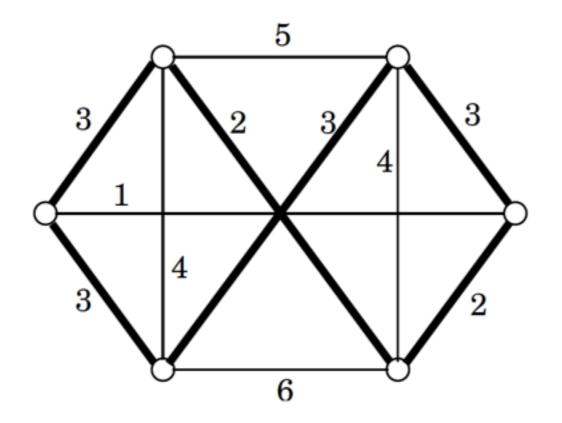
NP-Complete Problems

CSC 282



The Story So Far

- NP
 - Decision problems that can be solved in polynomial time on a nondeterministic Turing Machine
 - Search problems whose solution can be verified in polynomial time
- Reduction: a polynomial time transformation $A \rightarrow B$
 - Of problems in class A to problems in class B, and
 - Of solutions in class B to solutions in class A
 - Hardness goes →, easiness goes ←
 - SAT \rightarrow CNF-SAT \rightarrow 3SAT

Graph Coloring Problem

Graph Coloring Problem

Given a graph G, can you color the nodes with $\leq k$ colors such that the endpoints of every edge are colored differently?

<u>Notation</u>: A *k*-coloring is a function $f : V \rightarrow \{1, ..., k\}$ such that for every edge $\{u, v\}$ we have $f(u) \neq f(v)$.

If such a function exists for a given graph G, then G is k-colorable.

Special case of k = 2

How can we test if a graph has a 2-coloring?

Check if the graph is bipartite.

Unfortunately, for $k \ge 3$, the problem is NP-complete.

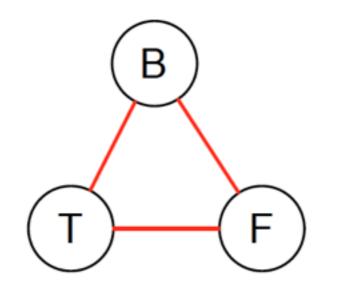
Theorem

3-Coloring is NP-complete.

We construct a graph G that will be 3-colorable iff the 3-SAT instance is satisfiable.

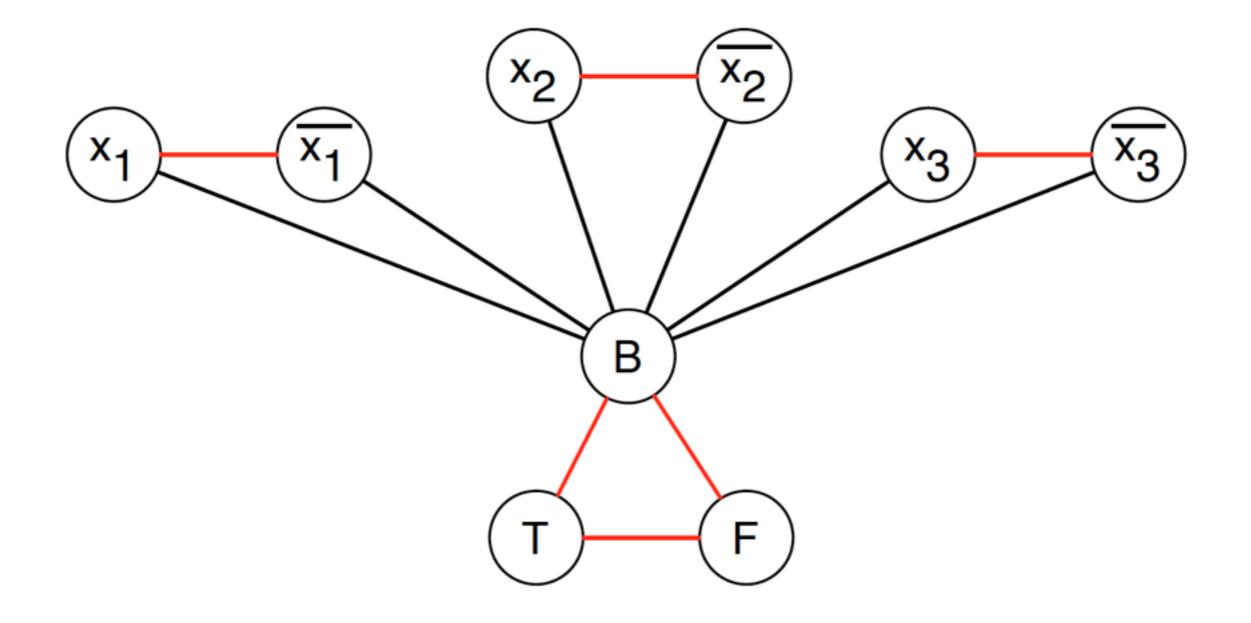
For every variable x_i , create 2 nodes in G, one for x_i and one for $\bar{x_i}$. Connect these nodes by an edge:

