NP-Complete Problems

CSC 282
The Story So Far

• NP
 • Decision problems that can be solved in polynomial time on a non-deterministic Turing Machine
 • Search problems whose solution can be verified in polynomial time

• Reduction: a polynomial time transformation $A \rightarrow B$
 • Of problems in class A to problems in class B, and
 • Of solutions in class B to solutions in class A

• Hardness goes \rightarrow, easiness goes \leftarrow

• SAT \rightarrow CNF-SAT \rightarrow 3SAT
Graph Coloring Problem

Graph Coloring Problem

Given a graph G, can you color the nodes with $\leq k$ colors such that the endpoints of every edge are colored differently?

Notation: A k-coloring is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for every edge $\{u, v\}$ we have $f(u) \neq f(v)$.

If such a function exists for a given graph G, then G is k-colorable.
How can we test if a graph has a 2-coloring?

Check if the graph is bipartite.

Unfortunately, for $k \geq 3$, the problem is NP-complete.

Theorem

3-Coloring is NP-complete.
Reduction from 3-SAT

We construct a graph G that will be 3-colorable iff the 3-SAT instance is satisfiable.

For every variable x_i, create 2 nodes in G, one for x_i and one for \overline{x}_i. Connect these nodes by an edge:

Create 3 special nodes T, F, and B, joined in a triangle:
Connecting them up

Connect every variable node to B:
Properties

Properties:

- Each of x_i and \bar{x}_i must get different colors.
- Each must be different than the color of B.
- B, T, and F must get different colors.

Hence, any 3-coloring of this graph defines a valid truth assignment!

Still have to constrain the truth assignments to satisfy the given clauses, however.
Connect Clause \((t_1, t_2, t_3)\) up like this:
Suppose Every Term Was False

What if every term in the clause was assigned the **false** color?
Connect Clause \((t_1, t_2, t_3)\) up like this:
Connect Clause \((t_1, t_2, t_3)\) up like this:
Connect Clause \((t_1, t_2, t_3)\) up like this:
Suppose there is a 3-coloring

Top node is colorable iff one of its terms gets the true color.

Suppose there is a 3-coloring.

We get a satisfying assignment by:

- Setting $x_i = \text{true}$ iff v_i is colored the same as T

Let C be any clause in the formula. At least 1 of its terms must be true, because if they were all false, we couldn’t complete the coloring (as shown above).
Suppose there is a satisfying assignment.

We get a 3-coloring of G by:

- Coloring T, F, B arbitrarily with 3 different colors.
- If $x_i = \text{true}$, color v_i with the same color as T and \overline{v}_i with the color of F.
- If $x_i = \text{false}$, do the opposite.
- Extend this coloring into the clause gadgets.

Hence: the graph is 3-colorable iff the formula it is derived from is satisfiable.
3SAT \rightarrow Independent Set

- Independent Set: Given a graph G and number g, find a set of g pairwise non-adjacent vertices

The graph corresponding to $(\overline{x} \lor y \lor \overline{z}) (x \lor \overline{y} \lor z) (x \lor y \lor z) (\overline{x} \lor \overline{y})$.
A problem is NP-Complete if

- It is in NP
- Any problem in NP can be reduced to it

SAT is NP-Complete

Short proof:

- Circuit-SAT \rightarrow SAT

Any problem solvable by a Turing Machine in polynomial time can be solved by circuit of polynomial size
A Slightly Longer Proof

• Instead of a non-deterministic Turing Machine, consider an equivalent model of computing:

 • An ordinary (von-Neumann) style computer with a polynomial amount of (binary) RAM

 • Non-deterministic “choose” instruction

 \[
 \text{choose \{ } x=1; \} \text{ or } \{ \ x=2; \}
 \]

 • FAIL instruction means answer is “no”

 • Answer is “yes” is some series of choices does not end in a fail
Simulation

• Write a Boolean formula that simulates the operation of this machine

• Boolean variable for each memory location at each time step (recall that time is bounded!)

• Boolean variables for the instruction counter and registers at each time step

• Write implications that capture the instruction set
State Transition Formulas

at time 1:
instruction counter is 0001 &
instruction at location 0001 is “increment” &
argument to instruction is location 0101 &
value at location 0101 is “0” ⇒

at time 2:
value at location 0101 is “1”
Looking Ahead

• Last assignment #5 given out Monday

• Will not be turned in

• Instead, material will be covered in exam on last day of class, Dec 12
Kinds of Transitions

• Deterministic transition: formula exactly specifies the state after the execution of the instruction

• Non-deterministic transition: formula allows 2 or more states to possibly result from the execution of an instruction

• Transition to FAIL: a deliberately inconsistent subformula
Reduction

• For any problem in NP, there is an algorithm with some time polynomial time bound p

• Encode a non-deterministic computer with time and space bound p

• Encode the program itself and its input as the initial state of the computer

• Formula is satisfiable iff program does not necessarily fail (answer “no”)