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ABSTRACT

Challenging the implicit reliance on document collections,
this paper discusses the pros and cons of using query logs
rather than document collections, as self-contained sources
of data in textual information extraction. The differences
are quantified as part of a large-scale study on extracting
prominent attributes or quantifiable properties of classes
(e.g., top speed, price and fuel consumption for CarModel)
from unstructured text. In a head-to-head qualitative com-
parison, a lightweight extraction method produces class at-
tributes that are 45% more accurate on average, when ac-
quired from query logs rather than Web documents.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.7 [Artificial Intelligence]: Nat-
ural Language Processing; I.2.6 [Artificial Intelligence]:
Learning; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Knowledge acquisition, class attribute extraction, textual
data sources, query logs

1. INTRODUCTION
To acquire useful knowledge in the form of entities and

relationships among those entities, existing work in infor-
mation extraction taps on a variety of textual data sources.
Whether domain-specific (e.g., collections of medical articles
or job announcements) or general-purpose (e.g., news cor-
pora or the Web), textual data sources are always assumed
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Characteristic Data Source
Doc. Sentences Queries

Type of medium text text
Purpose convey info. request info.
Available context surrounding text self-contained
Average quality high (varies) low
Grammatical style natural language keyword-based
Average length 12 to 25 words 2 words

Table 1: Textual documents vs. queries as data
sources for information extraction

to be available as document collections [12]. This reliance
on document collections is by no means a weakness. On
the contrary, the availability of larger document collections
is instrumental in the trend towards large-scale information
extraction. But as extraction experiments on terabyte-sized
document collections become less rare [4], they have yet to
capitalize on an alternative resource of textual information
(i.e., search queries) that millions of users generate daily, as
they find information through Web search.

Table 1 compares document collections and query logs as
potential sources of textual data for information extraction.
On average, documents have textual content of higher qual-
ity, convey information directly in natural language rather
than through sets of keywords, and contain more raw tex-
tual data. In contrast, queries are usually ambiguous, short,
keyword-based approximations of often-underspecified user
information needs. An intriguing aspect of queries is, how-
ever, their ability to indirectly capture human knowledge,
precisely as they inquire about what is already known. In-
deed, users formulate their queries based on the common-
sense knowledge that they already possess at the time of the
search. Therefore, search queries play two roles simultane-
ously. In addition to requesting new information, they also
indirectly convey knowledge in the process. If knowledge is
generally prominent or relevant, people will eventually ask
about it [13], especially as the number of users and the quan-
tity and breadth of the available knowledge increase, as it is
the case with the Web as a whole. Query logs convey knowl-
edge through requests that may be answered by knowledge
asserted in expository text of document collections.

This paper is the first comparison of Web documents and
Web query logs as separate, self-sufficient data sources for in-
formation extraction, through a large-scale study on extract-
ing prominent attributes or quantifiable properties of classes
(e.g., top speed, price and fuel consumption for CarModel)
from unstructured text. The attributes correspond to useful
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Query logs

Jupiter’s diameter is far greater than that of the Earth.

In the case of the Earth, Ruhnke explained, the atmosphere completes the circuit.

On Thursday PS2.IGN.COM held a chat with Bioware, makers of MDK2 and soon MDK Armageddon for the PS2.

Name a decent 3d shooter since the goodness of Panzer Dragoon, i dare you.

Matching document sentences

The ads, which tout Siebel’s position relative to SAP, are standard issue in the United States.

In the other corner, we have the always formidable opponent, American Airlines (subsidiary of AMR).

?

?

? ? ? ? ? ?? ? ? ?

(2)

(2)

(1)

(1)

(3) (3)

Resources and target classes

Extraction patterns

the A of I

I’s A

A of I

C1 = {Earth, Mercury, Venus, Saturn, Sirius, Jupiter, Uranus, Antares, Regulus, Vega, ...}

C2 = {Gran Turismo, Panzer Dragoon, Need for Speed Most Wanted, MDK2, Half Life, ...}

Target classes

(C2, makers)  (C2, goodness)  (C2, unbiased review)

(C3, subsidiary)  (C3, position)  (C3, chief executive)

(C1, diameter)  (C1, case)  (C1, color)  (C1, spectrum)

(C1, surface temperature)  (C1, magnetic field)

(C1, atmosphere)  (C1, diameter)  (C1, size)

(C2, download full version)  (C2, theme song)

(C2, release data)  (C2, computer requirements)

