
AutoLearn’s authoring tool: a piece of cake for teachers

Martí Quixal
1
, Susanne Preuß

3
, David García-Narbona

2
, Jose R. Boullosa

2

1

Voice and Language Group,
2

Advanced Development Group
Barcelona Media Centre d’Innovació

Diagonal, 177, E-08018 Barcelona, Spain
{marti.quixal,david.garcian,

beto.boullosa}@barcelonamedia.org

3
GFAI

Martin-Luther-Str. 14

Saarbrücken, Germany
susannep@iai.uni-sb.de

Abstract

This paper
1
 presents AutoLearn’s authoring

tool: AutoTutor, a software solution that en-

ables teachers (content creators) to develop

language learning activities including auto-

matic feedback generation without the need of

being a programmer. The software has been

designed and implemented on the basis of

processing pipelines developed in previous

work. A group of teachers has been trained to

use the technology and the accompanying

methodology, and has used materials created

by them in their courses in real instruction set-

tings, which served as an initial evaluation.

The paper is structured in four sections: Sec-

tion 1 introduces and contextualizes the re-

search work. Section 2 describes the solution,

its architecture and its components, and spe-

cifically the way the NLP resources are cre-

ated automatically with teacher input. Section

3 describes and analyses a case study using

the tool to create and test a language learning

activity. Finally Section 4 concludes with re-

marks on the work done and connections to

related work, and with future work.

1 Introduction

Over the past four decades there have been several

hundreds of CALL (Computer-Aided Language

Learning) projects, often linked to CALL practice

(Levy 1997), and within the last twenty years a

considerable number of them focused on the use of

1 Research funded by the Lifelong Learning Programme 2007-

2013 (AUTOLEARN, 2007-3625/001-001).

NLP in the context of CALL (Amaral and Meur-

ers, in preparation). Despite this, there is an appall-

ing absence of parser-based CALL in real

instruction settings, which has been partially at-

tributed to a certain negligence of the pedagogical

needs (Amaral and Meurers, in preparation). In

contrast, projects and systems that were pedagogi-

cally informed succeeded, yielded and are yielding

interesting results, and are evolving for over a dec-

ade now (Nagata 2002; Nagata 2009; Heift 2001;

Heift 2003; Heift 2005; Amaral and Meurers, in

preparation). According to Amaral and Meurers

successful projects were able to restrict learner

production in terms of NLP complexity by limiting

the scope of the learning activities to language-

oriented (as opposed to communicative-oriented)

or translation exercises, or by providing feedback

on formal aspects of language in content oriented

activities, always under pedagogical considerations

–focus on form.

Our proposal is a step forward in this direction

in two ways: a) it allows for feedback generation

focusing both on formal and content (communica-

tive-oriented) aspects of language learning activi-

ties, and b) it provides teachers with a tool and a

methodology –both evolving– for them to gain

autonomy in the creation of parser-based CALL

activities –which by the way has a long tradition in

CALL (Levy 1997, chap. 2). The goal is to shape

language technologies to the needs of the teachers,

and truly ready-to-hand.

1.1 Related work and research context

The extent to which pedagogues appreciate and

require autonomy in the design and creation of

CALL activities can be traced in the historical

overview offered by (Levy 1997, 16, 17, 19, 23

and 38). Moreover, parallel research shows that the

integration of CALL in the learning context is

critical to ensure the success of whatever materials

are offered to learners (Levy 1997, 200-203; Polis-

ca 2006).

AutoTutor goes beyond tools such as Hot Pota-

toes, eXelearning or JClic
2
 in that it offers the pos-

sibility of authoring NLP-based CALL activities. It

is also more ambitious than other authoring tools

developed for the creation of activities in intelli-

gent tutoring systems. Chen and Tokuda (2003)

and Rösener (2009) present authoring tools for

translation exercises, where expected learner input

is much more controlled (by the sentence in the

source language).

Heift and Toole (2002) present Tutor Assistant,

which enables to create activities such as build-a-

sentence, drag-and-drop and fill-in-the-blank. An

important difference between AutoTutor and Tutor

Assistant is that the latter is a bit more restrictive in

terms of the linguistic objects that can be used. It

also presents a lighter complexity in the modelling

of the underlying correction modules. However,

the system underlying Tutor Assistant provides

with more complex student adaptation functional-

ities (Heift 2003) and would be complementary in

terms of overall system functionalities.

