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Abstract

Humans understand spoken language in a continuous
manner, incorporating complex semantic and contex-
tual constraints at all levels of language processing
on a word-by-word basis, but the standard paradigm
for computational processing of language remains
sentence-at-a-time, and does not demonstrate the tight
integration of interpretations at various levels of pro-
cessing that humans do. We introduce the fruit carts
task domain, which has been specifically designed to
elicit language that requires this sort ofcontinuous un-
derstanding. A system architecture that incrementally
incorporates feedback from a real-world reference res-
olution module into the parser is presented as a ma-
jor step towards a continuous understanding system.
A preliminary proof in principle shows that real-world
knowledge can help resolve certain parsing ambiguities,
thus improving accuracy, and that the efficiency of the
parser, as measured by the number of constituents built,
improves by upwards of 30% on certain example sen-
tences with multiple attachment ambiguities. A 26% ef-
ficiency improvement was achieved for a dialogue tran-
script taken from those collected for the fruit carts task
domain. We also argue that real-world reference infor-
mation can help resolve ambiguities in speech recogni-
tion.

Continuous Understanding of Spoken
Language

There are a number of speech-to-intention dialogue systems
which undertake the task of understanding and/or interpert-
ing spoken language, such as Verbmobil (Kasperet al. 1996;
Noth et al. 2000; Pinkal, Rupp, & Worm 2000), Gem-
ini (Dowding et al. 1993; 1994; Mooreet al. 1995) and
TRIPS (Allen et al. 1996; Ferguson, Allen, & Miller 1996;
Ferguson & Allen 1998). The traditional control flow of
such systems is a layered sequential processing where the
output of speech recognition for the entire sentence is passed
to a parser, which in turn hands its analysis to higher-level
modules; only after the entire sentence has been parsed do
modules such as reference resolution and intention recogni-
tion have a chance to analyze the sentence, and the scope
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of their activity is limited to that set of analyses which the
parser has deemed fit to pass forward.

This layered sequential model is certainly appropriate for
processing written text where the entire sentence is available
at once, but the task of understanding speech is inherently in-
cremental because the input is a stream rather than a string.
Humans take advantage of this fact, incorporating all levels
of language analysis simultaneously, from speech recogni-
tion to semantics, reference, and intention recognition, at the
granularity of the word rather than that of the sentence, as
has been shown in the eye-tracking literature (Cooper 1974;
Tanenhaus & Spivey 1996; Allopenna, Magnuson, & Tanen-
haus 1998; Sedivyet al. 1999; Phillips 1996). In the context
of a natural language understanding system we refer to this
immediate incorporation of higher-level information ascon-
tinuous understanding.

While it need not be the case that computers best pro-
cess language in the same fashion as humans, we believe
that continuous understanding models have several signifi-
cant computational advantages, including:

• improving the accuracy and efficiency of real-time spoken
language understanding;

• better supporting the understanding of spontaneous hu-
man speech, which does not proceed in well-formed com-
plete utterances as in written text; and

• enabling better human-computer spoken language inter-
faces (for example, confirming and/or clarifying under-
standing as the user is speaking).

The major computational advantage of continuous under-
standing is that high-level expectations and feedback can
be used to influence the search of lower level processes,
thus leading to a focussed search through hypotheses that
are plausible at all levels of processing. Note that it is the
incorporation of feedback that makes a model continuous,
not the concurrent processing. Incorporating feedback from
higher levels allows a module to intelligently prune its own
search space to remove those hypotheses which can be re-
jected by other modules with access to different informa-
tion; this pruning both speeds the search and improves the
accuracy of the system, because globally unlikely hypothe-
ses become dispreferred. Thus, not only is the accuracy of
the module improved, but so is the accuracy of the system
as a whole since it is less prone to “truncation” errors, where



then-best output at one level does not include the globally
best hypothesis.

A continuous understanding system can more easily un-
derstand spoken language, because spontaneous speech is
conveyed incrementally in segments that often do not re-
semble well-formed sentences of written text. This makes
the understanding process considerably more difficult and
requires a much greater reliance on contextual interpreta-
tion: ensuring that this contextual interpretation is available
simultaneously at all levels is the very essence of continuous
understanding.

Finally, human conversation is a highly interactive ac-
tivity, involving a fine-grained interaction within turns.
This type of interaction enables more efficient communica-
tion, which ideally human-computer interfaces could mimic.
While a computer might not interact in exactly the same way
as people do, grounding mechanisms are needed for effec-
tive human-computer interaction (Horvitz & Paek 1999).

