by project and draft.

3.2 Teachers

Since each essay is graded by one teacher, we can-
not guarantee that teachers grade consistently. To
illustrate the differences between teacher grades, we
randomly selected nine teachers who graded at least
150 Intermediate and Final drafts and graphically
represented the score distribution assigned by each
one (Figure 3).

A one-way ANOVA on the Intermediate draft
scores revealed a significant difference between at
least one pair of teachers’ scores (17 teachers,
F (16, 1079) = 51.9, p < 10−10), and Tukey’s
post-hoc analysis revealed significant differences
between 66 pairs of teachers (p < 0.001). Similar
results were found for the Final drafts (20 teachers,
F (19, 1642) = 15.57, p < 10−10; 44 pairs signif-
icantly different p < 0.001). Even with a detailed
rubric, teachers appear to grade differently.

In Figure 4, we compare the correlation of four
features to the scores assigned by different teachers.
This figure provides an example of how teachers ex-
hibit a considerable amount of variance in how they
unconsciously weight different criteria.

3.3 Students

We do not have access to specific demographic in-
formation about the students, but we can make es-
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Figure 3: Distribution of scores given by nine teachers.

timates of their writing ability and native language.
The writing course is a university requirement that
students can place out of if they have completed
a comparable course or received a sufficient grade
in any number of pre-college standardized tests.5

Therefore, we assume that the students in this course

5For example, students need a 4 in an English Language/Lit-
erature AP course, or a 5 in an IB English course to place out.

require additional support to develop college-level
writing skills.

We also assume that the majority of students in
this course are native English speakers. Because na-
tive English speakers and English language learners
generally have different difficulties with writing, we
wished to estimate how many of the students in the
course were native English speakers. 96% the stu-
dent body as a whole are American citizens, whom
we assume are native English speakers. If the de-
mographics of the writing course are the same as the
university as a whole, then at most 4% of the stu-
dents are non-native English speakers, which is our
lower-bound estimate.

We arrive at an upper bound if we assume that ev-
ery international student in the freshman class (168
out of 4,200 total students) is in the writing class,
or at most 26% of the writing class are non-native
speakers. In reality, the number is probably some-
where between 4–26%.

4 Experiments

We separated 3,362 essays by draft, Intermediate
and Final (1,400 and 1,962 essays, respectively,
skipping 31 Intermediate drafts that had no grade as-
signed). We randomly selected 100 essays for devel-
opment and 100 for testing from each draft type and
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represented all essays with feature vectors.6

4.1 Model
In this work, we establish a single-task model and
explain how it can be extended for multi-task learn-
ing. The single-task model represents essays graded
by every teacher in the same feature space.

We have n essays graded by T teachers and m
features. In the single-task setup, we represent each
essay by a vector containing the values of these m
features calculated over that essay. An essay x is
represented as an m-dimensional vector:

x = (x1, x2, . . . , xm)

For multi-task learning, we make a copy of the
entire feature set for each of the T teachers. Each
of the original features has a global feature and one
feature specific to each teacher, for a total of (1 +
T ) ×m features. For example, an essay graded by
teacher A has a set of global features that are equal to
the teacher-A-specific feature values. The features
specific to other teachers are assigned zero value.

Specifically, we have an n-dimensional teacher
vector t, such that ti is the teacher that graded essay
i. In the multi-task framework, each essay is repre-
sented by a (1 + T ) × m-dimensional vector, x∗.
The new vector x∗ contains twice as many non-zero
features as the original vector x,

x∗ = (x1, x2, . . . , xm, xti1, xti2, . . . , xtim, . . . )
s.t. xj = xtij

(1)

We favor linear models in this work because the
contribution of each feature is transparent, which
allows us to provide teachers with feedback based
on the weights learned by the model. In the multi-
task setup, we used principal component analysis to
transform the features into a lower dimension to re-
duce computational burden. scikit-learn was used
for dimensionality reduction and model learning.

Since there is a mapping between scores and letter
grades, we experimented with closed-class classifi-
cation as well as ranking classification, but linear re-
gression yielded the best results on the development
set. We predicted scores using linear regression over
a number of features, described in Section 4.2 below.

6Analysis in Section 3 was done over the training set only.

For evaluation, we report the correlation between
predicted and actual scores as Pearson’s r and
Kendall’s τ , as well as the mean squared error. We
round all predictions to the nearest 0.05, to conform
with the actual scores. We also report the exact
agreement and quasi-adjacent agreement, which we
define as a predicted score within 0.25 points of the
actual score (approximately the difference between
a grade G and a G+ or G-).

Using the same experimental setup, we learn dif-
ferent models to predict
• the overall score of Intermediate and Final

drafts,
• the score of individual rubric components, and
• the score improvement from an Intermediate to

Final draft.