(C3, ceo)  (C3, founder)  (C3, market share)

(C3, headquarters)  (C3, swot)  (C3, logo)

Candidate class attributesCandidate instance attributes

Text docs

Data sources

Matching queries

earth’s atmosphere  the diameter of sirius  the surface temperature of uranus  mercury’s magnetic field   size of venus

release date of gran turismo  computer requirements of need for speed most wanted  download full version of mdk2

ceo of reuters  target’s founder  market share of philips  honda’s headquarters  the swot of time warner  apple’s logo

A1 = {size, temperature, diameter, composition, density, gravity...}

A3 = {ceo, headquarters, market share, president, stock symbol...}

A2 = {makers, computer requirements, characters, storyline,  rules...}

Ranked class attributes

C3 = {Target, Sun Microsystems, Canon, Reuters, AMR, Honda, Time Warner, Philips, ...}

Figure 1: Overview of data flow during class attribute extraction from textual data sources

relations among classes, which is a step beyond mining in-
stances of a fixed target relation that is specified in advance.
More importantly, class attributes have several applications.
In knowledge acquisition, they represent building blocks to-
wards the appealing, and yet elusive goal of constructing
large-scale knowledge bases automatically [17]. They also
constitute topics (e.g., radius, surface gravity, orbital veloc-
ity etc.) to be suggested automatically, as human contribu-
tors manually add new entries (e.g., for a newly discovered
celestial body) to resources such as Wikipedia [16]. In open-
domain question answering, the attributes are useful in ex-
panding and calibrating existing answer type hierarchies [9]
towards frequent information needs. In Web search, the re-
sults returned to a query that refers to a named entity (e.g.,
Pink Floyd) can be augmented with a compilation of specific
facts, based on the set of attributes extracted in advance
for the class to which the named entity belongs. Moreover,
the original query can be refined into semantically-justified
query suggestions, by concatenating it with one of the top
extracted attributes for the corresponding class (e.g., Pink
Floyd albums for Pink Floyd).

The remainder of the paper is structured as follows. Sec-
tion 2 introduces a method for extracting quantifiable at-
tributes of arbitrary classes from query logs and Web docu-
ments. The method relies on a small set of linguistically mo-
tivated extraction patterns to extract candidate attributes
from sentences in documents, and from entries in query logs
respectively. Section 4 is the first head-to-head comparison
of the quality of information (in this case, class attributes)
extracted from document collections vs. query logs. Results
are described comparing attributes extracted from approxi-
mately 100 million Web documents vs. 50 million queries.

2. EXTRACTIONOFCLASSATTRIBUTES

2.1 Overview
The extraction method is designed to be simple, general

and generic, allowing for robustness on large amounts of
noisy data, the ability to operate on a wide range of open-
domain target classes, and most importantly ensuring a fair,
apple-to-apple comparison of results obtained from query
logs vs. Web documents. As shown in Figure 1, given a

set of target classes, the extraction method identifies rele-
vant sentences and queries, collects candidate attributes for
various instances of the classes, and ranks the candidate at-
tributes within each class.

2.2 Pre-Processing of Textual Data Sources
The linguistic processing of document collections is lim-

ited to tokenization, sentence boundary detection and part-
of-speech tagging. Comparatively, the queries from query
logs are not pre-processed in any way. Thus, the input data
source is available in the form of part-of-speech tagged doc-
ument sentences with document collections, or query strings
in isolation of other queries in the case of query logs.

2.3 Specification of Target Classes
Following the view that a class is a placeholder for a set

of instances that share similar attributes or properties [7], a
target class (e.g., HeavenlyBody) for which attributes must
be extracted is specified through a set of representative in-
stances (e.g., Venus, Uranus, Sirius etc.). It is straightfor-
ward to obtain high-quality sets of instances that belong to a
common, arbitrary class by either a) acquiring a reasonably
large set of instances through bootstrapping from a small set
of manually specified instances [2]; or b) selecting instances
from available lexicons, gazetteers and Web-derived lists of
names; or c) acquiring the instances automatically from a
large text collection (including the Web), based on the class
name alone [19]; or d) selecting prominent clusters of in-
stances from distributionally similar phrases acquired from
a large text collection [10]; or e) simply assembling instance
sets manually, from Web-based lists.

2.4 Selection of Class Attributes
For robustness and scalability, a small set of linguistically-

motivated patterns extract potential pairs of a class instance
and an attribute from the textual data source. Although the
patterns are the same, their matching onto text is slightly
different on document sentences vs. queries.