Parsing for Continuous Understanding
In order to have a true end-to-end continuous understand-
ing system, it is necessary that all of the modules operate in
an incremental fashion, able to send forward hypotheses on
a word-by-word basis, and to receive feedback about those
hypotheses from a higher-level module.

Obviously, in any spoken language understanding system,
the speech recognizer is the starting point of processing, and
a significant amount of research has been done to incre-
mentally incorporate higher-level information into speech
modelling, often using an incremental parser to provide ad-
ditional grammatical and/or semantic context beyond that
which is available from the standard n-gram models (Brill
et al. 1998; Jelinek & Chelba 1999; Wang & Harper 2004).
This work is important not only for its ability to improve
performance on the speech recognition task; it also models
the necessary interactions between speech recognition and
parsing in a continuous understanding system. Our research
attempts to further the quest for continuous understanding
by moving one step up the hierarchy, building an incremen-
tal parser which receives advice rather than providing it.1

The robust semantic processing literature provides us with
a number of examples of systems which contain incre-
mental parsers, but not continuous understanding parsers
(Pinkal, Rupp, & Worm 2000; Rose 2000; Worm 1998;
Zechner 1998). These systems pass forward partial parses as
they are constructed, enabling the robust semantic analysis
component to begin its work without waiting for the parser
to finish. However, none of the systems above enable the se-
mantic analysis component to affect the parsing, so they are
not truly continuous understanding parsers.

Schuler (2002) describes a semantic parser that uses the
denotations of constituents in the environment to inform

1Of course, an eventual system might incorporate both aspects
of an incremental parser, providing advice to the speech recogni-
tion component while itself receiving adivce about its hypotheses
from more information-rich modules, but for the moment we are
focussing on the parser as advisee to the exclusion of parser as ad-
visor.

Figure 1: A Screen Capture of a Fruit Cart Session

parsing decisions, and is an excellent first step towards a
continuous understanding parser, but is limited both in that
the feedback consists of a single bit of information (essen-
tially the presence or absence of an object in the world), and
is not a component of a speech-to-intention system.

We have built an initial attempt at a continuous under-
standing parser (Stoness, Tetreault, & Allen 2004) in the
context of an existing task-oriented dialogue system,TRIPS.
The system’s bottom-up parser was modified to communi-
cate incrementally with a reference resolution module, and
the feedback from the higher-level system was incorporated
into the chart so as to inform future parsing decisions.

The resulting system showed that the general architecture
for incremental interaction outlined in the paper could be
productively instantiated, and resulted in reasonably signif-
icant gains in parsing accuracy (5.8%, 8.2% and 9.3% error
reduction), and modest improvements in the number of con-
stituents built by the parser (a reduction of 4.6%, 4.0% and
3.6% in workload).

However, it also became clear that the domain was not
particularly suited to initial experiments in continuous un-
derstanding, because processing dialogues is heavily depen-
dent on accurately resolving references into the discourse
context, a notoriously difficult proposition (Byron 2000).
This suggests that the relatively modest accuracy and per-
formance improvements reported could be improved upon
in a more suitable domain, especially one which relied on
real-world reference resolution to a knowledge base rather
than discourse context.

The Fruit Carts Domain
TRIPSis a modular task-oriented dialogue system which iso-
lates the information dependent on the task to relatively few
modules; thus, when moving to a new domain, the bulk of
the system remains unchanged, which in part accounts for
the wide range of domains that theTRIPS system has been
used in, including interactive planning and advice giving



(e.g., a medication advisor), robot control, and task learning
(e.g., learning to perform tasks on the web). Even though
the tasks and domains differ dramatically, these applications
use the same set of core understanding components.

The fruit carts domain is designed specifically to research
continuous understanding, encouraging both continuous-
style language on the part of the user and multi-modal con-
tinuous response from the system.

The system displays a map consisting of several regions,
and beneath it a variety of fruit and a number of shapes in
which the fruit can be placed (the carts). These square and
triangular carts come in various sizes, and some are deco-
rated with smaller shapes (hearts, stars, diamonds) on the
edges and corners.

Initially, the map is empty, and the user is given a card
depicting the ideal final state of the map that should be
achieved.2 The user then speaks to the system, asking it
to move and rotate carts or fruit, paint carts various colours,
put fruit in carts or carts in regions on the map, or simply
select an object for a later command.