4.2 Features
We broadly categorize features as surface, structural,
lexical, syntactic, and grammatical.

Surface features include average word, sentence,
and paragraph lengths; lengths of the longest and
shortest sentences; and number of tokens, sentences,
and paragraphs. Another feature indicates the ratio
of unique first three words of all sentences to the to-
tal number of sentences, to loosely capture sentence
variety. (9 features)

Structural features include the frequency of dis-
course markers and the number of sentences con-
taining discourse markers, as well as measures of
cohesion, specifically the average and longest coref-
erence chain lengths and the number of corefer-
ence chains (representing the number of entities
discussed in the essay). Finally, we calculate the
following statistics over the first, last, and body
paragraphs: number of polarity words, number of
“complex” words (with more than 3 syllables), and
Flesch–Kincaide grade level. (25 features)

Lexical features are token trigrams skipping sin-
gletons and bag of words without stop words. We
also include ratios of each of the following to the
number of tokens: stop words, out-of-vocabulary
words, proper nouns, and unique token types. (5 + #
tokens - # stopwords + # token trigrams features)

Syntactic features include the average and
longest lengths between the governor and dependent
in all dependency relations; the number of clauses
in an essay, specifying subordinating clauses, direct
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Intermediate Drafts Final Drafts
Model r τ MSE Exact Adj. r τ MSE Exact Adj.

Baseline 0.045 -0.008 1.995 0.094 0.323 0.101 0.098 0.876 0.180 0.450
Single-task 0.399 0.274 0.980 0.198 0.469 0.252 0.157 0.997 0.130 0.440
Multi-task 0.755 0.558 0.474 0.323 0.708 0.558 0.408 0.397 0.250 0.760

Table 5: Correlation between predictions and teacher scores, measured by Pearson’s r and Kendall’s τ , as well as the
mean squared error (MSE) and exact and adjacent agreements. The baseline is a random balanced sample.

questions, and inverted declarative sentences and
questions; the number of passive and active nominal
subjects; the tallest and average parse-tree heights;
and the ratios of adjective, prepositional, and verb
phrases to noun phrases. (14 features)

Grammatical features are trigram counts of part-
of-speech (POS) tags and the number of POS 5-
grams unseen in a 24-million-token portion of the
English Gigaword corpus. We also include the per-
plexity assigned to the text by three language mod-
els: a 500k-token Gigaword LM, and LMs estimated
over the correct and incorrect learner text from the
NUCLE 3.2 corpus. (4 + # POS trigrams features)

5 Results

5.1 Predicting the overall score by draft

We learned two single-task models using the fea-
tures described above, one for Intermediate drafts
and one for Final drafts, and the correlation between
the predicted and actual scores was well below hu-
man levels. By introducing a multi-task approach
(Section 4), the model made significant gains, with
the correlation increasing from r = 0.422 to r =
0.755 and from r = 0.252 to r = 0.558 for the
Intermediate and Final drafts, respectively. The In-
termediate model predicts scores that very strongly
correlate with the human score, and does as well as
a human grader. Results are summarized in Table 5.

Using the same setup, we trained separate models
for each of the projects, and found that the individ-
ual models did not do as well as a composite model
(Table 6).

5.2 Predicting specific rubric scores

Next, we predicted individual rubric scores with
multi-task learning. The rubric scores that corre-
late most with overall score are Organization, Evi-
dence, and Focus (r >= 0.84), and we were curi-
ous whether our model would do better predicting
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Figure 5: Predicted versus actual essay scores.

those rubric categories than the others. Focus and
Evidence predictions correlated very strongly, but
the Organization predictions had weaker correlation
with the actual scores (Table 7).

5.3 Predicting score change

In a preliminarily experiment to predict the improve-
ment between draft pairs, we represent each draft
pair by a vector that was the difference between
the feature vector of the Intermediate and the Final
drafts. Less than 10% of Final drafts show a de-
crease in score and on average the score increases
0.86 between the Intermediate and Final draft, so a
binary classification of whether the score improved
would be trivial. Instead we aim to predict the
amount of the score change.

Training single-task and multi-task models over
794 draft pairs from the same training set above, we
tested 50 pairs of essays. The single-task model pre-
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Project Intermediate Final
P1 0.859 0.511
P2 0.706 0.483
P3 0.571 0.463
P4 0.591 0.382

P1–4 0.704 0.454

Table 6: The correlation (Pearson’s r) of actual scores
to predictions made by individual models for each
project/draft pair. P1–4 represents predictions of all
project models.