2 http://hotpot.uvic.ca/, http://sourceforge.net/apps/trac/exe/wiki,

http://clic.xtec.cat/es/jclic/index.htm.

2 AutoTutor: AutoLearn’s authoring

software

AutoTutor is a web-based software solution to

assist non-NLP experts in the creation of language

learning activities using NLP-intensive processing

techniques. The process includes a simplified

specification of the means to automatically create

the resources used to analyse learner input for each

exercise. The goal is to use computational devices

to analyse learner production and to be able to go

beyond “yes-or-no” answers providing additional

feedback focused both on form and content.

This research work is framed within the

AutoLearn project, a follow up of the ALLES pro-

ject (Schmidt et al., 2004, Quixal et al., 2006).

AutoLearn’s aim was to exploit in a larger scale a

subset of the technologies developed in ALLES in

real instruction settings. Estrada et al. (2009) de-

scribe how, in AutoLearn’s first evaluation phase,

the topics of the activities were not attractive

enough for learners and how learner activity de-

creased within the same learning unit across exer-

cises. Both observations –together with what it has

been shown with respect to the integration of inde-

pendent language learning, see above – impelled

us to develop AutoTutor, which allows teachers to

create their own learning units.

As reflected in Figure 1, AutoTutor consists

primarily of two pieces of software: AutoTutor

Activity Creation Kit (ATACK) and AutoTutor

Activity Player (ATAP). ATACK, an authoring

Figure 1. AutoTutor software architecture.

tool, provides teachers with the ability to create

parser-based CALL exercises and define the corre-

sponding exercise specifications for the generation

of automated feedback. ATAP allows teachers to

insert, track and manage those exercises in Moodle

(http://moodle.org), giving learners the possibility

to visualize and answer them. Both ATACK and

ATAP share a common infrastructure of NLP ser-

vices which provides the basic methods for gener-

ating, storing and using NLP tools. Access to those

methods is made through XML-RPC calls.

2.1 AutoTutor Activity Creation Kit

ATACK is divided in two components: a GUI that

allows content creators to enter the text, questions

and instructions to be presented to learners in order

to elicit answers from them; and an NLP resource

creation module that automatically generates the

resources that will be used for the automated feed-

back. Through the GUI, teachers are also able to

define a set of expected correct answers for each

question, and, optionally, specific customized

feedback and sample answers.

To encode linguistic and conceptual variation in

the expected answers, teachers are required to turn

them into linguistic patterns using blocks. Blocks

represent abstract concepts, and contain the con-

crete chunks linked to those concepts. Within a

block one can define alternative linguistic struc-

tures representing the same concept. By combining

and ordering blocks, teachers can define the se-

quences of text that correspond to the expected

correct answers –i.e., they can provide the seeds

for answer modelling.

Modelling answers

Given an exercise where learners are required

to answer the question “From an architecture point

of view, what makes Hagia Sophia in Istanbul so

famous according to its Wikipedia entry?”, the

following answers would be accepted:

1. {The Hagia Sophia/The old mosque} is

famous for its massive dome.

2. The reputation of {the Hagia Sophia/the

old mosque} is due to its massive dome.

To model these possible answers, one would

use four blocks (see Figure 2) corresponding to

WHO (Hagia Sophia), WHAT (Famousness), and

WHY (Dome), and complementary linguistic ex-

pressions such as “is due to”. Thus, the possible

correct block sequences would be (indices corre-

sponding to Figure 2):

a) B1 B2.A B4

b) B2.B B1 B3 B4

Block B1 is an example of interchangeable al-

ternatives (the Hagia Sophia or the old mosque),

which do not require any further condition to ap-

ply. In contrast, block B2 is an instance of a syn-

tactic variation of the concept. Famousness can be

expressed through an adjective or through a verb

(in our example), but each of the choices requires a

different sentence structure.

Alternative texts in a block with no variants (as

in B1) exploit the paradigmatic properties of lan-

guage, while alternative texts in a block with two

variants as in B2 account for its syntagmatic prop-

erties, reflected in the block sequences. Interest-

ingly, this sort of splitting of a sentence into blocks

is information-driven and simplifies the linguistic

expertise needed for the exercise specifications.

2.2 Automatic generation of exercise-specific
NLP-resources

Figure 3 shows how the teacher’s input is con-

verted into NLP-components. Predefined system

components present plain borders, and the result-

ing ones present hyphenised borders. The figure

also reflects the need for answer and error model-

ling resources.