During dialogue collection3 the user spoke to a computer
displaying the interface shown in Figure 1, and a (human)
confederate silently manipulated objects on the screen in a
natural (i.e. continuous) way. Thus, objects would be se-
lected the moment they were understood, and actions would
begin when it was natural to do so.

For example, “move a square to central park” would likely
result in the confederate selecting a square and beginning to
drag it toward the map before the destination “central park”
has even been heard.

This incremental system response resulted in a signifi-
cant amount of continuous language. Because the system
responded incrementally, much as another human (in this
case, the confederate) would, language requesting the rota-
tion of an object ranged from full commands such as “and
you’re going to rotate the square like 30 degrees to the right”
to the much more continuous utterance “rotate itpausea lit-
tle bit morepauseright”, which is only interpretable in light
of the fact that the confederate began actions as soon as the
user’s intentions were understood.

The decorated objects also evoke complicated descrip-
tions that generate multiple attachment ambiguities for a
parser trying to analyse the language. For example, “put
the square in central park right underneath the flag and color
it magenta” and “take a uh small triangle with a star on the
corner and put it um so that the hypoteneuse should be hor-
izontal and it should be in uh pine tree mountain” offer nu-
merous attachment options, and even genuine ambiguities.

The ultimate goal of the fruit carts domain is to build
a continuous understanding system atop the pre-existing
TRIPS framework which responds to user commands in
much the same way that our confederates did: immediately
and incrementally, enabled by an ability to analyse language
at all levels simultaneously. In the meantime, the 52 dia-

2Note that the names of the regions appear only on the user’s
card, rather than on the map itself; names on the map elicit speech
such as “put the banana near the ’a’ in ’park”’.

3Something of a misnomer, as only the user speaks.

Figure 2: Key Components for Continuous Real-World Ref-
erence

logue transcripts, representing 4 trials each from 13 speak-
ers, provide a rich source of language which requires contin-
uous understanding to be interpreted, and the construction of
the system provides a research platform for investigating nu-
merous aspects (and complications) of the move towards a
continuous understanding system.

The Fruit Carts System
As mentioned above, one of the initial goals of the system is
to incorporate higher-level feedback into the parser, in this
case, specifically feedback from real-world reference, albeit
the “real world” of the virtual fruit cart domain.

Providing the parser with information from real-world
reference is anticipated to improve both the efficiency
and accuracy of the parser, because this domain-specific
grounded information will aid the parser in resolving attach-
ment ambiguities, not only by guiding the parser towards the
correct interpretation, but also by steering the parser away
from implausible ones.

Consider the sentence “put the square near the flag in the
park.” A traditional parsing viewpoint would be that this
sentence is inherently ambiguous between (a) moving some
well-specified square to a location close to “the flag in the
park” and (b) putting the square which is near the flag into
the park. However, in a task-oriented domain in which a user
is giving instructions, it would be decidedly odd for a user
to deliberately utter an ambiguous phrase. While accidents
may occur, it is a productive strategy to use continuous un-
derstanding to take into account real-world reference while
assuming that the user’s speech is somehow “appropriate” to
the world.

For example, if a square is currently selected on the
screen, it is very likely that the correct interpretation of the
sentence above involves moving the selected square. More-
over, one can assume in general that any definite noun phrase
(NP) that could refer to the selected object in the world prob-
ably does in the absence of information to the contrary.

Similarly, most referring NPs should probably refer to
some real-world entity; if in the real world no square is close
to a flag, then “the square near the flag” is very unlikely
to be a component of the final parse, barring surprising cir-
cumstances in the user’s construction of the utterance: such
gems as “the square near the flag does not exist”, while cer-
tainly linguistically possible, are, pragmatically speaking,
quite unlikely in a task-oriented domain.

TRIPS is a flexible framework that requires little modifi-



Keyword Article Reference Context
GREAT the SELECTED
GOOD the SET, length = 1
BAD the SET, length> 1
TERRIBLE the SET, length = 0
BAD a SET, length = 1
GOOD a SET, length> 1
TERRIBLE a SET, length = 0
NEUTRAL otherwise

Table 1: Classification of NPs based on Reference Context

Keyword Score
GREAT 1.0
GOOD 0.9
NEUTRAL 0.5
BAD 0.3
TERRIBLE 0.0

Table 2: Classification of NPs based on Reference Context

cation to move to new domains, but the core infrastructure
did require some improvements to enable continuous under-
standing. Figure 2 shows the components most involved in
continuous understanding with real-world reference interac-
tion. The dashed lines represent incremental communica-
tion between modules, while the solid lines represent the
updates that occur after a final sentence interpretation has
been agreed upon.