With document sentences, each pattern is matched par-
tially against the text, allowing other words to occur around
the match. When a pattern matches a sentence, the outer
boundaries of the match are checked and computed heuris-
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Figure 2: Percentage of input queries of various lengths, computed over all queries (including duplicates) and
over unique queries (first graph); percentage of input documents of various lengths (second graph)

tically based on the part of speech tags. For example, one of
the extraction patterns matches the sentence “Human activ-
ity has affected Earth’s surface temperature during the last
130 years” via the instance Earth, producing the candidate
attribute surface temperature. In contrast, although the sen-
tence “The market share of France Telecom for local traffic
was 80.9% in December 2002” matches one of the patterns
via the instance France, it does not produce any attribute
because the instance is part of a longer sequence of proper
nouns, namely France Telecom.

With queries, patterns are matched fully, with no addi-
tional words allowed around the match and with no addi-
tional checks. Thus, the outer boundaries of the candidate
attributes are approximated trivially through an extremity
of the query, producing the candidate attributes size and
download full version from the queries size of venus and
download full version of mdk2 respectively.

With the exception of how the patterns are matched onto
text (i.e., fully vs. partially), the extraction method operates
identically on both documents vs. queries.

2.5 Ranking of Class Attributes
A candidate attribute selected for an instance from the

input text (e.g., diameter for Jupiter from the first sentence,
or atmosphere for earth from the first query in Figure 1) is
in turn a candidate attribute of the class(es) to which the
instances belong. For example, diameter and atmosphere be-
come associated to the class C1 in Figure 1 because Jupiter
and Earth are instances of that class. The score of a candi-
date attribute A within a class C is higher if the attribute is
associated to more of the instances I of C:

Sfreq(Att(C,A)) =
|{Ii : ((Ii ∈ C) ∧ Att(Ii,A))}|

|{Ij : Ij ∈ C}|
Candidates simultaneously associated to many classes are

either less useful because they are generic (e.g., history,
meaning, definition), or incorrect because they are extracted
from constructs that occur frequently in natural language
sentences (e.g., case and position extracted from the second
and sixth sentence of Figure 1 respectively). An alternative
scoring formula demotes such attributes accordingly:

Snorm(Att(C,A)) =
Sfreq(Att(C,A))

log(1 + |{Ck : Att(Ck,A)}|)

The scores determine the relative ranking of candidate at-
tributes within a class. The ranked list is passed through a
filter that aims at reducing the number of attributes that are
semantically close to one another, thus increasing the diver-
sity and usefulness of the overall list of attributes for that
class. For the sake of simplicity, we prefer a fast heuristic
that flags attributes as potentially redundant if they have a
low edit distance to, or share the same head word with, an-
other attribute already encountered in the list. With mod-
erate effort and added complexity, this heuristic could be
combined with one of the popular semantic distance metrics
based on WordNet. After discarding redundant attributes,
the resulting ranked lists of attributes constitute the output
of the extraction method.

3. EXPERIMENTAL SETTING

3.1 Textual Data Sources
Two sets of experiments acquire attributes separately from

Web documents maintained by and search queries submit-
ted to the Google search engine. The document collection
(D) consists of approximately 100 million Web documents in
English, as available in a Web repository snapshot in 2006.
The textual portion of the documents is cleaned of html, to-
kenized, split into sentences and part-of-speech tagged using
the TnT tagger [3].

The collection of queries (Q) is a random sample of fully-
anonymized queries in English submitted by Web users in
2006. The sample contains around 50 million unique queries.
Each query is accompanied by its frequency of occurrence
in the logs.

The first graph in Figure 2 shows the distribution of the
queries from the random sample, according to the number of
words in each query. Despite the differences in the distribu-
tions of unique (dotted line) vs. all (solid line) queries, the
first graph in Figure 2 confirms that most search queries in
Q are relatively short. Therefore, the amount of input data
that is actually usable by the extraction method from query
logs is only a fraction of the available 50 million queries,
since an attribute cannot be extracted for a given class un-
less it occurs together with a class instance in an input query,
which is a condition that is less likely to be satisfied in the
case of short queries.
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Class Size Examples of Instances

Actor 1500 Mel Gibson, Julia Roberts, Tom Cruise, Jack Black, Jennifer Lopez, Sharon Stone,
Samuel L. Jackson, Halle Berry, Julia Roberts, Bruce Willis, Morgan Freeman