Create 3 special nodes T, F, and B, joined in a triangle:



Connecting them up

Connect every variable node to B:



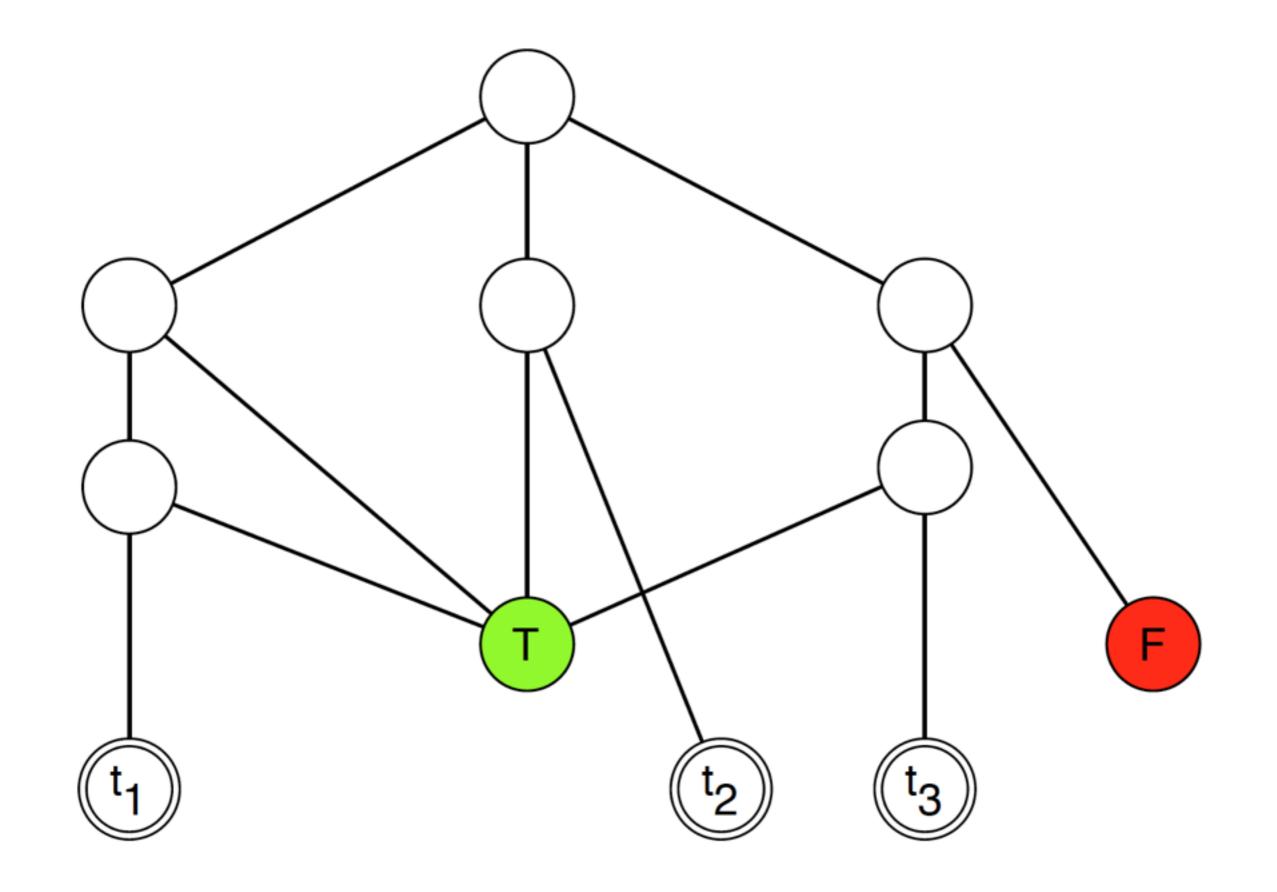
Properties

Properties:

- Each of x_i and $\bar{x_i}$ must get different colors