The continuous understanding portion of the communi-
cation proceeds roughly as follows. Whenever the Parser
builds an NP constituent, it forward the logical form of
the constituent to the Interpretation Manager (IM). The IM
performs two essential functions: first, it filters out non-
referring NPs, immediately informing the parser of this fact;
and second, it uses domain-specific transformation rules to
translate the domain-independent logical form understood
by the parser into a domain-dependent knowledge represen-
tation (KR) appropriate for the Knowledge Base (KB). The
KB then sends back the set of objects which match the spec-
ification provided by the IM, with an additional annotation
if one of those objects is currently selected on the screen.
The IM then interprets this list in the context of the NP con-
stituent to arrive at a real-world reference score. This score
is passed back to the parser to be incorporated into its chart.

The set of referents returned from the knowledge base is
cross-referenced with the article of the original NP, and clas-
sified into one of five categories of “goodness”, as shown in
Table 1. Each of these keywords is then assigned a value
between 0 and 1, as shown in Table 2. Note that the values
shown were chosen purely by intuition, and were the only
ones tried in the experiments; ideally these would be learned
from held-out data.

This reference resolution score is then merged with the
score on the constituent. Experiments with a discourse con-
text advisor in a different domain suggested that of a dozen
candidate feedback regimes, the “Linear Interpolation with

Boost” was most effective in conjunction with the standard
TRIPS parser. The new score for the constituent,Cscore, is
given by

Cscore = (1 − λ

2
) · Pscore + λ · Rscore,

wherePscore is the score assigned by the parser, andRscore

is the score based on the advice from real-world reference.
λ takes a value of 0.1, which was established as optimal
through the aforementioned experiments in a different do-
main.

In this scheme NP candidates which score better than
NEUTRAL have their score go up, while those which score
lower than NEUTRAL have their score go down. Thus,
favoured constituents will be preferentially considered for
further expansion, while dispreferred constituents will lan-
guish in the agenda until called upon as a last resort. Note
that while the incorporation of aTERRIBLE score certainly
penalizes a constituent, the small value ofλ ensures that it
is never completely removed from the search; if the more
favoured candidates fail to pan out in the parse, the penal-
ized constituents can still be productive components of fu-
ture search strategies.

Currently, the IM waits until all processing is complete to
pass the final interpretation of the utterance on to the KB in
the form of a command. Ideally, the IM will issue partial,
underspecified commands as soon as the user’s intentions
are (believed to be) understood.

A Proof in Principle
In this section we provide a brief example of the continu-
ous understanding aspect of the system at work, using the
benefits of processing an ambiguous sentence as a proof in
principle of how both parsing accuracy and efficiency can
be simultaneously improved by the incremental incorpora-
tion of feedback from a real-world reference component.

While eventually the fruit carts system will respond to
speech input, for simplicity’s sake both for this proof in prin-
ciple and for our upcoming preliminary experiments with
the system we use manually transcribed speech from the col-
lected dialogues. Once experiments have shown productive
ways of continuously understanding incrementally arriving
text we can move forward to tackling true speech input.

We began by parsing the sentence “put the square near
the flag in the park” with the standard version of the parser,
operating without continuous understanding. As mentioned
above, for a non-continuous parser this sentence is inher-
ently ambiguous, so the choice of a most likely parse is
somewhat arbitrary; in the event, the parser selected “the
square” as the direct object of the verb, and during the course
of the parse built 197 total constituents.4

Then we created a simple knowledge base,KB-selected,
which features a selected square, and a flag in a park, but no
square near a flag. This set of knowledge clearly favours the

4Measurements of parsing efficiency are always tricky, but
since both the continuous and non-continuous versions of the
parser use identical grammars, the number of constituents built
should serve as a reasonable measure for our purposes.



KB Mode Direct Object Constits selected squares near(sq,flag) in(flag,park)
none standard “the square” 197 n/a n/a n/a n/a
KB-selected standard “the square” 121 square 2 N Y
KB-near standard “the square near the flag” 131 none 2 Y N
KB-park standard *“the square” 165 none 2 Y Y
KB-selected-u standard “the square” 144 square 1 N Y
KB-near-u standard “the square near the flag” 108 none 1 Y N
none permissive “the square ... the park” 204
KB-selected permissive “the square” 127
KB-near permissive “the square near the flag” 147
KB-park permissive “the square ... the park” 124

Table 3: Parsing Accuracy and Efficiency Results for Various Knowledge Bases

interpretation selected by the non-continuous parser above.
The continuous parser output the desired interpretation as
its most likely parse, but only built 121 constituents; an effi-
ciency improvement of almost 40%.