Model r MSE
Baseline 0.067 0.815

Single-task 0.346 4.304
Single-task, no content 0.087 0.399

Multi-task -0.027 5.841
Multi-task, no content 0.356 1.702

Table 8: Correlation between the predicted and actual
change between Intermediate and Final draft scores.

dicted the change much better than the multi-task,
(r = 0.346 versus r = −0.027, which is worse than
a random balanced baseline). When we removed
content features (unigrams and trigrams), the multi-
task model outperformed the single-task model with
content, both by correlation and MSE. Removing
content features significantly degraded the perfor-
mance of the single-task model (Table 8).

5.4 Potential for providing feedback

We trained individual models for each of 17 teach-
ers over Intermediate drafts, without dimensionality
reduction. The predicted scores correlated strongly
with the instructor scores (r = 0.650). We isolated
the features with the heaviest average weights across
all 17 models to examine whether teachers weighted
these features differently in the individual models,
and found that these weights varied by magnitude
and polarity (Figure 6).

A graphical representation of this type could pro-
vide useful feedback to teachers. For example, the
longest sentence feature has a high negative weight
for teachers C and G, but is positively weighted for
the other teachers. Given this information, teachers
C and G could slightly alter their grading practices
to better match the other teachers. However, before
such a technology is deployed, we would need to de-
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Figure 6: A comparison of feature weights learned in in-
dividual, teacher-specific models.

velop more reliable models, examine the essays to
check that the features is not a proxy for some other
aspect of the text, and perform pilot testing.

6 Discussion and Future Work

One of the primary challenges of our dataset is the
lack of multiple annotations. We only have one
score for each essay, and the scores are provided by
21 different teachers whose grades are from different
distributions. Modeling scores from different distri-
butions in a single task yields predictions that only
weakly correlate with the actual scores.

A joint model across all teachers and all projects
does better than individual models for predicting es-
say scores. The multi-task setup enables us to jointly
model characteristics of individual teachers while
taking advantage of shared information across all
teachers, and the models’ predictions strongly corre-
late with human scores. On the Intermediate drafts,
the correlation is very strong and within the range of
human–human correlation (inter-human correlations
ranged from 0.61 to 0.85 on the Kaggle ASAP–AES
data (Shermis and Hamner, 2013)).

Unlike the Kaggle data, these essays are open
ended, and open-ended topics are thought to be more
difficult to score (Foltz et al., 2013). Furthermore,
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Draft Overall Focus Evidence Organization Style Format
Intermediate 0.755 0.720 0.789 0.666 0.594 0.787

Final 0.558 0.340 0.324 0.329 0.350 0.432

Table 7: Correlation (Pearson’s r) of predicted to actual scores for individual rubric categories.

the form of each project is different (personal narra-
tive, bibliographic essay, remediation, thesis-driven
essay), and we are able to score these different types
of open-ended essays using a single model.

Our model predicts Intermediate scores better
than Final scores, possibly because Intermediate
drafts have higher variance than Final drafts, which
are more tightly clustered, with more than 50% of
the scores between 2.5 and 3.5. The adjacent agree-
ment and MSE are better for Final drafts than Inter-
mediate, suggesting that even though the correlation
of Final drafts is weaker, the predictions are within
a close range of the true scores.

We have shown that multi-task learning makes
better predictions, and in the future we will apply
multi-task learning to grading new teachers.

In addition to predicting the overall essay scores,
we applied the same setup to two other tasks facil-
itated by this dataset: predicting individual rubric
scores and predicting the score change from Inter-
mediate to Final drafts. We found room for improve-
ment in both tasks. To predict isolated rubric scores,
future work will include investigating different fea-
tures tailored to specific aspects of the rubric.

Our experiments in predicting improvement from
Intermediate to Final draft revealed that content fea-
tures confound a multi-task model but a single-task
model does better with content features. This sug-
gests that the single-task, no-content model under-
fits the data while the multi-task, with-content model
overfits, illustrating the potential benefit of a multi-
task setup to low-dimensional space.

There are inconsistencies in the paired-essay data,
which may confound the model. 23 essays did not
change between the Intermediate and Final drafts.
Of these essays, the score decreased for 9, remained
unchanged for 5, and increased for 9 essays–in two
instances, the score increase was 2 points or more.
Further analysis is warranted to determine whether
there was a rationale for how the scores of un-
changed essays were assigned.

Future work includes having the essays re-scored
by another grader to establish validity. Until then,
we cannot claim to have developed a reliable system,
only to have robustly modeled the grading tenden-
cies of this particular set of teachers for this class.

7 Conclusion

Consistent grading across teachers is difficult to
achieve, even with training and detailed rubrics
(Graham et al., 2012). Automatic tools to provide
constant feedback may help promote consistency
across teachers. This work is the first step aim-
ing to identify when and how teachers grade differ-
ently. In the future, we hope to drill down to separate
rubric scores so that we can provide specific feed-
back when teachers use different internal criteria.