- Each must be different than the color of B.
- B, T, and F must get different colors.

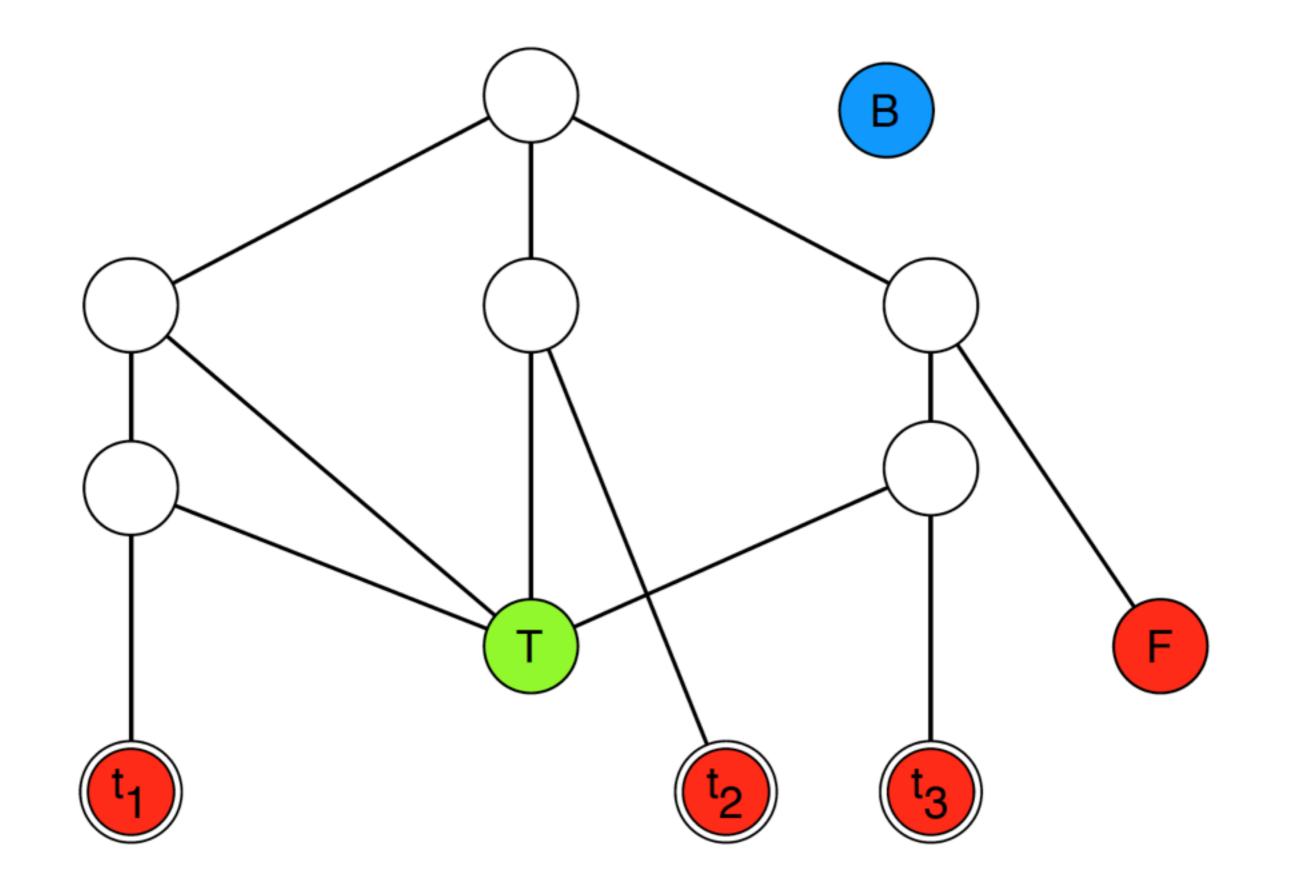
Hence, any 3-coloring of this graph defines a valid truth assignment!