BasicFood 155 fish, turkey, rice, milk, chicken, cheese, eggs, ice cream, corn, duck, peas, ginger,
cocoa, tuna, garlic, cereal, cucumber, kale, celery, sea bass, okra, butternut squash

CarModel 368 Honda Accord, Audi A4, Ford Focus, Porsche 911, Ford Explorer, Chrysler Crossfire,
Toyota Corolla, Chevrolet Corvette, Jeep Grand Cherokee, Volkswagen Passat

CartoonCharacter 50 Mighty Mouse, Road Runner, Bugs Bunny, Scooby-Doo, Homer Simpson, Popeye,
Donald Duck, Tom and Jerry, Butthead, Woody Woodpecker, Wile E. Coyote

City 589 San Francisco, London, Boston, Ottawa, Dubai, Tucson, Amsterdam, Buenos Aires,
Seoul, Rio de Janeiro, Lyon, Frankfurt, Casablanca, Delhi, Osaka, Reykjavik

Company 738 Adobe Systems, Macromedia, HP, Gateway, Target, Apple Computer, Reuters,
Intel, New York Times, Sun, Delta, Sony, Ford, Nokia, Reuters, Canon

Country 197 Canada, Japan, Australia, India, Liechtenstein, Italy, South Korea, Monaco, Grenada,
Namibia, Dominican Republic, Somalia, Monaco, Mongolia, Nicaragua, Cyprus, Haiti

Drug 345 Vicodin, Soma, Hydrocodone, Xanax, Vioxx, Tramadol, Ambien, Paxil, Zithromax,
Wellbutrin, Norco, Lipitor, Amoxicillin, Alprazolam, Cipro, Omeprazole

Flower 59 Rose, Lotus, Maple, Iris, Lily, Violet, Daisy, Lavender, Tulip, Orchid, Daffodil,
Sunflower, Dahlia, Columbine, Camellia, Hyacinth, Begonia, Poinsettia, Amaryllis

HeavenlyBody 97 Earth, The Sun, Mercury, Uranus, Jupiter, Mars, Venus, Antares, Alpha Centauri,
Saturn, Canopus, Vega, Regulus, Sirius, Altair, Sargas, Rigel, Alhena

Mountain 245 K12, Everest, Mont Blanc, Table Mountain, Etna, Mount Shasta, Annapurna,
Mount Rainier, Pikes Peak, Matterhorn, Monte Rosa, Mauna Loa, Aconcagua

Movie 626 The Office, Star Wars, Die Hard, The Rock, Back to the Future, Lost in Translation,
Fight Club, A Beautiful Mind, Das Boot, Rain Man, Charlie and the Chocolate Factory

NationalPark 59 Joshua Tree National Park, Zion National Park, Great Sand Dunes National Park,
Grand Teton National Park, Rocky Mountain National Park, Sequoia National Park

Painter 1011 Marcel Duchamp, Pablo Picasso, Diego Rivera, Titian, Salvador Dali, Claude Monet,
Frida Kahlo, Vincent van Gogh, El Greco, Edgar Degas, Peter Paul Rubens

ProgLanguage 101 A++, C, C++, BASIC, JavaScript, Java, Perl, Ada, Python, Occam, Common Lisp,
Forth, Fortran, Smalltalk, Visual Basic, AWK, Algol, Datalog, Mathematica

Religion 128 Christianity, Buddhism, Judaism, Islam, Hinduism, Taoism, Confucianism, Wicca,
Baptism, Scientology, Pantheism, Tibetan Buddhism, Shamanism, Sikhism, Puritanism

SoccerTeam 116 Real Madrid, Manchester United, FC Barcelona, Werder Bremen, Anderlecht Brussels,
Ajax Amsterdam, AC Milan, Atletico Madrid, Austria Wien, Deportivo La Coruna

University 501 Harvard, University of Oslo, Stanford, CMU, Yale, Tsing Hua University,
University of Utah, Florida State University, Boston College, Dartmouth College

VideoGame 450 Half Life, Final Fantasy, Need for Speed, Quake, Gran Turismo, Age of Empires,
Kingdom Hearts, Perfect Dark, Dragon Quest, Sim City, Twisted Metal, Spy Hunter

Wine 60 Port, Rose, Champagne, Bordeaux, Rioja, Chardonnay, Chianti, Syrah, Pinot Noir,
Merlot, Cabernet Sauvignon, Sauvignon Blanc, Riesling, Zinfandel, Malbec

Table 2: Target classes with examples of instances

The second graph in Figure 2 shows the distribution of
the input Web documents, according to the number of words
after documents were cleaned of html tags. As expected,
the distribution of documents is quite different from that of
queries, as illustrated by the two graphs in Figure 2. First,
the possible range of the number of words is much wider
in the case of Web documents, since documents are signifi-
cantly longer than queries. Consequently, the percentage of
documents having any given length is quite small, regard-
less of the length. Second, longer documents tend to occur
less frequently, throughout the entire range of the document
length.

