
NP-Complete Problems
CSC 282

The Story So Far
• NP

• Decision problems that can be solved in polynomial time on a non-
deterministic Turing Machine

• Search problems whose solution can be verified in polynomial time

• Reduction: a polynomial time transformation A→B

• Of problems in class A to problems in class B, and

• Of solutions in class B to solutions in class A

• Hardness goes →, easiness goes ←

• SAT → CNF-SAT → 3SAT

3SAT→Independent Set
• Independent Set: Given a graph G and number g,

find a set of g pairwise non-adjacent vertices

NP-Complete
• A problem is NP-Complete if

• It is in NP

• Any problem in NP can be  
reduced to it

• SAT is NP-Complete

• Short proof:

• Circuit-SAT → SAT

• Any problem solvable by a Turing Machine in polynomial time
can be solved by circuit of polynomial size

A Slightly Longer Proof
• Instead of a non-deterministic Turing Machine, consider

an equivalent model of computing:

• An ordinary (von-Neumann) style computer with a
polynomial amount of (binary) RAM

• Non-deterministic “choose” instruction

 choose { x=1;} or { x=2;}

• FAIL instruction means answer is “no”

• Answer is “yes” is some series of choices does not
end in a fail

Simulation
• Write a Boolean formula that simulates the

operation of this machine

• Boolean variable for each memory location at each
time step (recall that time is bounded!)

• Boolean variables for the instruction counter and
registers at each time step

• Write implications that capture the instruction set

State Transition Formulas
at time 1: 
instruction counter is 0001 &  
instruction at location 0001 is “increment” &  
argument to instruction is location 0101 &  
value at location 0101 is “0” ⇒ 
 at time 2:  
 value at location 0101 is “1”  
 

Looking Ahead

• Last assignment #5 given out Monday

• Will not be turned in

• Instead, material will be covered in exam on last
day of class, Dec 12

Kinds of Transitions
• Deterministic transition: formula exactly specifies

the state after the execution of the instruction

• Non-deterministic transition: formula allows 2 or
more states to possibly result from the execution of
an instruction

• Transition to FAIL: a deliberately inconsistent
subformula

Reduction
• For any problem in NP, there is an algorithm with

some time polynomial time bound p

• Encode a non-deterministic computer with time and
space bound p

• Encode the program itself and its input as the initial
state of the computer

• Formula is satisfiable iff program does not
necessarily fail (answer “no”)