NLP resource generation process

B2 (FAMOUSNESS)

B:

the reputation of

A:

is famous for

B1 (SOPHIA)

the Hagia Sophia

the old mosque

B3 (DUE)

is due to

B4 (CAUSE)

its massive dome

Figure 2 Blocks as specified in AutoTutor GUI.

The generation of the NLP resources is possible

through the processing of the teacher’s input with

three modules: the morphological analysis module

performs a lexicon lookup and determines un-

known words that are entered into the exercise-

specific lexicon; the disambiguation of base form

module, disambiguates base forms, e.g. “better” is

disambiguated between verb and adjective depend-

ing on the context in preparation of customized

feedback.

The last and most important module in the ar-

chitecture is the match settings component, which

determines the linguistic features and structures to

be used by the content matching and the exercise-

specific error checking modules (see Figure 4).

Using relaxation techniques, the parsing of learner

input is flexible enough to recognize structures

including incorrect word forms and incorrect,

missing or additional items such as determiners,

prepositions or digits, or even longish chunks of

text with no correspondence the specified answers.

The match settings component contains rules that

later on trigger the input for the exercise-specific

error checking.

The match settings component consists of

KURD rules (Carl et al. 1998). Thus it can be

modified and extended by a computational linguist

any time without the need of a programmer.

Once the exercise’s questions and expected an-

swers have been defined, ATACK allows for the

generation of the NLP resources needed for the

automatic correction of that exercise. The right-

hand side of Figure 3 shows which the generated

resources are:

• An exercise-specific lexicon to handle un-

known words

• A content matching module based on the

KURD formalism to define several lin-

guistically-motivated layers with different

levels of relaxation (using word, lemma,

and grammatical features) for determining

the matching between the learner input and

the expected answers

• A customized feedback module for teacher-

defined exercise-specific feedback

• An exercise-specific error checking mod-

ule for context-dependent errors linked to

language aspects in the expected answers

• A general content evaluation component

that checks whether the analysis performed

by the content matching module conforms

to the specified block orders

2.3 AutoTutor Activity Player (ATAP)

With ATAP learners have access to the contents

enhanced with automatic tutoring previously cre-

ated by teachers. ATAP consists of a) a client GUI

for learners, integrated in Moodle, to answer exer-

cises and track their own activity; b) a client GUI

for teachers, also integrated in Moodle, used to

manage and track learning resources and learner

Teacher input (GUI)

ERROR MODEL

ANSWER MODEL

Morph.

analysis

Morph.

analysis

Customized

feedback

Match

settings

General content

evaluation

Content mat-

ching

Disam. of

base form

Exercise-specific lexicon

Exercise-specific

error checking

Blocks (word

chunks)

Teacher defined

error modelling

Block order

Figure 3. Processing schema and components of the customizable NLP resources of ATACK

activity; and c) a backend module, integrated into

the AutoTutor NLP Services Infrastructure, re-

sponsible for parsing the learner’s input and gener-

ating feedback messages.

Figure 4 describes the two steps involved in the

NLP-based feedback generation: the NLP compo-

nents created through ATACK –in hyphenised

rectangles– are combined with general built-in

NLP-based correction modules.

2.4 The feedback generation software

Feedback is provided to learners in two steps,

which is reflected in Figure 4 by the two parts, the

upper and lower part, called General Checking and

Exercise Specific Checking respectively. The for-

mer consists in the application of standard spell

and grammar checkers. The latter consists in the

application of the NLP resources automatically

generated with the teacher’s input.

Content matching module

The text chunks (blocks) that the teacher has en-

tered into ATACK’s GUI are converted into

KURD rules. KURD provides with sophisticated

linguistically-oriented matching and action opera-

tors. These operators are used to model (predict-

able) learner text. The content matching module is

designed to be able to parse learners input with

different degrees of correctness combining both

relaxation techniques and mal-rules. For instance,

it detects the presence of both correct and incorrect

word forms, but it also detects incorrect words

belonging to a range of closed or open word

classes –mainly prepositions, determiners, modal

verbs and digits– which can be used to issue a cor-

responding linguistically motivated error messages

like “Preposition wrong in this context”, in a con-

text where the preposition is determined by the

relevant communicative situation.