3.2 Target Classes
The target classes selected for experiments are each spec-

ified as an (incomplete) set of representative instances, de-
tails on which are given in Table 2. The number of given
instances varies from 50 (for CartoonCharacter) to 1500 (for
Actor), with a median of 197 instances per class. The classes
also differ with respect to the domain of interest (e.g., Health
for Drug vs. Entertainment for Movie), instance capitaliza-
tion (e.g., instances in BasicFood usually occur in text in
lower rather than upper case), and conceptual type (e.g.,

abstraction for Religion vs. group for SoccerTeam vs. activ-
ity for VideoGame).

Quantitatively, the selected target classes also exhibit great
variation from the point of view of their popularity within
query logs, measured by the sum of the frequencies of the
input queries that fully match any of the instances of each
class (e.g., the queries san francisco for City, or harvard
for University). As shown in Figure 3, the corresponding
frequency sums per target class vary considerably, ranging
between 65,556 (for Wine) and 29,361,706 (for Company).
Therefore, we choose what we feel to be a large enough num-
ber of classes (20) to properly ensure varied experimentation
on several dimensions, while taking into account the time in-
tensive nature of manual accuracy judgments often required
in the evaluation of information extraction systems [2, 4].

4. RESULTS

4.1 Evaluation Procedure
Multiple lists of attributes are evaluated for each class,

corresponding to the combination of the use of one of the
two ranking functions (frequency-based or normalized) on
either Web documents (e.g., D-freq) or query logs (e.g., Q-
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Figure 3: Popularity of the target classes, measured by the aggregated frequency of input queries that are
full, case-insensitive matches of any of the instances in each target class

Label Value Examples of Attributes

vital 1.0 Actor: date of birth
BasicFood: fat content
CartoonCharacter: voice actor
Flower: botanical name
ProgLanguage: portability
Wine: taste

okay 0.5 Actor: beauty secrets
CarModel: marketing strategies
Company: vision
HeavenlyBody: relative size
NationalPark: reptiles
Religion: sacred animals

wrong 0.0 BasicFood: low carb
City: edge
CarModel: driver
SoccerTeam: clash
Movie: fiction
Mountain: ash

Table 3: Correctness labels for the manual assess-
ment of attributes

norm). To remove any undesirable psychological bias to-
wards higher-ranked attributes during the assessment, the
elements of each list to be evaluated are sorted alphabeti-
cally into a merged list.

A human judge manually assigns a correctness label to
each attribute of the merged list within its respective class.
Similarly to methodology previously proposed to evaluate
answers to Definition questions [21], an attribute is vital if
it must be present in an ideal list of attributes of the target
class; okay if it provides useful but non-essential information;
and wrong if it is incorrect. Thus, a correctness label is
manually assigned to a total of 5,859 attributes extracted
for the 20 target classes, in a process that confirms that

evaluation of information extraction methods can be quite
time consuming.

To compute the overall precision score over a given ranked
list of extracted attributes, the correctness labels are con-
verted to numeric values as shown in Table 3. Precision at
some rank N in the list is thus measured as the sum of the
assigned values of the first N candidate attributes, divided
by N .

4.2 Precision
For a formal analysis of qualitative performance, Table 4

provides a detailed picture of precision scores for each of the
twenty target classes. For completeness, the scores in the
table capture precision at the very top of the extracted lists
of attributes (rank 5) as well as over a wider range of those
lists (ranks 10 through 50).

