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Quantum mechanics

'S the operatl
system that o

gle

her

pohysical theories run
on as applications.

Scott Aaronson




Inevitability of Quantum
\Vlechanics

* Quantum mechanics is what
you would inevitably come up
with if you started with
probabillity theory, and then
said, let's try to generalize it sO
that the numbers we used to
call “probabilities” can be
negative [complex] numbers

e Scott Aaronson




From Propability to
Amplitudes and Back

» Classical bit |0)=bitis0, |1)=bitis 1
= P(‘ O>),P(‘ 1>) <1
P(0))+P(1))=1

. Qubit: 1Y) =0y |0)+a, |1)

0 =<|o|,|a| =1

| +ey| =1

P(OD=[er|  P(1)=|er|



Multiple Qubits

* Quantum state of 2 qubits is a linear
combination of 4 classical states

e For n qubits, guantum
state Is a superposition
of 2" classical states




Partial Measurements

e |f only some of a entangled set of qubits are
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* Example: suppose first bit is observed to be O.

Then:




Compact Representation

* The quantum state of n qubits is characterized by 2"
amplitudes

e Thus: a list of 2" numbers
(amplitudes) can be represented
using only n quits

 Equivalently: we can represent a list of K numbers using
only log(k) qubits

* |tis easy to convert a list of K numbers into the
superposition of log(k) quits - but the other direction is
tricky!



General Form of a Quantum
Algorithm




Discrete Fourler Transtorm

Basis for signal processing: transform time domain to
frequency domain and vice-versa

Separates out the frequencies that contribute to a
complicated signal

Input: M-dimension vector a
e samples over time

e Qutput: M-dimensional vector [3

 Amplitudes of frequencies



Computing Fourier
Transtorm

y2(M —1)
W

w.(A\/ 1)y

L y(M=1)(M-1)

* Using matrix multiplication: O(M?) W = ¢>"M

» Fast Fourier Transform: O(M log M)

e Quantum Fourier Transform: O(logzM)



The Exponential
Superposition Trick

 The classic FFT represents
the input a as a vector of
length M, and involves log(M)
stages

e O(Mlog M)

* [he quantum algorithm
represents a as the
superposition of log(M) bits,
and involves log(M) stages

e O(log°M)



Getting the Answer Out

« Classic algorithm outputs the M-length vector [3
e Quantum FT results in a superposition

BY=3 " Bl

 Reading it collapses the superposition, yielding just
one of Its classical states

» Outputs index j with probability |ﬁ]|

e £.g.: most likely to return the most important
frequency that make up the original signal



Periodicity
* A special case where we can read out the complete

answer from the guantum FT: when the input is periodic

* Exactly one non-zero value repeated every k positions
INn the input vector

period 3

* Many quantum algorithms (e.g. factoring) make use of
this property



Quantum Circuits



Operations on Qubits - Reversible Logic

“Due to the nature of quantum physics, the destruction of
information in a gate will cause heat to be evolved which can

destroy the superposition of qubits.

In these 3 cases,
information is

being destroyed

EXx.
Input Output
The AND Gate A B C
0 0 0
A @ \ 0 1 0
. B
B e / 1 0 0
1 1 1

“This type of gate cannot be used. We must use

Quantum Gates.




Quantum Gates

* Quantum Gates are similar to classical gates, but do not have
a degenerate output. 1.e. their original input state can be derived

from their output state, uniquely. They must be reversible.

“This means that a deterministic computation can be performed
on a quantum computer only i1f it 1s reversible. Luckily, it has
been shown that any deterministic computation can be made
reversible.(Charles Bennet, 1973)



Quantum Gates - Hadamard

“Simplest gate involves one qubit and is called a Hadamard
Gate (also known as a square-root of NOT gate.) Used to put
qubits 1nto superposition.

o — # éuonm)
7 A 3=
State State
10> Piate 1> 1) — H — %HO)— 1))
(1AV2)(10> + 11>) ’

Note: Two Hadamard gates used in
succession can be used as a NOT gate




" A
Quantum Gates - Controlled NOT

“A gate which operates on two qubits is called a Controlled-
NOT (CN) Gate. If the bit on the control line 1s 1, invert

the bit on the target line.