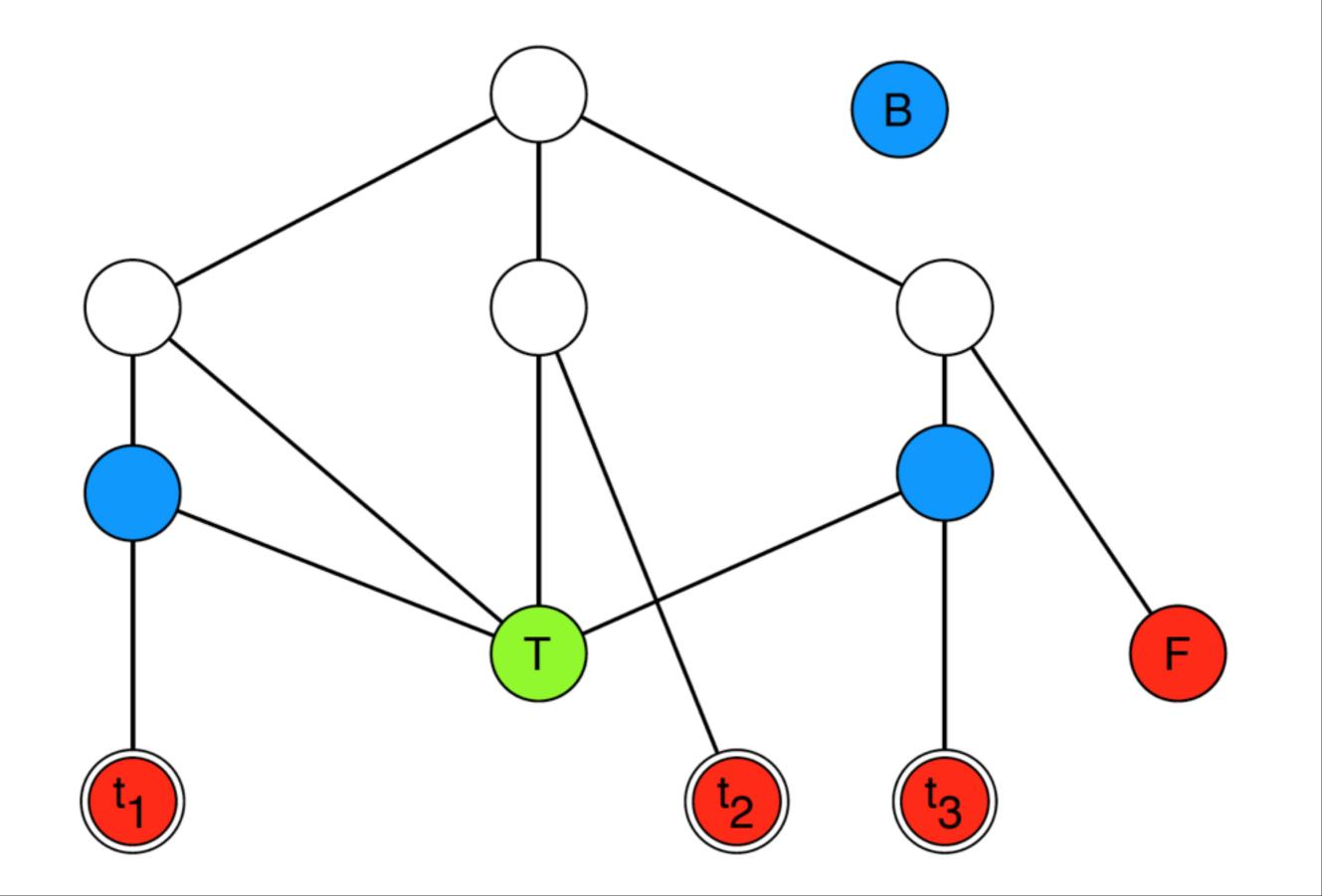
Still have to constrain the truth assignments to satisfy the given clauses, however.