Operating in continuous mode doesn’t just improve the
efficiency of the parser, but its accuracy as well. A differ-
ent initial knowledge base,KB-near, features a square near
a flag, but no flag in a park, and has no square selected. This
KB favours an interpretation in which “the square near the
flag” is the direct object. The non-continuous parser cannot
make this distinction, even in principle, and so to capture the
multiple possible interpretations, each preferable in a differ-
ent context, it is necessary for the parser to feed forward a
number of complete parses at the completion of its process-
ing. A continuous understanding parser, however, has at its
disposal, incrementally and immediately, the same knowl-
edge that would be used to disambiguate the complete parses
in a non-continuous system.

Purely by changing the knowledge base toKB-nearand
allowing the reference feedback to be incorporated into the
parse, the continuous system finds the correct parse as its
most likely candidate, while building only 131 constituents.

KB-park is a third knowledge base which has neither a
selected square nor a square near a flag, but does feature a
square that is near a flag which is in a park. With this KB,
the favoured NP is “the square near the flag in the park”.
However, restrictions on the verb “put” require the parse to
have both a direct and indirect object, and the parser thus
returns to the same interpretation it favoured in the absence
of any information from the KB. Interestingly, this entire
process requires the construction of only 165 constituents;
that is, even when the KB leads the parse somewhat astray,
the incorporation of the domain knowledge still improves on
the base parser’s efficiency of 197 constituents.

The parser also can operate in a permissive mode, al-
lowing required arguments of verbs to be omitted, a phe-
nomenon which occurs with some regularity in spoken lan-
guage, and quite frequently in the fruit carts dialogues. In
this mode the standard parser actually opted for the interpre-
tation “put [the square near the flag in the park]”, building
204 constituents along the way. As Table 3 shows, feedback
from KB-selectedandKB-nearachieved the expected parse
with admirable efficiency, as didKB-park, since in this in-

stance its desired interpretation is permitted by the relaxed
grammar.

Finally, we tested the sentence “put the square near the
flag in the park in the forest”. The non-continuous parser
found “in the forest” as the indirect object, building 396
constituents in the process. UsingKB-parkas a knowledge
source, however, the continuous parser arrived at the same
interpretation in only 196 constituents.

Obviously, the example sentence chosen is highly am-
biguous and not all knowledge bases will match as perfectly
with the intended interpretations as those that we have cho-
sen. But, as we argued earlier, we can expect, in princi-
ple, that the real-world information will tend to help dis-
ambiguate in-context utterances, based on the principle that
users will rarely be either deliberately or accidentally am-
biguous. Moreover, the example sentence, while complex,
is fairly short, and as the discussion in the previous para-
graph demonstrates, the longer the sentence, the larger the
potential time savings. Efficiency in parsing is paramount in
a real-time spoken dialogue system, especially if the system
expects to react prior to the completion of the user’s utter-
ance. For example, when run on a single processor, text-
to-intention interpretation of the the example sentence with
continuous understanding takes approximately 3 seconds, so
inefficiencies could clearly move this out of real-time range
for longer sentences.

A Dialogue Experiment
As well as the proof-in-principle sentences interpreted in
context, we have run the system on the transcript of a com-
plete dialogue from the corpus that we collected for this do-
main. We are in the process of creating hand-corrected gold
standard parses for all collected dialogues, which will al-
low us to evaluate the accuracy of the parser both in non-
continuous and continuous understanding modes; we re-
port preliminary results for the first of these dialogues to
be marked up. In conjunction with gold standard interpre-
tations of the utterances as commands to the system (yet to
be completed), it will also be possible to evaluate the ac-
curacy of the interpretations that the system assigns to each
utterance.