Input Output

A - Target TS A’ A B |A P
N o oo o

0 1 1 1

B - Control . B’ 1 0 1 0
1 1 0 1

Note: The CN gate has a similar
behavior to the XOR gate with some

extra information to make it reversible.




" A
Example Operation - Multiplication By 2

* We can build a reversible logic circuit to calculate multiplication
by 2 using CN gates arranged in the following manner:

Input Output
Carry Ones | Carry Ones
Bit Bit Bit Bit
0 0 0 0
0 1 1 0

il
L

[

Carry Bit

4

7

Ones Bit




"
Quantum Gates - Controlled Controlled NOT (CCN)

“A gate which operates on three qubits 1s called a
Controlled Controlled NOT (CCN) Gate. Iff the bits on
both of the control lines is 1 ,then the target bit i1s inverted.

Input Output

A B 6 A’ B’ C’

A - Target 7N A’ 0 0 0 0 0 0

(% o 0o 1[0 o 1

0 1 0 0 1 0
B - Control 1 /| B’ 0 1 1 1 1 1 I

1 0 0 1 0 0

1 0 1 1 0 1

C - Control 2 | C 1 1 0 1 1 0
1 1 1 0 1 1 I



A Universal Quantum Computer

* The CCN gate has been shown to be a universal reversible
logic gate as 1t can be used as a NAND gate.

A - Target 2T A’ Input Output
N ANNBc AT B N @
0 0 0 0 0 0
B - Control 1 B’ 0 0 1 0 0 1
! 0 1 0 0 1 0
0 1 1 1 1 1
C - Control 2 . 3 1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

When our target input is 1, our target
output is a result of a NAND of B and C.




Quantum Factoring



" A
Shor’ s Algorithm

“Shor’ s algorithm shows (in principle,) that a quantum
computer 1s capable of factoring very large numbers in
polynomial time.

The algorithm 1s dependant on
“Modular Arithmetic
“Quantum Parallelism

“Quantum Fourier Transform



The Plan

FACTORING is reduced to finding a nontrivial square root of 1 modulo N.

Finding such a root is reduced to computing the order of a random integer modulo N.

The order of an integer is precisely the period of a particular periodic superposition.

Finally, periods of superpositions can be found by the quantum FFT.




" A
Shor’' s Algorithm - Periodicity

* An important result from Number Theory:

F(a) = x?mod N is a periodic function

*  Choose N =15 and x =7 and we get the following:

7'mod 15=1
7' mod 15=7
7% mod 15 = 4
7 mod 15 = 13

7%mod 15=1



" A
Shor s Algorithm - In Depth Analysis

To Factor an odd integer N (Let’ s choose 15) :

- Choose an integer g such that N < g < 2N * et s pick 256
2. Choose a random integer x such that GCD(x, N) = 1 let’ s pick 7

4. Create two quantum registers (these registers must also be
entangled so that the collapse of the input register corresponds to
the collapse of the output register)

Input register: must contain enough qubits to represent
numbers as large as q-1. up to 255, so we need 8 qubits

Output register: must contain enough qubits to represent
numbers as large as N-1. up to 14, so we need 4 qubits



" J—
Shor’ s Algorithm - Preparing Data

Load the input register with an equally weighted
superposition of all integers from O to g-1. 0 to 2355

Load the output register with all zeros.

The total state of the system at this point will be:

L ¥ 1a. 000
a >
256 a§0 3

Otiiit Note: the comma here
Input P denotes that the

Register Register registers are entangled




" A
Shor’ s Algorithm - Modular Arithmetic

6. Apply the transformation x @ mod N to each number 1n
the input register, storing the result of each computation

: Note that we are using decimal
The output function holds a S

repeating pattern, but it does not

numbers here only for simplicity.

quite match our definition of a  (LEE Output Register

period function (all values are 0 Y I
except every P-th element). 1

od 15 7
So, we'll do a little more work SRS g
before using the Quantum FFT to 13
calculate the period. od 15 1
Viod 15 7
6> 76 Mod 15 4
7> 7" Mod 15 13



Shor’ s Algorithm - Superposition Collapse

Now take a measurement on the output register. This will
collapse the superposition to represent just one of the results
of the transformation, let’ s call this value c.

Our output register will collapse to represent one of
the following:

11>, 14>, 17>, or 113>

For sake of example, lets choose 1>




Shor’ s Algorithm - Entanglement

Now things really get interesting !

