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Hamiltonian Cycle Problem

Hamiltonian Cycle

Given a directed graph G , is there a cycle that visits every vertex
exactly once?

Such a cycle is called a Hamiltonian cycle.



Hamiltonian Cycle is NP-complete

Theorem

Hamiltonian Cycle is NP-complete.

Proof. First, HamCycle ∈ NP. Why?

Second, we show 3-SAT ≤P Hamiltonian Cycle.

Suppose we have a black box to solve Hamiltonian Cycle, how do
we solve 3-SAT?

In other words: how do we encode an instance I of 3-SAT as a
graph G such that I is satisfiable exactly when G has a
Hamiltonian cycle.

Consider an instance I of 3-SAT, with variables x1, . . . , xn and
clauses C1, . . . , Ck .



Reduction Idea

Reduction Idea (very high level):

• Create some graph structure (a “gadget”) that represents the
variables

• And some graph structure that represents the clauses

• Hook them up in some way that encodes the formula

• Show that this graph has a Ham. cycle iff the formula is
satisfiable.



Gadget Representing the Variables
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Direction we travel along this 
chain represents whether to set 
the variable to true or false.
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Hooking in the Clauses

...
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false

Direction we travel along this 
chain represents whether to set 
the variable to true or false.
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Add a new node for each clause:

Connect it this 
way if xi in Ck

Connect it this 
way if xi in Ck

   



Connecting up the paths
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Connecting up the paths
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Hamiltonian Cycle is NP-complete

• A Hamiltonian path encodes a truth assignment for the
variables (depending on which direction each chain is
traversed)

• For there to be a Hamiltonian cycle, we have to visit every
clause node

• We can only visit a clause if we satisfy it (by setting one of its
terms to true)

• Hence, if there is a Hamiltonian cycle, there is a satisfying
assignment



Hamiltonian Path

Hamiltonian Path: Does G contain a path that visits every node
exactly once?

How could you prove this problem is NP-complete?

Reduce Hamiltonian Cycle to Hamiltonian Path.

Given instance of Hamiltonian Cycle G , choose an arbitrary node v
and split it into two nodes to get graph G ′:

v v'' v'

Now any Hamiltonian Path must start at v ′ and end at v ′′.
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Hamiltonian Path

G ′′ has a Hamiltonian Path ⇐⇒ G has a Hamiltonian Cycle.

=⇒ If G ′′ has a Hamiltonian Path, then the same ordering of
nodes (after we glue v ′ and v ′′ back together) is a Hamiltonian
cycle in G .

⇐= If G has a Hamiltonian Cycle, then the same ordering of nodes
is a Hamiltonian path of G ′ if we split up v into v ′ and v ′′. �

Hence, Hamiltonian Path is NP-complete.



Traveling Salesman Problem

Traveling Salesman Problem

Given n cities, and distances d(i , j) between each pair of cities,
does there exist a path of length ≤ k that visits each city?

Notes:

• We have a distance between every pair of cities.

• In this version, d(i , j) doesn’t have to equal d(j , i).

• And the distances don’t have to obey the triangle inequality
(d(i , j) ≤ d(i , k) + d(k , j) for all i , j , k).



TSP large instance

• David Applegate, AT&T Labs - Research
• Robert Bixby, ILOG and Rice University
• Vašek Chvátal, Rutgers University
• William Cook, Georgia Tech
• Keld Helsgaun, Roskilde University

http://www.tsp.gatech.edu/sweden/index.html

• TSP visiting 24,978 (all) cities in Sweden.

• Solved by David Applegate, Robert Bixby,
Vašek Chvátal, William Cook, and Keld
Helsgaun

• http://www.tsp.gatech.edu/sweden/
index.html

• Lots more cool TSP at
http://www.tsp.gatech.edu/

http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/


Traveling Salesman is NP-complete

Thm. Traveling Salesman is NP-complete.

TSP seems a lot like Hamiltonian Cycle. We will show that

Hamiltonian Cycle ≤P TSP

To do that:

Given: a graph G = (V , E ) that we want to test for a
Hamiltonian cycle,

Create: an instance of TSP.



Creating a TSP instance

A TSP instance D consists of n cities, and n(n − 1) distances.

Cities We have a city ci for every node vi .

Distances Let d(ci , cj) =

{
1 if edge (vi , vj) ∈ E

2 otherwise



TSP Redcution

Theorem

G has a Hamiltonian cycle ⇐⇒ D has a tour of length ≤ n.

Proof. If G has a Ham. Cycle, then this ordering of cities gives a
tour of length ≤ n in D (only distances of length 1 are used).

Suppose D has a tour of length ≤ n. The tour length is the sum of
n terms, meaning each term must equal 1, and hence cities that
are visited consecutively must be connected by an edge in G . �

Also, TSP ∈ NP: a certificate is simply an ordering of the n cities.



TSP is NP-complete

Hence, TSP is NP-complete.

Even TSP restricted to the case when the d(i , j) values come from
actual distances on a map is NP-complete.
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