Two conclusions can be drawn after inspecting the results.
First, the quality of the results varies among classes. At the
lower end, the precision for the class Wine is below 0.40 at
rank 5. At the higher end, the attributes for Company are
very good, with precision scores above 0.90 even at rank
20. Second, documents and queries are not equally useful
in class attribute extraction. The attributes extracted from
documents are better at the very top of the list (rank 5) for
the class SoccerTeam and at all ranks for City. However,
the large majority of the classes have higher precision scores
when the attributes are extracted from queries rather than
documents. The differences in quality are particularly high
for classes like HeavenlyBody, CarModel, BasicFood, Flower
and Mountain. To better quantify the quality gap, the last
rows of Table 4 show the precision computed as an aver-
age over all classes, rather than for each class individually.
Consistently over all computed ranks, the precision is about
45% better on average when using queries rather than doc-
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Class Precision
@5 @10 @20 @30 @40 @50

D Q D Q D Q D Q D Q D Q

Actor (Abs) 0.30 0.70 0.45 0.85 0.55 0.82 0.56 0.80 0.55 0.75 0.55 0.72
BasicFood (Abs) 0.40 1.00 0.25 1.00 0.27 0.77 0.20 0.68 0.15 0.67 0.16 0.69
CarModel (Abs) 0.30 1.00 0.50 0.95 0.55 0.77 0.46 0.80 0.51 0.76 0.49 0.74

CartoonCharacter (Abs) 0.50 0.60 0.50 0.55 0.45 0.45 0.41 0.43 0.43 0.47 0.42 0.45
City (Abs) 0.60 0.40 0.60 0.30 0.50 0.22 0.46 0.16 0.42 0.27 0.42 0.31

Company (Abs) 1.00 1.00 1.00 0.95 0.97 0.90 0.83 0.83 0.78 0.80 0.69 0.76
Country (Abs) 0.60 1.00 0.50 0.90 0.50 0.87 0.55 0.85 0.52 0.87 0.52 0.88

Drug (Abs) 0.80 1.00 0.80 1.00 0.75 1.00 0.55 0.90 0.56 0.86 0.55 0.87
Flower (Abs) 0.40 1.00 0.30 0.90 0.25 0.77 0.23 0.71 0.20 0.65 0.18 0.59

HeavenlyBody (Abs) 0.40 1.00 0.35 1.00 0.42 0.97 0.53 0.88 0.41 0.83 0.38 0.79
Mountain (Abs) 0.20 0.80 0.10 0.90 0.12 0.85 0.11 0.71 0.12 0.66 0.17 0.62

Movie (Abs) 0.60 0.90 0.55 0.95 0.70 0.90 0.60 0.80 0.56 0.76 0.51 0.74
NationalPark (Abs) 1.00 1.00 0.60 0.70 0.55 0.82 0.50 0.80 0.45 0.68 0.42 0.63

Painter (Abs) 0.80 1.00 0.80 1.00 0.80 0.97 0.76 0.95 0.73 0.93 0.72 0.88
ProgLanguage (Abs) 0.40 1.00 0.40 0.95 0.62 0.72 0.61 0.70 0.55 0.67 0.50 0.58

Religion (Abs) 0.80 0.90 0.70 0.95 0.67 0.95 0.51 0.86 0.48 0.86 0.47 0.82
SoccerTeam (Abs) 0.80 0.50 0.50 0.55 0.35 0.42 0.36 0.35 0.33 0.26 0.33 0.22

University (Abs) 0.60 0.80 0.65 0.90 0.47 0.82 0.51 0.81 0.48 0.72 0.46 0.65
VideoGame (Abs) 0.90 1.00 0.80 0.70 0.70 0.57 0.55 0.51 0.55 0.55 0.52 0.48

Wine (Abs) 0.40 0.20 0.30 0.40 0.20 0.42 0.26 0.38 0.25 0.33 0.28 0.27

Average-Class (Abs) 0.59 0.84 0.53 0.82 0.52 0.75 0.48 0.70 0.45 0.67 0.44 0.63
Average-Class (Rel) - +42% - +54% - +44% - +45% - +48% - +43%
Average-Class (Err) - -60% - -61% - -47% - -42% - -58% - -43%

Table 4: Precision of attributes extracted with normalized ranking from Web documents (D) versus query
logs (Q), expressed as Absolute scores, Relative boosts (Q over D), and Error reduction rates (Q over D)

Class Top Extracted Attributes

BasicFood D: [species, pounds, cup, kinds, lbs, bowl..]
Q: [nutritional value, health benefits, glycemic
index, varieties, nutrition facts, calories..]

CarModel D: [fuel usage, models, driver, appropriate
derivative, assembly, reviews, sales, likes..]
Q: [reliability, towing capacity, gas mileage,
weight, price, pictures, top speed..]