In this work we introduced a new set of essays for
evaluating student writing that is more representa-
tive of college writing than previous AES datasets.
We developed a single, robust system for automat-
ically scoring open-ended essays of four different
forms (personal narrative, bibliographic, reflective
and thesis driven), graded by 21 different teachers.
Our predictions correlate strongly with the actual
scores, and predicts the scores of Intermediate drafts
as well as human raters on a different set of essays.
We present a method for handling a dataset labeled
by multiple, non-overlapping annotators.

This is an exciting new dataset for educational
NLP, and this paper presents just a sample project
facilitated by its unique characteristics. At this time
we cannot release the corpus due to privacy con-
cerns, but we hope it will be available to the com-
munity at some point in the future.

Acknowledgments

We thank Joseph Moxley for his assistance in ob-
taining the corpus, Burr Settles for his ideas in de-
veloping a multi-task approach, and Benjamin Van
Durme and the reviewers for their feedback.

262



References

Yigal Attali and Jill Burstein. 2006. Automated essay
scoring with e-rater R© v. 2. The Journal of Technology,
Learning and Assessment, 4(3).

Yllias Chali and Sadid A. Hasan. 2012. Automatically
assessing free texts. In Proceedings of the Workshop
on Speech and Language Processing Tools in Edu-
cation, pages 9–16, Mumbai, India, December. The
COLING 2012 Organizing Committee.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1741–1752, Seattle, Washington, USA, October. As-
sociation for Computational Linguistics.

Trevor Cohn and Lucia Specia. 2013. Modelling anno-
tator bias with multi-task gaussian processes: An ap-
plication to machine translation quality estimation. In
Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 32–42, Sofia, Bulgaria, August. Asso-
ciation for Computational Linguistics.

Norbert Elliot, Perry Deess, Alex Rudniy, and Kamal
Joshi. 2012. Placement of students into first-year
writing courses. Research in the Teaching of English,
46(3):285–313.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Hierarchical bayesian domain adaptation. In Proceed-
ings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
602–610, Boulder, Colorado, June. Association for
Computational Linguistics.

Peter W. Foltz, Lynn A. Streeter, Karen E. Lochbaum,
and Thomas K. Landauer. 2013. Implementation and
applications of the intelligent essay assessor. Hand-
book of Automated Essay Evaluation, pages 68–88.

Anne Ruggles Gere and Laura Aull. 2010. Questions
worth asking: Intersections between writing research
and computational linguistics. In Proceedings of the
NAACL HLT 2010 Workshop on Computational Lin-
guistics and Writing: Writing Processes and Author-
ing Aids, pages 51–55, Los Angeles, CA, USA, June.
Association for Computational Linguistics.

Matthew Graham, Anthony Milanowski, and Jackson
Miller. 2012. Measuring and promoting inter-rater
agreement of teacher and principal performance rat-
ings. Online Submission.

Sylviane Granger. 2003. The international corpus of
learner english: a new resource for foreign language
learning and teaching and second language acquisition
research. Tesol Quarterly, 37(3):538–546.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Jing Jiang. 2009. Multi-task transfer learning for
weakly-supervised relation extraction. In Proceedings
of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP, pages
1012–1020, Suntec, Singapore, August. Association
for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Danielle S. McNamara, Scott A. Crossley, and Philip M.
McCarthy. 2010. Linguistic features of writing qual-
ity. Written Communication, 27(1):57–86.

2009. Michigan corpus of upper-level student papers.
The Regents of the University of Michigan.

Pearson. 2010. Intelligent Essay Assessor fact sheet.
Technical report, Pearson.

Jonathon Read, Rebecca Dridan, Stephan Oepen, and
Lars Jrgen Solberg. 2012. Sentence boundary detec-
tion: A long solved problem? In Proceedings of COL-
ING 2012: Posters, pages 985–994, Mumbai, India,
December. The COLING 2012 Organizing Commit-
tee.

Lawrence M. Rudner and Tahung Liang. 2002. Auto-
mated essay scoring using Bayes’ theorem. The Jour-
nal of Technology, Learning and Assessment, 1(2).

Mark D. Shermis and Ben Hamner. 2013. 19 contrasting
state-of-the-art automated scoring of essays. Hand-
book of automated essay evaluation: Current applica-
tions and new directions, page 313.

Helen Yannakoudakis and Ted Briscoe. 2012. Modeling
coherence in ESOL learner texts. In Proceedings of
the Seventh Workshop on Building Educational Appli-
cations Using NLP, pages 33–43, Montréal, Canada,
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