Error types that are more complex to handle in

technical terms involve mismatches between the

amount of expected elements and the actual

amount of informational elements in the learner’s

answer. Such mismatches arise on the grammatical

level if a composite verb form is used instead of a

simple one, or when items such as determiners or

commas are missing or redundant. The system also

accounts for additional modifiers and other words

interspersed in the learner’s answer.

The matching strategy uses underspecified

empty slots to fit in textual material in between the

correct linguistic structures. Missing words are

handled by a layer of matching in which certain

elements, mainly grammatical function words such

as determiners or auxiliary verbs, are optional.

Incorrect word choice in open and closed word

classes is handled by matching on more abstract

linguistic features instead of lexeme features.

The interaction between KURD-based linguis-

tically-driven triggers in the content matching

module and the rules in the exercise-specific error

checking (see below) module allows for specific

mal-rule based error correction.

Customized feedback

Teachers can create specific error messages for

simple linguistic patterns (containing errors or

searching for missing items) ranging from one or

two word structures to more complex word-based

linguistic structures. Technically, error patterns are

Morph.

analysis

Spell

checking

Grammar

checking

Lexicon Exercise-specific lexicon

Customized

feedback

Exercise-specific

error checking

General content

evaluation

Content

matching

EXERCISE-SPECIFIC CHECKING (TWO)

GENERAL CHECKING (ONE)

Figure 4. Processing schema of the NLP resources to generate automatic feedback.

implemented as KURD rules linked to a specific

error message. These rules have preference over

the rules applied by any other later module.

Exercise-specific error checking

Teachers do not encode all the exercise-specific

errors themselves because a set of KURD rules for

the detection of prototypical errors is encoded –this

module uses the triggers set by the content match-

ing component. Exercise-specific linguistic errors

handled in this module have in common that they

result in sentences that are likely to be wrong ei-

ther from a formal (but context-dependent) point of

view or from an informational point of view.

General content evaluation

Since the contents are specified by the blocks cre-

ated by teachers, the evaluation has a final step in

which the system checks whether the learner’s

answer contains all the necessary information that

belongs to a valid block sequence.

This module checks for correct order in infor-

mation blocks, for blending structures (mixtures of

two possible correct structures), missing informa-

tion and extra words (which do not always imply

an error). The messages generated with this com-

ponent pertain to the level of completeness and

adequacy of the answer in terms of content.

3 Usage and evaluation

AutoTutor has been used by a group of seven

content creators –university and school teachers–

for a period of three months. They developed over

20 activities for learning units on topics such as

business and finance, sustainable production and

consumption, and new technologies. Those activi-

ties contain listening and reading comprehension

activities, short-text writing activities, enabling

tasks on composition writing aspects, etc. whose

answers must be expressed in relatively free an-

swers consisting of one sentence. In November

2009, these activities were used in real instruction

settings with approximately 600 learners of Eng-

lish and German. Furthermore, an evaluation of

both teacher and learner satisfaction and system

performance was carried out.

We briefly describe the process of creating the

materials by one of the (secondary school) teachers

participating in the content creation process and

evaluate the results of system performance in one

activity created by this same teacher.

3.1 Content creation: training and practice

To start the process teachers received a 4-hour

training course (in two sessions) where they were

taught how to plan, pedagogically speaking, a

learning sequence including activities to be cor-

rected using automatically generated feedback. We

required them to develop autonomous learning

units if possible. And we invited them to get hold

of any available technology or platform functional-

ity to implement their ideas (and partially offered

support to them too), convinced that technology

had to be a means rather than a goal in itself. The

course also included an overview of NLP tech-

niques and a specific course on the mechanics of

ATACK (the authoring tool) and ATAP (the activ-

ity management and deployment tool).

During this training we learned that most teach-

ers do not plan how activities will be assessed: that

is, they often do not think of the concrete answers

to the possible questions they will pose to learners.

They do not need to, since they have all the knowl-

edge required to correct learner production any

place, any time in their heads (the learner, the ac-

tivity and the expert model) no matter if the learner

production is written or oral. This is crucial since it

requires a change in normal working routine.

After the initial training they created learning

materials. During creation we interacted with them

to make sure that they were not designing activities

whose answers were simply impossible to model.

For instance, the secondary school teacher who

prepared the activity on sustainable production and

consumption provided us with a listening compre-

hension activity including questions such as:

1) Which is your attitude concerning respon-

sible consumption? How do you deal with

recycling? Do you think yours is an eco-

logical home? Are you doing your best to

reduce your ecological footprint? Make a

list with 10 things you could do at home to

reduce, reuse o recycle waste at home.