Drug D: [manufacturer, dose, mg, effectiveness,
patient ratings, efficacy, dosage, tablets..]
Q: [side effects, half life, mechanism of
action, overdose, long term use, synthesis..]

Heavenly D: [observations, spectrum, planet, spectra,
Body conjunction, transit, temple, surface..]

Q: [atmosphere, surface, gravity, diameter,
mass, rotation, revolution, moons, radius..]

Religion D: [teachings, practice, beliefs, religion
spread, principles, emergence, doctrines..]
Q: [basic beliefs, teachings, holy book,
practices, rise, branches, spread, sects..]

Table 5: Top attributes extracted with normalized
ranking for various classes from Web documents (D)
vs. query logs (Q)

uments. This is the most important result of the paper.
It shows that query logs represent a competitive resource
against document collections in class attribute extraction.

As an alternative to Table 4, Table 5 illustrates the top
attributes extracted from text for a few of the target classes.
Documents produce more spurious items, as indicated by a
more frequent presence of attributes that are deemed wrong,
such as bowl for BasicFood, mg for Drug, or temple for Heav-
enlyBody. The highest-ranked attributes acquired from query
logs are relatively more useful, particularly for the first three
classes shown in Table 5.

Input Precision
Docs @10 @20 @30 @40 @50
20% 0.53 0.49 0.43 0.40 0.38
50% 0.53 0.47 0.44 0.42 0.39

100% 0.53 0.52 0.48 0.45 0.43

Table 6: Impact of extraction with normalized rank-
ing from a fifth vs. half vs. all of the Web documents

The precision results confirm and quantify the qualitative
advantage of query logs over documents, in the task of at-
tribute extraction. However, the experiments do not take
into account the fact that it is more likely for an extraction
pattern to match a portion of a document rather than a
query, simply because a document contains more raw text.
Other things being equal, although the percentage of spuri-
ous attributes among all extracted attributes is expected to
be similar when extracted from the 100 million documents
vs. 50 million query logs, the absolute number of such spu-
rious attributes is expected to be higher from documents.
Although it is not really intuitive that using too many input
documents could result in lower precision due to an over-
whelming number of spurious attributes, additional experi-
ments verify whether that may be the case. Table 6 com-
pares the precision at various ranks as an average over all
classes, when attributes are extracted (D-norm) from 20%,
50% or 100% of the available input Web documents. The
table shows that, in fact, using fewer documents does not
improve precision, which instead degrades slightly.

Figure 4 provides a graphical comparison of precision from
all Web documents vs. query logs, at all ranks from 1 through
50. Besides the head-to-head comparison of the two types of
data sources, the graphs show the added benefit of normalized
(as opposed to frequency-based) ranking, which is more ap-
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Figure 4: Impact of frequency-based (freq) vs. normalized (norm) ranking for attributes extracted for various
classes from Web documents (D) vs. query logs (Q)

parent in the case of attributes extracted from documents
(D-norm vs. D-freq).

4.3 Coverage
Since the ideal, complete set of items to be extracted is

usually not available, most studies on Web information ex-
traction are forced to forgo the evaluation of recall and focus
instead on measuring precision [4]. Similarly, the manual
enumeration of the complete set of attributes of each target
class, to measure recall, is unfeasible. As a tractable alterna-
tive to evaluating recall, the attributes extracted from docu-

ments (with D-freq or D-norm) that were manually judged as
vital during the evaluation of precision are temporarily con-
sidered as a reference set for measuring the relative recall.
Given this reference set of attributes and a list of attributes
acquired from query logs, the evaluation of the latter con-
sists in automatically verifying whether each attribute from
query logs is an exact, case-insensitive string match of one
of the attributes in the reference set. Therefore, the scores
computed as an average over all target classes in Table 7
represent lower bounds on relative recall rather than actual
relative recall values, since extracted attributes that are se-
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Class Recall
@10 @20 @30 @40 @50

Actor 0.16 0.28 0.28 0.28 0.36
BasicFood 0.12 0.25 0.37 0.50 0.50
CarModel 0.08 0.12 0.12 0.12 0.12

