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Abstract 

This paper
1
 presents AutoLearn’s authoring 

tool: AutoTutor, a software solution that en-

ables teachers (content creators) to develop 

language learning activities including auto-

matic feedback generation without the need of 

being a programmer. The software has been 

designed and implemented on the basis of 

processing pipelines developed in previous 

work. A group of teachers has been trained to 

use the technology and the accompanying 

methodology, and has used materials created 

by them in their courses in real instruction set-

tings, which served as an initial evaluation. 

The paper is structured in four sections: Sec-

tion 1 introduces and contextualizes the re-

search work. Section 2 describes the solution, 

its architecture and its components, and spe-

cifically the way the NLP resources are cre-

ated automatically with teacher input. Section 

3 describes and analyses a case study using 

the tool to create and test a language learning 

activity. Finally Section 4 concludes with re-

marks on the work done and connections to 

related work, and with future work. 

1 Introduction 

Over the past four decades there have been several 

hundreds of CALL (Computer-Aided Language 

Learning) projects, often linked to CALL practice 

(Levy 1997), and within the last twenty years a 

considerable number of them focused on the use of 

                                                           
1 Research funded by the Lifelong Learning Programme 2007-

2013 (AUTOLEARN, 2007-3625/001-001). 

NLP in the context of CALL (Amaral and Meur-

ers, in preparation). Despite this, there is an appall-

ing absence of parser-based CALL in real 

instruction settings, which has been partially at-

tributed to a certain negligence of the pedagogical 

needs (Amaral and Meurers, in preparation). In 

contrast, projects and systems that were pedagogi-

cally informed succeeded, yielded and are yielding 

interesting results, and are evolving for over a dec-

ade now (Nagata 2002; Nagata 2009; Heift 2001; 

Heift 2003; Heift 2005; Amaral and Meurers, in 

preparation). According to Amaral and Meurers 

successful projects were able to restrict learner 

production in terms of NLP complexity by limiting 

the scope of the learning activities to language-

oriented (as opposed to communicative-oriented) 

or translation exercises, or by providing feedback 

on formal aspects of language in content oriented 

activities, always under pedagogical considerations 

–focus on form. 

Our proposal is a step forward in this direction 

in two ways: a) it allows for feedback generation 

focusing both on formal and content (communica-

tive-oriented) aspects of language learning activi-

ties, and b) it provides teachers with a tool and a 

methodology –both evolving– for them to gain 

autonomy in the creation of parser-based CALL 

activities –which by the way has a long tradition in 

CALL (Levy 1997, chap. 2). The goal is to shape 

language technologies to the needs of the teachers, 

and truly ready-to-hand. 

1.1 Related work and research context 

The extent to which pedagogues appreciate and 

require autonomy in the design and creation of 

CALL activities can be traced in the historical 



overview offered by (Levy 1997, 16, 17, 19, 23 

and 38). Moreover, parallel research shows that the 

integration of CALL in the learning context is 

critical to ensure the success of whatever materials 

are offered to learners (Levy 1997, 200-203; Polis-

ca 2006). 

AutoTutor goes beyond tools such as Hot Pota-

toes, eXelearning or JClic
2
 in that it offers the pos-

sibility of authoring NLP-based CALL activities. It 

is also more ambitious than other authoring tools 

developed for the creation of activities in intelli-

gent tutoring systems. Chen and Tokuda (2003) 

and Rösener (2009) present authoring tools for 

translation exercises, where expected learner input 

is much more controlled (by the sentence in the 

source language).  

Heift and Toole (2002) present Tutor Assistant, 

which enables to create activities such as build-a-

sentence, drag-and-drop and fill-in-the-blank. An 

important difference between AutoTutor and Tutor 

Assistant is that the latter is a bit more restrictive in 

terms of the linguistic objects that can be used. It 

also presents a lighter complexity in the modelling 

of the underlying correction modules. However, 

the system underlying Tutor Assistant provides 

with more complex student adaptation functional-

ities (Heift 2003) and would be complementary in 

terms of overall system functionalities. 

                                                           
2 http://hotpot.uvic.ca/, http://sourceforge.net/apps/trac/exe/wiki, 

http://clic.xtec.cat/es/jclic/index.htm. 