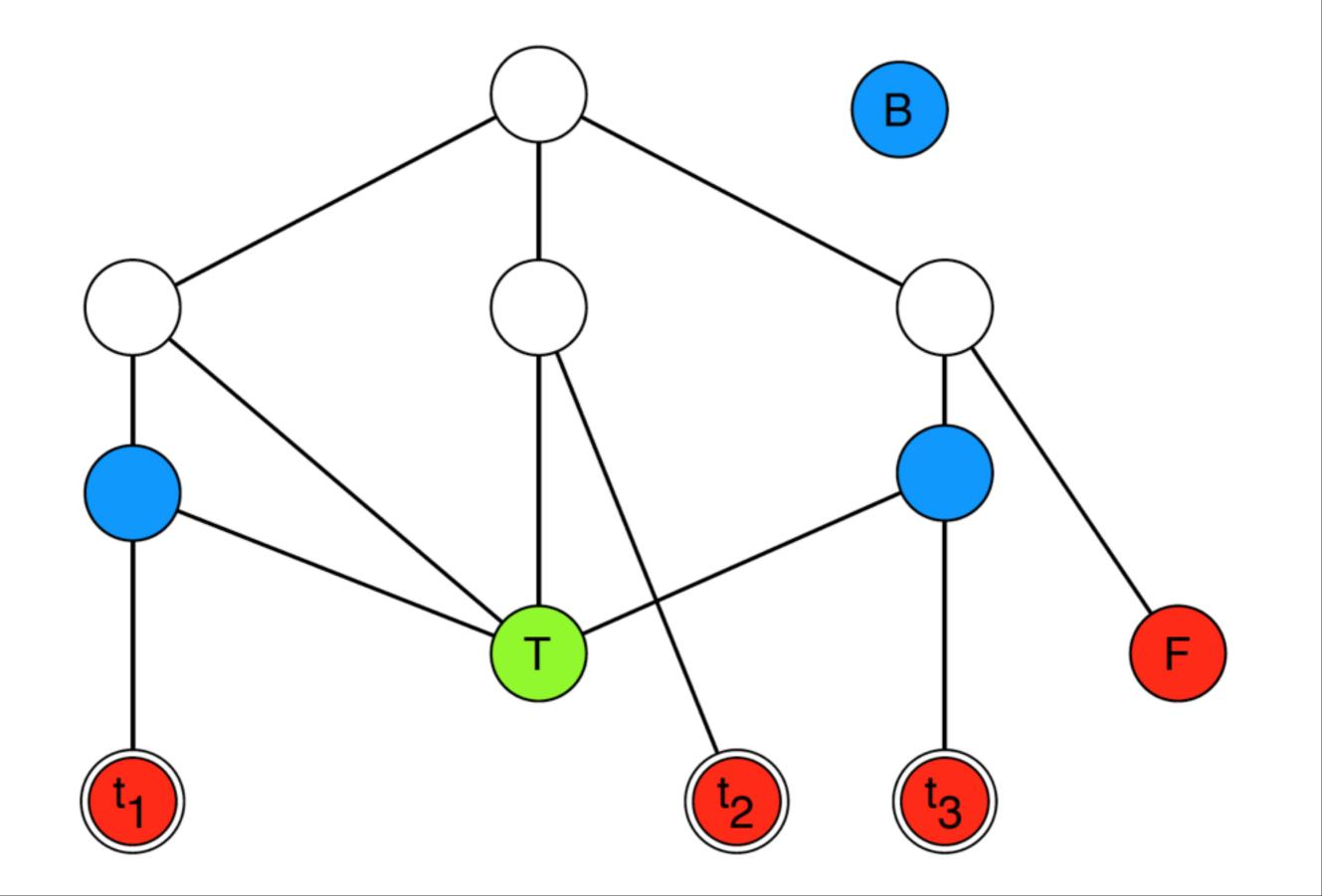


Suppose Every Term Was False

What if every term in the clause was assigned the **false** color?







Top node is colorable iff one of its terms gets the **true** color.

Suppose there is a 3-coloring.

We get a satisfying assignment by:

• Setting $x_i =$ true iff v_i is colored the same as T

Let C be any clause in the formula. At least 1 of its terms must be true, because