CartoonCharacter 0.09 0.09 0.14 0.14 0.14
City 0.03 0.11 0.11 0.15 0.26

Company 0.07 0.14 0.17 0.17 0.19
Country 0.16 0.20 0.26 0.26 0.30

Drug 0.10 0.13 0.27 0.37 0.37
Flower 0.08 0.08 0.25 0.41 0.41

HeavenlyBody 0.25 0.35 0.40 0.40 0.40
Mountain 0.11 0.11 0.11 0.22 0.22

Movie 0.14 0.29 0.37 0.48 0.48
NationalPark 0.15 0.21 0.21 0.26 0.26

Painter 0.14 0.19 0.21 0.24 0.29
ProgLanguage 0.13 0.16 0.19 0.22 0.22

Religion 0.15 0.25 0.35 0.40 0.40
SoccerTeam 0.08 0.17 0.21 0.21 0.21

University 0.04 0.08 0.16 0.24 0.28
VideoGame 0.12 0.15 0.21 0.25 0.28

Wine 0.05 0.11 0.11 0.11 0.11

Average-Class 0.11 0.17 0.22 0.27 0.29

Table 7: Coverage of the list of attributes extracted
with normalized ranking from query logs, relative
to the set of vital attributes extracted from Web
documents

mantically equivalent but lexically different to one of the
attributes in the reference set (e.g., plural forms, different
spelling, synonyms etc.) unfairly receive no credit. The per-
formance varies by class, with relative recall values in the
range from 0.03 (for City) to 0.25 (for HeavenlyBody) at
rank 10. Similarly, recall values vary from 0.11 (for Wine)
to 0.50 (for BasicFood) at rank 50.

5. COMPARISON TO PREVIOUS WORK
In terms of scale and general goals, our work fits into

a broader trend towards large-scale information extraction.
Previous studies rely exclusively on large document collec-
tions, for mining pre-specified types of relations such as
InstanceOf [15], Person-AuthorOf-Invention [11], Company-
HeadquartersIn-Location [2] or Country-CapitalOf-City [4]
from text. In contrast, we explore the role of both document
collections and query logs in extracting an open, rather than
pre-specified type of information, namely class attributes. A
related recent approach [18] pursues the goal of unrestricted
relation discovery from text.

Our extracted attributes are relations among objects in
the given class, and objects or values from other, “hidden”
classes. Determining the type of the “hidden” argument of
each attribute (e.g., Person and Location for the attributes
chief executive officer and headquarters of the class Com-
pany) is beyond the scope of this paper. Nevertheless, the
lists of extracted attributes have direct benefits in gauging
existing methods for harvesting pre-specified semantic rela-
tions [4, 14], towards the acquisition of relations that are of
real-world interest to a wide set of Web users, e.g., towards
finding mechanisms of action for Drugs and health benefits
for BasicFood.

Query logs have been a natural candidate in efforts to
improve the quality of information retrieval, either directly
through re-ranking of retrieved documents [23, 22, 1] and

query expansion [6], or indirectly through the development
of spelling correction models [8]. [13] were the first to ex-
plore query logs as a resource for acquiring explicit relations,
but evaluated their approach on a very small set of target
classes, without a comparison to traditional document-based
methods. Such a comparative study is highly useful, if not
necessary, before further explorations based on query logs.

In [5], the acquisition of attributes and other knowledge
relies on Web users who explicitly specify it by hand. In
contrast, we may think of our approach as Web users im-
plicitly giving us the same type of information, outside of
any systematic attempts to collect knowledge of general use
from the users.

The method proposed in [20] applies lexico-syntactic pat-
terns to text within a small collection of Web documents.
The resulting attributes are evaluated through a notion of
question answerability, wherein an attribute is judged to be
valid if a question can be formulated about it. More pre-
cisely, evaluation consists in users manually assessing how
natural the resulting candidate attributes are, when placed
in a wh- question. Comparatively, our evaluation is stricter.
Indeed, many attributes, such as long term uses and users
for the class Drugs, are marked as wrong in our evaluation,
although they would easily pass the question answerability
test (e.g., “What are the long term uses of Prilosec?”) used
in [20].

6. CONCLUSION
Confirming our intuition that Web query logs as a whole

mirror a significant amount of knowledge present within Web
documents, the experimental results of this paper introduce
query logs as a valuable resource in textual information ex-
traction. Somewhat surprisingly, a robust method for ex-
tracting class attributes produces significantly better results
when applied to query logs rather than Web documents, thus
holding the promise of a new path in research in information
extraction. Ongoing work includes a model for combining
the two types of data sources while accounting for the differ-
ence in their variability, a weakly supervised method based
on seeds rather than patterns, and exploration of the role of
query logs in other information extraction tasks.
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