2 AutoTutor: AutoLearn’s authoring 

software 

AutoTutor is a web-based software solution to 

assist non-NLP experts in the creation of language 

learning activities using NLP-intensive processing 

techniques. The process includes a simplified 

specification of the means to automatically create 

the resources used to analyse learner input for each 

exercise. The goal is to use computational devices 

to analyse learner production and to be able to go 

beyond “yes-or-no” answers providing additional 

feedback focused both on form and content. 

This research work is framed within the 

AutoLearn project, a follow up of the ALLES pro-

ject (Schmidt et al., 2004, Quixal et al., 2006). 

AutoLearn’s aim was to exploit in a larger scale a 

subset of the technologies developed in ALLES in 

real instruction settings. Estrada et al. (2009) de-

scribe how, in AutoLearn’s first evaluation phase, 

the topics of the activities were not attractive 

enough for learners and how learner activity de-

creased within the same learning unit across exer-

cises. Both observations –together with what it has 

been shown with respect to the integration of inde-

pendent language learning, see above –  impelled 

us to develop AutoTutor, which allows teachers to 

create their own learning units. 

As reflected in Figure 1, AutoTutor consists 

primarily of two pieces of software: AutoTutor 

Activity Creation Kit (ATACK) and AutoTutor 

Activity Player (ATAP). ATACK, an authoring 

Figure 1. AutoTutor software architecture. 



tool, provides teachers with the ability to create 

parser-based CALL exercises and define the corre-

sponding exercise specifications for the generation 

of automated feedback. ATAP allows teachers to 

insert, track and manage those exercises in Moodle 

(http://moodle.org), giving learners the possibility 

to visualize and answer them. Both ATACK and 

ATAP share a common infrastructure of NLP ser-

vices which provides the basic methods for gener-

ating, storing and using NLP tools. Access to those 

methods is made through XML-RPC calls. 

2.1 AutoTutor Activity Creation Kit 

ATACK is divided in two components: a GUI that 

allows content creators to enter the text, questions 

and instructions to be presented to learners in order 

to elicit answers from them; and an NLP resource 

creation module that automatically generates the 

resources that will be used for the automated feed-

back. Through the GUI, teachers are also able to 

define a set of expected correct answers for each 

question, and, optionally, specific customized 

feedback and sample answers. 

To encode linguistic and conceptual variation in 

the expected answers, teachers are required to turn 

them into linguistic patterns using blocks. Blocks 

represent abstract concepts, and contain the con-

crete chunks linked to those concepts. Within a 

block one can define alternative linguistic struc-

tures representing the same concept. By combining 

and ordering blocks, teachers can define the se-

quences of text that correspond to the expected 

correct answers –i.e., they can provide the seeds 

for answer modelling. 

Modelling answers 

Given an exercise where learners are required 

to answer the question “From an architecture point 

of view, what makes Hagia Sophia in Istanbul so 

famous according to its Wikipedia entry?”, the 

following answers would be accepted: 

1. {The Hagia Sophia/The old mosque} is 

famous for its massive dome. 

2. The reputation of {the Hagia Sophia/the 

old mosque} is due to its massive dome. 

To model these possible answers, one would 

use four blocks (see Figure 2) corresponding to 

WHO (Hagia Sophia), WHAT (Famousness), and 

WHY (Dome), and complementary linguistic ex-

pressions such as “is due to”. Thus, the possible 

correct block sequences would be (indices corre-

sponding to Figure 2): 

a) B1 B2.A B4 

b) B2.B B1 B3 B4 

Block B1 is an example of interchangeable al-

ternatives (the Hagia Sophia or the old mosque), 

which do not require any further condition to ap-

ply. In contrast, block B2 is an instance of a syn-

tactic variation of the concept. Famousness can be 

expressed through an adjective or through a verb 

(in our example), but each of the choices requires a 

different sentence structure.  

Alternative texts in a block with no variants (as 

in B1) exploit the paradigmatic properties of lan-

guage, while alternative texts in a block with two 

variants as in B2 account for its syntagmatic prop-

erties, reflected in the block sequences. Interest-

ingly, this sort of splitting of a sentence into blocks 

is information-driven and simplifies the linguistic 

expertise needed for the exercise specifications. 

2.2 Automatic generation of exercise-specific 
NLP-resources 

Figure 3 shows how the teacher’s input is con-

verted into NLP-components. Predefined system 

components present plain borders, and the result-

ing ones present hyphenised borders. The figure 

also reflects the need for answer and error model-

ling resources. 