if they were all false, we couldn't complete the coloring (as shown above).

Suppose there is a satisfying assignment.

We get a 3-coloring of G by:

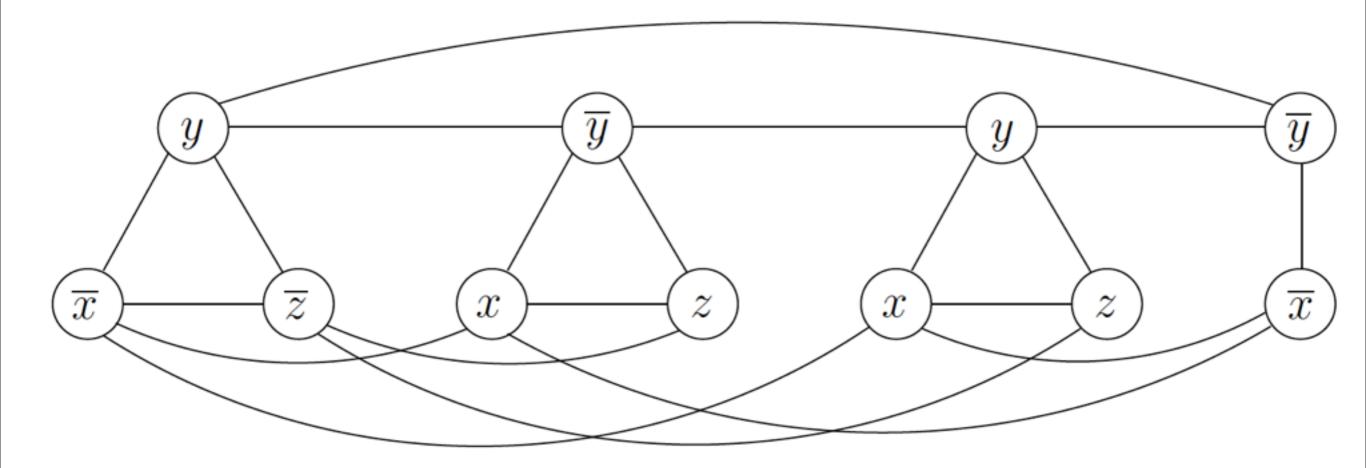
- Coloring T, F, B arbitrarily with 3 different colors
- If x_i = true, color v_i with the same color as T and v
 _i with the color of F.
- If $x_i =$ **false**, do the opposite.
- Extend this coloring into the clause gadgets.