All these things were asked in one sole instruc-

tion, to be answered in one sole text area. We then

talked to the teacher and argued with her the kinds

of things that could be modelled using simple one-

sentence answers. We ended up reducing the input

provided to learners to perform the activity to one

video (initially a text and a video) and prompting

learners with the following three questions:

1) Explain in your words what the ecological

footprint is.

2) What should be the role of retailers accord-

ing to Timo Mäkelä?

3) Why should producers and service provid-

ers use the Ecolabel?

Similar interventions were done in other activi-

ties created by other content creators. But some of

them were able to create activities which could be

used almost straightforwardly.

3.2 System evaluation

The materials created by teachers were then

used in their courses. In the setting that we analyse

learners of English as a second language were

Catalan and Spanish native speakers between 15

and 17 years old that attended a regular first year

of Batxillerat (first course for those preparing to

enter university studies). They had all been learn-

ing English for more than five years, and according

to their teacher their CEF level was between A2

and B1. They were all digital literates and they all

used the computer on a weekly basis for their stud-

ies or leisure (80% daily).

We analyse briefly the results obtained for two

of the questions in one of the activities created by

the school teacher who authored the learning unit

on sustainable production and consumption,

namely questions 1) and 2) above. This learning

unit was offered to a group of 25 learners.

Overall system performance

Table 1 reflects the number of attempts performed

by learners trying to answer the two questions

evaluated here: correct, partially correct and incor-

rect answers are almost equally distributed (around

30% each) and non-evaluated answers are roughly

10%. In non-evaluated answers we include basi-

cally answers where learners made a bad use of the

system (e.g., answers in a language other than the

one learned) or answers which were exactly the

same as the previous one for two attempts in a row,

which can interpreted in several ways (misunder-

standing of the feedback, usability problems with

the interface, problems with pop-up windows, etc.)

that fall out of the scope of the current analysis.

Table 2 and Table 3 show the number of mes-

sages issued by the system for correct, partially

correct and incorrect answers for each of the two

questions analyzed. The tables distinguish between

Form Messages and Content Messages, and Real

Form Errors and Real Content Errors –a crucial

distinction given our claim that using AutoTutor

more open questions could be tackled.
3

QST CORR. PART. INCORR. INV. TOT

1ST 36 23 12 2 73

2ND 14 29 36 21 100

ALL 50 (29%) 52(30%) 48(28%) 23(13%) 173

Table 1. Correct, partially correct and incorrect answers.

Table 2 and Table 3 show that the contrast be-

tween issued feedback messages (most commonly

error messages, but sometimes rather pieces of

advice or suggestions) and real problems found in

the answers is generally balanced in formal prob-

lems (31:15, 8:7 and 41:39 for Table 2; and 6:8,

29:18, and 20:21 for Table 3) independently of the

correctness of the answer.

On the contrary, the contrast between issued

messages and content problems is much more un-

balanced in correct and partially correct answers

(139:71 and 84:42 for Table 2; and 45:20 and

110:57 for Table 3) and more balanced for incor-

rect answers (30:18 for Table 2; and 93:77 for

Table 3).

MESSAGES REAL ERRORS

Form Cont Form Cont

CORRECT ANSWERS 31 139 15 71

PARTIALLY CORRECT 8 84 7 42

INCORRECT ANSWERS 41 30 39 18

 TOTAL ANSWERS 80 253 61 131

Table 2. Messages issued vs. real errors for question 1

in the answers produced by learners.

MESSAGES REAL ERRORS

Form Cont Form Cont

CORRECT ANSWERS 6 45 8 20

PARTIALLY CORRECT 29 110 18 57

INCORRECT ANSWERS 20 93 21 77

TOTAL ANSWERS 55 248 47 154

Table 3. Messages issued vs. real errors for question 2

in the answers produced by learners.

This indicates that generally speaking the sys-

tem behaved more confidently in the detection of

formal errors than in the detection of content er-

rors.

3 A proper evaluation would require manual correction of the

activities by a number of teachers and the corresponding

evaluation process.

System feedback analysis

To analyze the system’s feedback we looked into

the answers and the feedback proposed by the sys-

tem and annotated each answer with one or more

of the tags corresponding to a possible cause of

misbehaviour. The possible causes and its absolute

frequency are listed in Table 4.