NLP resource generation process 

B2 (FAMOUSNESS) 

B: 

the reputation of 

A: 

is famous for 

B1 (SOPHIA) 

the Hagia Sophia 

the old mosque 

B3 (DUE) 

is due to 

B4 (CAUSE) 

its massive dome 

Figure 2 Blocks as specified in AutoTutor GUI. 



The generation of the NLP resources is possible 

through the processing of the teacher’s input with 

three modules:  the morphological analysis module 

performs a lexicon lookup and determines un-

known words that are entered into the exercise-

specific lexicon; the disambiguation of base form 

module, disambiguates base forms, e.g. “better” is 

disambiguated between verb and adjective depend-

ing on the context in preparation of customized 

feedback.  

The last and most important module in the ar-

chitecture is the match settings component, which 

determines the linguistic features and structures to 

be used by the content matching and the exercise-

specific error checking modules (see Figure 4). 

Using relaxation techniques, the parsing of learner 

input is flexible enough to recognize structures 

including incorrect word forms and incorrect, 

missing or additional items such as determiners, 

prepositions or digits, or even longish chunks of 

text with no correspondence the specified answers. 

The match settings component contains rules that 

later on trigger the input for the exercise-specific 

error checking.  

The match settings component consists of 

KURD rules (Carl et al. 1998). Thus it can be 

modified and extended by a computational linguist 

any time without the need of a programmer. 

Once the exercise’s questions and expected an-

swers have been defined, ATACK allows for the 

generation of the NLP resources needed for the 

automatic correction of that exercise. The right-

hand side of Figure 3 shows which the generated 

resources are: 

• An exercise-specific lexicon to handle un-

known words 

• A content matching module based on the 

KURD formalism to define several lin-

guistically-motivated layers with different 

levels of relaxation (using word, lemma, 

and grammatical features) for determining 

the matching between the learner input and 

the expected answers  

• A customized feedback module for teacher-

defined exercise-specific feedback  

• An exercise-specific error checking mod-

ule for context-dependent errors linked to 

language aspects in the expected answers 

• A general content evaluation component 

that checks whether the analysis performed 

by the content matching module conforms 

to the specified block orders 

2.3 AutoTutor Activity Player (ATAP) 

With ATAP learners have access to the contents 

enhanced with automatic tutoring previously cre-

ated by teachers. ATAP consists of a) a client GUI 

for learners, integrated in Moodle, to answer exer-

cises and track their own activity; b) a client GUI 

for teachers, also integrated in Moodle, used to 

manage and track learning resources and learner 

Teacher input (GUI) 

ERROR MODEL 

ANSWER MODEL 

Morph. 

analysis 

Morph. 

analysis 

Customized 

feedback 

Match 

settings 

General content 

evaluation 

Content mat-

ching 

Disam. of 

base form 

Exercise-specific lexicon 

Exercise-specific 

error checking 

Blocks (word 

chunks) 

Teacher defined 

error modelling 

Block order 

Figure 3. Processing schema and components of the customizable NLP resources of ATACK 



activity; and c) a backend module, integrated into 

the AutoTutor NLP Services Infrastructure, re-

sponsible for parsing the learner’s input and gener-

ating feedback messages. 

Figure 4 describes the two steps involved in the 

NLP-based feedback generation: the NLP compo-

nents created through ATACK –in hyphenised 

rectangles– are combined with general built-in 

NLP-based correction modules. 

2.4 The feedback generation software 

Feedback is provided to learners in two steps, 

which is reflected in Figure 4 by the two parts, the 

upper and lower part, called General Checking and 

Exercise Specific Checking respectively. The for-

mer consists in the application of standard spell 

and grammar checkers. The latter consists in the 

application of the NLP resources automatically 

generated with the teacher’s input. 

Content matching module 

The text chunks (blocks) that the teacher has en-

tered into ATACK’s GUI are converted into 

KURD rules. KURD provides with sophisticated 

linguistically-oriented matching and action opera-

tors. These operators are used to model (predict-

able) learner text. The content matching module is 

designed to be able to parse learners input with 

different degrees of correctness combining both 

relaxation techniques and mal-rules. For instance, 

it detects the presence of both correct and incorrect 

word forms, but it also detects incorrect words 

belonging to a range of closed or open word 

classes –mainly prepositions, determiners, modal 

verbs and digits– which can be used to issue a cor-

responding linguistically motivated error messages 

like “Preposition wrong in this context”, in a con-

text where the preposition is determined by the 

relevant communicative situation. 