Hence: the graph is 3-colorable iff the formula it is derived from is satisfiable.

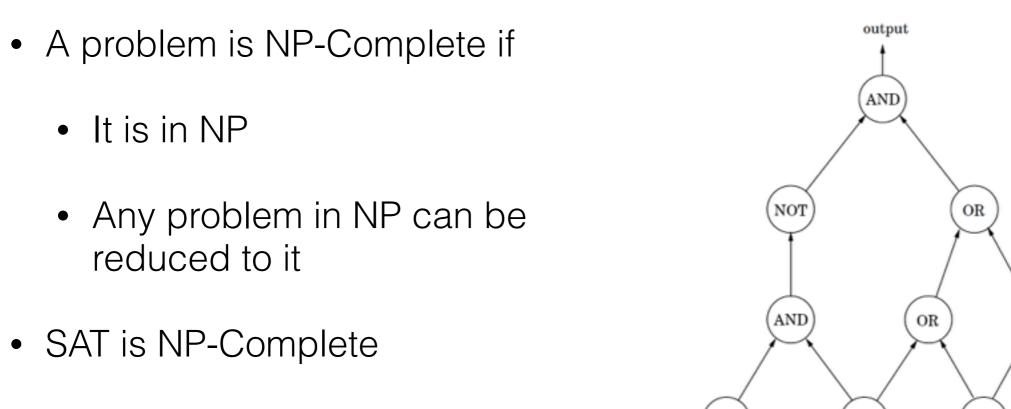
3SAT→Independent Set

 Independent Set: Given a graph G and number g, find a set of g pairwise non-adjacent vertices

The graph corresponding to $(\overline{x} \lor y \lor \overline{z}) (x \lor \overline{y} \lor z) (x \lor y \lor z) (\overline{x} \lor \overline{y}).$



NP-Complete



- Short proof:
 - Circuit-SAT → SAT
 - Any problem solvable by a Turing Machine in polynomial time can be solved by circuit of polynomial size

true

AND

A Slightly Longer Proof

- Instead of a non-deterministic Turing Machine, consider an equivalent model of computing:
 - An ordinary (von-Neumann) style computer with a polynomial amount of (binary) RAM
 - Non-deterministic "choose" instruction

choose { x=1;} or { x=2;}

- FAIL instruction means answer is "no"
- Answer is "yes" is some series of choices does not end in a fail

Simulation

- Write a Boolean formula that simulates the operation of this machine
- Boolean variable for each memory location at each time step (recall that time is bounded!)
- Boolean variables for the instruction counter and registers at each time step
- Write implications that capture the instruction set

State Transition Formulas

at time 1: instruction counter is 0001 & instruction at location 0001 is "increment" & argument to instruction is location 0101 & value at location 0101 is "0" \Rightarrow

at time 2: value at location 0101 is "1"

Looking Ahead

- Last assignment #5 given out Monday
- Will not be turned in
- Instead, material will be covered in exam on last day of class, Dec 12

Kinds of Transitions

- Deterministic transition: formula exactly specifies the state after the execution of the instruction
- Non-deterministic transition: formula allows 2 or more states to possibly result from the execution of an instruction
- Transition to FAIL: a deliberately inconsistent subformula

Reduction

- For any problem in NP, there is an algorithm with some time polynomial time bound p
- Encode a non-deterministic computer with time and space bound p
- Encode the program itself and its input as the initial state of the computer
- Formula is satisfiable iff program does not necessarily fail (answer "no")