Hamiltonian Cycle
Hamiltonian Cycle Problem

Hamiltonian Cycle

Given a directed graph G, is there a cycle that visits every vertex exactly once?

Such a cycle is called a Hamiltonian cycle.
Hamiltonian Cycle is NP-complete

Theorem

Hamiltonian Cycle is NP-complete.

Proof. First, HamCycle ∈ **NP**. Why?

Second, we show 3-SAT \(\leq_P\) Hamiltonian Cycle.

Suppose we have a black box to solve Hamiltonian Cycle, how do we solve 3-SAT?

In other words: how do we encode an instance \(I\) of 3-SAT as a graph \(G\) such that \(I\) is satisfiable exactly when \(G\) has a Hamiltonian cycle.

Consider an instance \(I\) of 3-SAT, with variables \(x_1, \ldots, x_n\) and clauses \(C_1, \ldots, C_k\).
Reduction Idea (very high level):

- Create some graph structure (a “gadget”) that represents the variables
- And some graph structure that represents the clauses
- Hook them up in some way that encodes the formula
- Show that this graph has a Ham. cycle iff the formula is satisfiable.
Direction we travel along this chain represents whether to set the variable to \textbf{true} or \textbf{false}. \\

\begin{itemize}
\item \textbf{true}
\item \textbf{false}
\end{itemize}
Add a new node for each clause:

C_k
Connect it this way if x_i in C_k

C_j
Connect it this way if x_i in C_k

Direction we travel along this chain represents whether to set the variable to **true** or **false**.
Connecting up the paths

\[s \xrightarrow{\lambda} x_1 \xrightarrow{\lambda} \ldots \xrightarrow{\lambda} x_n \xrightarrow{\lambda} t \]

Connections between \(x_1, x_2, \ldots, x_n \) and \(s \) and \(t \) are indicated by arrows.
Connecting up the paths

\[x_1 \rightarrow C_1 \rightarrow C_2 \rightarrow \cdots \rightarrow C_k \]

\[s \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \cdots \rightarrow x_n \rightarrow t \]
A Hamiltonian path encodes a truth assignment for the variables (depending on which direction each chain is traversed).

For there to be a Hamiltonian cycle, we have to visit every clause node.

We can only visit a clause if we satisfy it (by setting one of its terms to true).

Hence, if there is a Hamiltonian cycle, there is a satisfying assignment.
Hamiltonian Path

Hamiltonian Path: Does G contain a path that visits every node exactly once?

How could you prove this problem is NP-complete?
Hamiltonian Path: Does G contain a path that visits every node exactly once?

How could you prove this problem is NP-complete?

Reduce Hamiltonian Cycle to Hamiltonian Path.

Given instance of Hamiltonian Cycle G, choose an arbitrary node v and split it into two nodes to get graph G':

Now any Hamiltonian Path must start at v' and end at v''.
Hamiltonian Path

G'' has a Hamiltonian Path \iff G has a Hamiltonian Cycle.

\implies If G'' has a Hamiltonian Path, then the same ordering of nodes (after we glue v' and v'' back together) is a Hamiltonian cycle in G.

\impliedby If G has a Hamiltonian Cycle, then the same ordering of nodes is a Hamiltonian path of G' if we split up v into v' and v''. □

Hence, Hamiltonian Path is NP-complete.
Traveling Salesman Problem

Given \(n \) cities, and distances \(d(i,j) \) between each pair of cities, does there exist a path of length \(\leq k \) that visits each city?

Notes:

- We have a distance between every pair of cities.
- In this version, \(d(i,j) \) doesn’t have to equal \(d(j,i) \).
- And the distances don’t have to obey the triangle inequality \(d(i,j) \leq d(i,k) + d(k,j) \) for all \(i,j,k \).
TSP large instance

- TSP visiting 24,978 (all) cities in Sweden.
- Solved by David Applegate, Robert Bixby, Vašek Chvátal, William Cook, and Keld Helsgaun
- Lots more cool TSP at http://www.tsp.gatech.edu/
Thm. Traveling Salesman is NP-complete.

TSP seems a lot like Hamiltonian Cycle. We will show that

\[\text{Hamiltonian Cycle} \leq_p \text{TSP} \]

To do that:

Given: a graph \(G = (V, E) \) that we want to test for a Hamiltonian cycle,

Create: an instance of TSP.
Creating a TSP instance

A TSP instance D consists of n cities, and $n(n - 1)$ distances.

Cities We have a city c_i for every node v_i.

Distances Let $d(c_i, c_j) = \begin{cases} 1 & \text{if edge } (v_i, v_j) \in E \\ 2 & \text{otherwise} \end{cases}$
TSP Reduction

Theorem

\[G \text{ has a Hamiltonian cycle } \iff D \text{ has a tour of length } \leq n. \]

Proof. If \(G \) has a Ham. Cycle, then this ordering of cities gives a tour of length \(\leq n \) in \(D \) (only distances of length 1 are used).

Suppose \(D \) has a tour of length \(\leq n \). The tour length is the sum of \(n \) terms, meaning each term must equal 1, and hence cities that are visited consecutively must be connected by an edge in \(G \). \(\square \)

Also, TSP \(\in \mathbf{NP} \): a certificate is simply an ordering of the \(n \) cities.
Hence, TSP is NP-complete.

Even TSP restricted to the case when the $d(i,j)$ values come from actual distances on a map is NP-complete.