Error types that are more complex to handle in 

technical terms involve mismatches between the 

amount of expected elements and the actual 

amount of informational elements in the learner’s 

answer. Such mismatches arise on the grammatical 

level if a composite verb form is used instead of a 

simple one, or when items such as determiners or 

commas are missing or redundant. The system also 

accounts for additional modifiers and other words 

interspersed in the learner’s answer.  

The matching strategy uses underspecified 

empty slots to fit in textual material in between the 

correct linguistic structures. Missing words are 

handled by a layer of matching in which certain 

elements, mainly grammatical function words such 

as determiners or auxiliary verbs, are optional.  

Incorrect word choice in open and closed word 

classes is handled by matching on more abstract 

linguistic features instead of lexeme features. 

The interaction between KURD-based linguis-

tically-driven triggers in the content matching 

module and the rules in the exercise-specific error 

checking (see below) module allows for specific 

mal-rule based error correction. 

Customized feedback 

Teachers can create specific error messages for 

simple linguistic patterns (containing errors or 

searching for missing items) ranging from one or 

two word structures to more complex word-based 

linguistic structures. Technically, error patterns are 

Morph. 

analysis 

Spell 

checking 

Grammar 

checking 

Lexicon Exercise-specific lexicon 

Customized 

feedback 

Exercise-specific 

error checking 

General content 

evaluation 

Content 

matching 

EXERCISE-SPECIFIC CHECKING (TWO) 

GENERAL CHECKING (ONE) 

Figure 4. Processing schema of the NLP resources to generate automatic feedback. 



implemented as KURD rules linked to a specific 

error message. These rules have preference over 

the rules applied by any other later module. 

Exercise-specific error checking 

Teachers do not encode all the exercise-specific 

errors themselves because a set of KURD rules for 

the detection of prototypical errors is encoded –this 

module uses the triggers set by the content match-

ing component. Exercise-specific linguistic errors 

handled in this module have in common that they 

result in sentences that are likely to be wrong ei-

ther from a formal (but context-dependent) point of 

view or from an informational point of view.  

General content evaluation 

Since the contents are specified by the blocks cre-

ated by teachers, the evaluation has a final step in 

which the system checks whether the learner’s 

answer contains all the necessary information that 

belongs to a valid block sequence.  

This module checks for correct order in infor-

mation blocks, for blending structures (mixtures of 

two possible correct structures), missing informa-

tion and extra words (which do not always imply 

an error). The messages generated with this com-

ponent pertain to the level of completeness and 

adequacy of the answer in terms of content. 

3 Usage and evaluation 

AutoTutor has been used by a group of seven 

content creators –university and school teachers– 

for a period of three months. They developed over 

20 activities for learning units on topics such as 

business and finance, sustainable production and 

consumption, and new technologies. Those activi-

ties contain listening and reading comprehension 

activities, short-text writing activities, enabling 

tasks on composition writing aspects, etc. whose 

answers must be expressed in relatively free an-

swers consisting of one sentence. In November 

2009, these activities were used in real instruction 

settings with approximately 600 learners of Eng-

lish and German. Furthermore, an evaluation of 

both teacher and learner satisfaction and system 

performance was carried out. 

We briefly describe the process of creating the 

materials by one of the (secondary school) teachers 

participating in the content creation process and 

evaluate the results of system performance in one 

activity created by this same teacher. 

3.1 Content creation: training and practice 

To start the process teachers received a 4-hour 

training course (in two sessions) where they were 

taught how to plan, pedagogically speaking, a 

learning sequence including activities to be cor-

rected using automatically generated feedback. We 

required them to develop autonomous learning 

units if possible. And we invited them to get hold 

of any available technology or platform functional-

ity to implement their ideas (and partially offered 

support to them too), convinced that technology 

had to be a means rather than a goal in itself. The 

course also included an overview of NLP tech-

niques and a specific course on the mechanics of 

ATACK (the authoring tool) and ATAP (the activ-

ity management and deployment tool).  

During this training we learned that most teach-

ers do not plan how activities will be assessed: that 

is, they often do not think of the concrete answers 

to the possible questions they will pose to learners. 

They do not need to, since they have all the knowl-

edge required to correct learner production any 

place, any time in their heads (the learner, the ac-

tivity and the expert model) no matter if the learner 

production is written or oral. This is crucial since it 

requires a change in normal working routine. 

After the initial training they created learning 

materials. During creation we interacted with them 

to make sure that they were not designing activities 

whose answers were simply impossible to model. 