Since the two registers are entangled, measuring the output
register will have the effect of partially collapsing the input
register into an equal superposition of each state between 0
and g-1 that yielded ¢ (the value of the collapsed output
register.)

Since the output register collapsed to [1>, the input register

will partially collapse to:
1 1 1

1
veg 10>+ 14> +5 18>+ 775 112>, ...

The probabilities in this case are - since our register is

now 1n an equal superposition of 64 values (0,4, 8, ...252)




" J—
Shor' s Algorithm - QFT

The QFT will essentially peak the probability amplitudes at
integer multiples of g/4 in our case 256/4, or 64.

10>, 164>, 1128>, 1192>, ...

So we no longer have an equal superposition of states, the
probability amplitudes of the above states are now higher
than the other states in our register. We measure the register,
and 1t will collapse with high probability to one of these
multiples of 64, let s call this value p.

With our knowledge of g, and p, there are methods of
calculating the period (one method 1s the continuous fraction
expansion of the ratio between q and p.)




"
Shor’ s Algorithm - The Factors :)

0. Now that we have the period, the factors of N can be
determined by taking the greatest common divisor of N
with respectto x A (P/2) + 1 and x A (P/2) - 1. The 1dea
here 1s that this computation will be done on a classical
computer.

We compute:
Ged(7Y%+1,15) =5
Ged(74%-1,15) =3

We have successfully factored 15!




Next

Quantum Search
Quantum Simulated Annealing
Limitations of Quantum Computing

Real Quantum Computers



Grover s Algorithm

_
/ \

Unsorted database Goal: Find one
of n items “marked” item

» Classically, order n queries to database needed

* Grover 1996: Quantum algorithm using order
vn queries




e (Given unsorted database of N
entries,determine the index of the database
entry that satisties some search criterion

e Say f(w) €{0,1} defines criterion
* Turn f into a quantum subroutine Uy, where
¢ Uu) ‘U)> — '|U)>

o Uy x> =|x>for x #w

Grover diffusion operator

2 |0™) (0% - I,

Repeat O(v/N) times



Simulated Annealing

Goal: find a point that maximizes (or minimizes) an arbitrary function
Start at a random point
Make small changes in the point to increase the function

Randomly make “wrong way” moves according to temperature -
more likely when "hotter”

It cooling is slow enough, guaranteed convergence to optimal point




Quantum Annealing

mherma Jump

* Can “tunnel” to distance
points in the state space

* Tunneling field strength
determines size of
neighborhood

Quantum

* Finding the best point to Tennatg
tunnel to when neighborhood
Is size N requires

* O(N) for classic computer

Configuration

* O(+y/N) for quantum
computer



Quantum vs Classical
Annealing

* Quantum annealing outperforms classical
annealing when energy landscape has high, thin
barriers surrounding shallow local minima

» (Classical annealing can’t climb out

* Quantum implementation beats classical simulation
of quantum annealing when neighborhood size N is
“too big”, but yN is “not too big”

. E.g. N = 1,000,000



Limitations of Quantum
Computing

NP Problems

NP Complete




Implementing Quantum
Computers

 Quantum dots

* “Caged electrons”

* Nuclear magnetic resonance '

« Spin states of molecules as qubits €4 .

e |[IBM 2001: 7-bit implementation of Shor’s algorithms
for factoring



512 qubits
Performs quantum annealing

Sold to Google (for NASA) and
USC-Lockheed Martin

Controversy: is it doing
simulated quantum annealing
Oor quanturm quantum
annealing”?

Has not yet outperformed
ordinary computers on any
real-world problem




Simulating Quantum
Systems

e Richard Feynman (1982) showed that a classical computer
(Turing machine) requires exponential time to simulate a
guantum system, and suggested idea of using a quantum
computer

e Seth Lloyd (1996) showed that a quantum computer can
simulate any quantum system efficiently

 Many quantum simulations of quantum systems have been built

 NIST (2012) - built a simulator with 100s of qubits to simulate
a quantum magnetic system

e Simulator: crystal of beryllium ions




The Big Win: Quantum Simulation
for Quantum Chemistry

QUANTUM SIMULATION

== Aspuru-Guzik group




Limitations of Quantum
Computing

r PSPACE problems 1

NP Problems

NP Complete




