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The Story So Far
• NP 

• Decision problems that can be solved in polynomial time on a non-
deterministic Turing Machine 

• Search problems whose solution can be verified in polynomial time 

• Reduction: a polynomial time transformation A→B 

• Of problems in class A to problems in class B, and 

• Of solutions in class B to solutions in class A 

• Hardness goes →, easiness goes ← 

• SAT → CNF-SAT → 3SAT



























3SAT→Independent Set
• Independent Set: Given a graph G and number g, 

find a set of g pairwise non-adjacent vertices



NP-Complete
• A problem is NP-Complete if 

• It is in NP 

• Any problem in NP can be  
reduced to it 

• SAT is NP-Complete 

• Short proof: 

• Circuit-SAT → SAT 

• Any problem solvable by a Turing Machine in polynomial time 
can be solved by circuit of polynomial size



A Slightly Longer Proof
• Instead of a non-deterministic Turing Machine, consider 

an equivalent model of computing: 

• An ordinary (von-Neumann) style computer with a 
polynomial amount of (binary) RAM 

• Non-deterministic “choose” instruction 

 choose { x=1;} or { x=2;}  

• FAIL instruction means answer is “no” 

• Answer is “yes” is some series of choices does not 
end in a fail



Simulation
• Write a Boolean formula that simulates the 

operation of this machine 

• Boolean variable for each memory location at each 
time step (recall that time is bounded!) 

• Boolean variables for the instruction counter and 
registers at each time step 

• Write implications that capture the instruction set



State Transition Formulas
at time 1: 
instruction counter is 0001 &  
instruction at location 0001 is “increment” &  
argument to instruction is location 0101 &  
value at location 0101 is “0” ⇒ 
         at time 2:  
         value at location 0101 is “1”  
 



Looking Ahead

• Last assignment #5 given out Monday 

• Will not be turned in 

• Instead, material will be covered in exam on last 
day of class, Dec 12



Kinds of Transitions
• Deterministic transition: formula exactly specifies 

the state after the execution of the instruction 

• Non-deterministic transition: formula allows 2 or 
more states to possibly result from the execution of 
an instruction 

• Transition to FAIL: a deliberately inconsistent 
subformula



Reduction
• For any problem in NP, there is an algorithm with 

some time polynomial time bound p 

• Encode a non-deterministic computer with time and 
space bound p 

• Encode the program itself and its input as the initial 
state of the computer 

• Formula is satisfiable iff program does not 
necessarily fail (answer “no”)