For instance, the secondary school teacher who 

prepared the activity on sustainable production and 

consumption provided us with a listening compre-

hension activity including questions such as: 

1) Which is your attitude concerning respon-

sible consumption? How do you deal with 

recycling? Do you think yours is an eco-

logical home? Are you doing your best to 

reduce your ecological footprint? Make a 

list with 10 things you could do at home to 

reduce, reuse o recycle waste at home. 

All these things were asked in one sole instruc-

tion, to be answered in one sole text area. We then 

talked to the teacher and argued with her the kinds 

of things that could be modelled using simple one-

sentence answers. We ended up reducing the input 

provided to learners to perform the activity to one 



video (initially a text and a video) and prompting 

learners with the following three questions: 

1) Explain in your words what the ecological 

footprint is. 

2) What should be the role of retailers accord-

ing to Timo Mäkelä? 

3) Why should producers and service provid-

ers use the Ecolabel? 

Similar interventions were done in other activi-

ties created by other content creators. But some of 

them were able to create activities which could be 

used almost straightforwardly. 

3.2 System evaluation 

The materials created by teachers were then 

used in their courses. In the setting that we analyse 

learners of English as a second language were 

Catalan and Spanish native speakers between 15 

and 17 years old that attended a regular first year 

of Batxillerat (first course for those preparing to 

enter university studies). They had all been learn-

ing English for more than five years, and according 

to their teacher their CEF level was between A2 

and B1. They were all digital literates and they all 

used the computer on a weekly basis for their stud-

ies or leisure (80% daily). 

We analyse briefly the results obtained for two 

of the questions in one of the activities created by 

the school teacher who authored the learning unit 

on sustainable production and consumption, 

namely questions 1) and 2) above. This learning 

unit was offered to a group of 25 learners. 

Overall system performance 

Table 1 reflects the number of attempts performed 

by learners trying to answer the two questions 

evaluated here: correct, partially correct and incor-

rect answers are almost equally distributed (around 

30% each) and non-evaluated answers are roughly 

10%. In non-evaluated answers we include basi-

cally answers where learners made a bad use of the 

system (e.g., answers in a language other than the 

one learned) or answers which were exactly the 

same as the previous one for two attempts in a row, 

which can interpreted in several ways (misunder-

standing of the feedback, usability problems with 

the interface, problems with pop-up windows, etc.) 

that fall out of the scope of the current analysis. 

Table 2 and Table 3 show the number of mes-

sages issued by the system for correct, partially 

correct and incorrect answers for each of the two 

questions analyzed. The tables distinguish between 

Form Messages and Content Messages, and Real 

Form Errors and Real Content Errors –a crucial 

distinction given our claim that using AutoTutor 

more open questions could be tackled.
3
 

QST CORR. PART. INCORR. INV. TOT 

1ST 36 23 12 2 73 

2ND 14 29 36 21 100 

ALL 50 (29%) 52(30%) 48(28%) 23(13%) 173 

Table 1. Correct, partially correct and incorrect answers. 

Table 2 and Table 3 show that the contrast be-

tween issued feedback messages (most commonly 

error messages, but sometimes rather pieces of 

advice or suggestions) and real problems found in 

the answers is generally balanced in formal prob-

lems (31:15, 8:7 and 41:39 for Table 2; and 6:8, 

29:18, and 20:21 for Table 3) independently of the 

correctness of the answer.  

On the contrary, the contrast between issued 

messages and content problems is much more un-

balanced in correct and partially correct answers 

(139:71 and 84:42 for Table 2; and 45:20 and 

110:57 for Table 3) and more balanced for incor-

rect answers (30:18 for Table 2; and 93:77 for 

Table 3). 

 

MESSAGES REAL ERRORS 

Form Cont Form Cont 

CORRECT ANSWERS 31 139 15 71 

PARTIALLY CORRECT 8 84 7 42 

INCORRECT ANSWERS 41 30 39 18 

 TOTAL ANSWERS 80 253 61 131 

Table 2. Messages issued vs. real errors for question 1 

in the answers produced by learners. 

 

MESSAGES REAL ERRORS 

Form Cont Form Cont 

CORRECT ANSWERS 6 45 8 20 

PARTIALLY CORRECT 29 110 18 57 

INCORRECT ANSWERS 20 93 21 77 

TOTAL ANSWERS 55 248 47 154 

Table 3. Messages issued vs. real errors for question 2 

in the answers produced by learners. 