The less frequent ones are bad use of the system

on the learner side, bad guidance (misleading the

learner to an improper answer or to a more com-

plex way of getting to it), connection failure, and

message drawing attention on form when the error

was on content.
MISBEHAVIOUR QUESTION 1 QUESTION 2

CONN-FAIL 1 0

BAD-USE 1 1

FRM-INSTOF-CONT 2 1

BAD-GUIDE 4 2

OOV 11 13

WRNG-DIAG 11 20

FRM-STRICT 33 20

ARTIF-SEP 0 61

SPECS-POOR 1 62

Table 4. Frequent sources of system errors.

The most frequent causes of system misbehav-

iour are out-of-vocabulary words, wrong diagno-

ses, and corrections too restrictive with respect to

form.

Two interesting causes of misbehaviour and in

fact the most frequent ones were artificial separa-

tion and poor specifications. The former refers to

the system dividing answer parts into smaller parts

(and therefore generation of a larger number of

issued messages). For instance in a sentence like

(as an answer to question 2)

The retailers need to make sure that whatever

they label or they put in shelf is understandable

to consumers.
4

the system would generate six different feedback

messages informing that some words were not

expected (even if correct) and some were found but

not in the expected location or form.

In this same sentence above we find examples

of too poor specifications, where, for instance, it

was not foreseen that retailers was used in the

answer. These two kinds of errors reflect the flaws

of the current system: artificial separation reflects a

lack of generalization capacity of the underlying

4 One of the expected possible answers was “They need to

make sure that whatever they label and whatever they put in

the shelves is understood by consumers”.

parser, and poor specifications reflect the incom-

pleteness of the information provided by novice

users, teachers acting as material designers.

4 Concluding remarks

This paper describes software that provides

non-NLP experts with a means to utilize and cus-

tomize NLP-intensive resources using an authoring

tool for language instruction activities. Its usability

and usefulness have been tested in real instruction

settings and are currently being evaluated and ana-

lyzed. Initial analyses show that the technology

and methodology proposed allow teachers to create

contents including automatic generation feedback

without the need of being neither a programmer

nor an NLP expert.

Moreover, system performance shows a reason-

able confidence in error detection given the imma-

turity of the tool and of its users –following

Shneiderman and Plaisant’s terminology (2006).

There is room for improvement in the way to re-

duce false positives related with poor specifica-

tions. It is quite some work for exercise designers

to foresee a reasonable range of linguistic alterna-

tives for each answer. One could further support

them in the design of materials with added func-

tionalities –using strategies such as shallow seman-

tic parsing, as in (Bailey and Meurers, 2008), or

adding functionalities on the user interface that

allow teachers to easily feed exercise models or

specific feedback messages using learner answers.

The architecture presented allows for portability

into other languages (English and German already

available), with a relative simplicity provided that

the lexicon for the language exists and contains

basic morpho-syntactic information. Moreover,

having developed it as a Moodle extension makes

it available to a wide community of teachers and

learners. The modularity of ATACK and ATAP

makes them easy to integrate in other Learning

Management Systems.

In the longer term we plan to improve AutoTu-

tor’s configurability so that its behaviour can be

defined following pedagogical criteria. One of the

aspects to be improved is that a computational

linguist is needed to add new global error types to

be handled or new linguistic phenomena to be con-

sidered in terms of block order. If such a system is

used by wider audiences, then statistically driven

techniques might be employed gradually, probably

in combination with symbolic techniques –the

usage of the tool will provide with invaluable

learner corpora. In the meantime AutoTutor pro-

vides with a means to have automatic correction

and feedback generation for those areas and text

genres where corpus or native speaker text is

scarce, and experiments show it could be realisti-

cally used in real instruction settings.

Acknowledgments

We want to thank the secondary school teachers

who enthusiastically volunteered in the creation

and usage of AutoLearn materials: Eli Garrabou

(Fundació Llor), Mònica Castanyer, Montse Pada-

reda (Fundació GEM) and Anna Campillo (Escola

Sant Gervasi). We also want to thank their learn-

ers, who took the time and made the effort to go

through them. We also thank two anonymous re-

viewers for their useful comments.

References
Amaral, Luiz A., and Detmar Meurers. On Using Intel-

ligent Computer-Assisted Language Learning in

Real-Life Foreign Language Teaching and Learning

(Submitted).