This indicates that generally speaking the sys-

tem behaved more confidently in the detection of 

formal errors than in the detection of content er-

rors. 

                                                           
3 A proper evaluation would require manual correction of the 

activities by a number of teachers and the corresponding 

evaluation process. 



System feedback analysis 

To analyze the system’s feedback we looked into 

the answers and the feedback proposed by the sys-

tem and annotated each answer with one or more 

of the tags corresponding to a possible cause of 

misbehaviour. The possible causes and its absolute 

frequency are listed in Table 4. 

The less frequent ones are bad use of the system 

on the learner side, bad guidance (misleading the 

learner to an improper answer or to a more com-

plex way of getting to it), connection failure, and 

message drawing attention on form when the error 

was on content. 
MISBEHAVIOUR QUESTION 1 QUESTION 2 

CONN-FAIL 1 0 

BAD-USE 1 1 

FRM-INSTOF-CONT 2 1 

BAD-GUIDE 4 2 

OOV 11 13 

WRNG-DIAG 11 20 

FRM-STRICT 33 20 

ARTIF-SEP 0 61 

SPECS-POOR 1 62 

Table 4. Frequent sources of system errors. 

The most frequent causes of system misbehav-

iour are out-of-vocabulary words, wrong diagno-

ses, and corrections too restrictive with respect to 

form. 

Two interesting causes of misbehaviour and in 

fact the most frequent ones were artificial separa-

tion and poor specifications. The former refers to 

the system dividing answer parts into smaller parts 

(and therefore generation of a larger number of 

issued messages). For instance in a sentence like 

(as an answer to question 2) 

The retailers need to make sure that whatever 

they label or they put in shelf is understandable 

to consumers.
4
 

the system would generate six different feedback 

messages informing that some words were not 

expected (even if correct) and some were found but 

not in the expected location or form. 

In this same sentence above we find examples 

of too poor specifications, where, for instance, it 

was not foreseen that retailers was used in the 

answer. These two kinds of errors reflect the flaws 

of the current system: artificial separation reflects a 

lack of generalization capacity of the underlying 

                                                           
4 One of the expected possible answers was “They need to 

make sure that whatever they label and whatever they put in 

the shelves is understood by consumers”. 

parser, and poor specifications reflect the incom-

pleteness of the information provided by novice 

users, teachers acting as material designers. 

4 Concluding remarks 

This paper describes software that provides 

non-NLP experts with a means to utilize and cus-

tomize NLP-intensive resources using an authoring 

tool for language instruction activities. Its usability 

and usefulness have been tested in real instruction 

settings and are currently being evaluated and ana-

lyzed. Initial analyses show that the technology 

and methodology proposed allow teachers to create 

contents including automatic generation feedback 

without the need of being neither a programmer 

nor an NLP expert.  

Moreover, system performance shows a reason-

able confidence in error detection given the imma-

turity of the tool and of its users –following 

Shneiderman and Plaisant’s terminology (2006). 

There is room for improvement in the way to re-

duce false positives related with poor specifica-

tions. It is quite some work for exercise designers 

to foresee a reasonable range of linguistic alterna-

tives for each answer. One could further support 

them in the design of materials with added func-

tionalities –using strategies such as shallow seman-

tic parsing, as in (Bailey and Meurers, 2008), or 

adding functionalities on the user interface that 

allow teachers to easily feed exercise models or 

specific feedback messages using learner answers. 

The architecture presented allows for portability 

into other languages (English and German already 

available), with a relative simplicity provided that 

the lexicon for the language exists and contains 

basic morpho-syntactic information. Moreover, 

having developed it as a Moodle extension makes 

it available to a wide community of teachers and 

learners. The modularity of ATACK and ATAP 

makes them easy to integrate in other Learning 

Management Systems. 

In the longer term we plan to improve AutoTu-

tor’s configurability so that its behaviour can be 

defined following pedagogical criteria. One of the 

aspects to be improved is that a computational 

linguist is needed to add new global error types to 

be handled or new linguistic phenomena to be con-

sidered in terms of block order. If such a system is 

used by wider audiences, then statistically driven 

techniques might be employed gradually, probably 



in combination with symbolic techniques –the 

usage of the tool will provide with invaluable 

learner corpora. In the meantime AutoTutor pro-

vides with a means to have automatic correction 

and feedback generation for those areas and text 

genres where corpus or native speaker text is 

scarce, and experiments show it could be realisti-

cally used in real instruction settings. 
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