Bailey, Stacey and Detmar Meurers (2008) Diagnosing

meaning errors in short answers to reading compre-

hension question. In Proceedings of the Third ACL

Workshop on Innovative Use of NLP for Building

Educational Applications, pages 107–115, Columbus,

Ohio, USA, June 2008.

Carl, Michael, and Antje Schmidt-Wigger (1998). Shal-

low Post Morphological Processing with KURD. In

Proceedings of NeMLaP'98, Sydney.

Chen, Liang and Naoyuki Tokuda (2003) A New Tem-

plate-Template-enhanced ICALL System for a Sec-

ond Language Composition Course. CALICO

Journal, Vol. 20, No. 3: May 2003.

Estrada, M., R. Navarro-Prieto, M. Quixal (2009) Com-

bined evaluation of a virtual learning environment:

use of qualitative methods and log interpretation to

evaluate a computer mediated language course. In

Proceedings of International Conference on Educa-

tion and New Learning Technologies, EDULEARN

09. Barcelona (Spain), 6th-8th July, 2009.

Heift, Trude. 2001. Intelligent Language Tutoring Sys-

tems for Grammar Practice. Zeitschrift für Interkul-

turellen Fremdsprachenunterricht 6, no. 2.

http://www.ualberta.ca/~german/ejournal/ heift2.htm.

———. 2003. Multiple learner errors and meaningful

feedback: A challenge for ICALL systems. CALICO

Journal 20, no. 3: 533-548.

———. 2005. Corrective Feedback and Learner Uptake

in CALL. ReCALL Journal 17, no. 1: 32-46.

Heift, Trude, and Mathias Schulze. 2007. Errors and

Intelligence in Computer-Assisted Language Learn-

ing: Parsers and Pedagogues. New York: Routledge.

Levy, Michael. 1997. Computer-Assisted Language

Learning. Context and Conceptualization. Oxford:

Oxford University Press.

Nagata, Noriko. 2002. BANZAI: An Application of

Natural Language Processingto Web based

Language Learning. CALICO Journal 19, no. 3: 583-

599.

———. 2009. Robo-Sensei’s NLP-Based Error Detec-

tion and Feedback Generation. CALICO Journal 26,

no. 3: 562-579.

Polisca, Elena. 2006. Facilitating the Learning Process:

An Evaluation of the Use and Benefits of a Virtual

Learning Environment (VLE)-enhanced Independent

Language-learning Program (ILLP). CALICO Jour-

nal 23, no.3: 499-51.

Quixal, M., T. Badia, B. Boullosa, L. Díaz, and A. Rug-

gia. (2006). Strategies for the Generation of Indi-

vidualised Feedback in Distance Language Learning.

In Proceedings of the Workshop on Language-

Enabled Technology and Development and Evalua-

tion of Robust Spoken Dialogue Systems of ECAI

2006. Riva del Garda, Italy, Sept. 2006.

Rösener, C.: “A linguistic intelligent system for tech-

nology enhanced learning in vocational training – the

ILLU project”. In Cress, U.; Dimitrova, V.; Specht,

M. (Eds.): Learning in the Synergy of Multiple Dis-

ciplines. 4th European Conference on Technology

Enhanced Learning, EC-TEL 2009 Nice, France,

Sept. 29 – Oct. 2, 2009. Lecture Notes in Computer

Science. Programming and Software Engineering,

Vol. 5794, 2009, XVIII, p. 813, Springer, Berlin.

Schmidt, P., S. Garnier, M. Sharwood, T. Badia, L.

Díaz, M. Quixal, A. Ruggia, A. S. Valderrabanos, A.

J. Cruz, E. Torrejon, C. Rico, J. Jimenez. (2004)

ALLES: Integrating NLP in ICALL Applications. In

Proceedings of Fourth International Conference on

Language Resources and Evaluation. Lisbon, vol. VI

p. 1888-1891. ISBN: 2-9517408-1-6.

Shneiderman, B. and C. Plaisant. (2006) Strategies for

evaluating information visualization tools: multi-

dimensional in-depth long-term case studies. BELIV

’06: Proceedings of the 2006 AVI workshop on Be-

yond time and errors: novel evaluation methods for

information visualization, May 2006.

Toole, J. & Heift, T. (2002). The Tutor Assistant: An

Authoring System for a Web-based Intelligent Lan-

guage Tutor. Computer Assisted Language Learning,

15(4), 373-86.