The initial set of six dialogue transcripts to undergo
mark-up were chosen because they contained fewer exam-



UTT Utterance

1 okay so

2 we’re going to put a large triangle with nothing into morningside

3 we’re going to make it blue

4 and rotate it to the left forty five degrees

5 take one tomato and put it in the center of that triangle

6 take two avocados and put it in the bottom of that triangle

7 and move that entire set a little bit to the left and down

8 mmkay

9 now take a small square with a heart on the corner

10 put it onto the flag area in central park

11 rotate it a little more than forty five degrees to the left

12 now make it brown

13 and put a tomato in the center of it

14 yeah that’s good

15 and we’ll take a square with a diamond on the corner

16 small

17 put it in oceanview terrace

18 rotate it to the right forty five degrees

19 make it orange

20 take two grapefruit and put them inside that square

21 now take a triangle with the star in the center

22 small

23 put it in oceanview just to the left of oceanview terrace

24 and rotate it left ninety degrees

25 okay

26 and put two cucumbers in that triangle

27 and make the color of the triangle purple

Table 4: The dialogue

ples of speech that required continuous interpretation, and
thus would be maximally accessible to the existing non-
incremental parser. Table 4 shows the test dialogue chosen.

The experiment proceeded in much the same manner as
described in the proof-in-principle section, with candidate
NPs being sent forward through the Interpretation Man-
ager to the Knowledge Base, which provided feedback on
whether the NP was a reasonable candidate, taking into ac-
count both domain-specific knowledge and the current state
of the world. Because the user’s utterances had to be inter-
preted relative to the state of the world that the user had been
aware of during dialogue collection, a series of knowledge
base updates were performed between sentences to ensure
that the KB was an accurate reflection of what the user had
seen.

The results of the experiment are shown in Table 5, which
lists both the overall parser efficiency for the complete di-
alogue and the number of constituents built for specific ut-
terances of interest. Overall, the continuous understanding
parser only had to build 75% as many constituents as the
standard parser in order to find its first complete parse of
each utterance, with utterances 5 and 6 being shining exam-
ples of the improvements in efficiency that are possible.

Both sentences have a similar structure, in that they are
a conjunction of the selection of a fruit (or fruits) with an
instruction for the placement of that fruit. Both “take one
tomato” and “put it in the center of that triangle” (from ut-
terance 5) are aided by the real-world knowledge, parsing
in 60 and 99 constituents vs. the 212 and 204 of the stan-
dard parser, and this pruning of alternatives aids consider-

Parser Continuous %Work
Dialogue 7003 5221 75

Utt-02 286 203 71
Utt-05 592 160 27
Utt-06 472 148 31
Utt-09 523 483 92
Utt-15 436 444 102
Utt-21 352 528 150

2,9,15,21 1597 1658 104
Remainder 5406 3563 66

Table 5: Parser efficiency for the complete dialogue and for
selected utterances, reported by number of constituents built.
%Work shows the amount of work done by the continous
parser compared to the base parser.

ably in the handling of the conjunction. In the first sen-
tence, the multiple senses of “take” combine productively
with the multiple senses of “one” in the standard parser, but
real-world information has the opportunity to restrict the NP
senses of “one” as being unlikely in the real-world context.
Similarly, the selected tomato and recently accessed triangle
in the real world quickly bias the continuous parser towards
appropriate interpretations of “it” and “that triangle”.

The efficiency gains of the continuous understanding
parser are impressive, but the accuracy of the parser is also
of paramount importance. The base parser found the correct
parse for 26 of the 27 example sentences in the dialogue, an
accuracy rate that represents the effects of selectional restric-
tions, domain-specific lexical preference rules, and years of
hand-tuning rule weights to bias the parser towards those
constructions most common in task-oriented dialogues. For
the utterances in this dialogue, the parser’s default prefer-
ences were correct, although note, as we saw in the proof-
in-principle section, that the base parser is unable to adapt
its parse to reflect the state of the world.

The continuous understanding parser’s first parse was cor-
rect for 22 of the 27 example sentences, with new errors
introduced in utterances 2, 9, 15, and 21. Note that all of
these errors involve the same construction, namely selecting
a shape with a decoration whose location is specified. All
four errors involve the continuous parser attaching the final
PP modifier to the verb rather than to the direct object NP.

In the cases of utterances 2 and 9, the user used an indef-
inite NP to refer to something that was unique in the real
world, and since the KB is happy to approve of “a large tri-
angle” and “a small square with a heart”, of which there
are multiple instances, the PPs “with nothing” and “on the
corner” are attached to the verb rather than the direct ob-
ject NP. If the definite article is used in the utterances, then
both sentences are parsed correctly and the number of con-
stituents built decreases to 170 and 451 respectively (from
203 and 483). Clearly, then, for at least these sentences, the
bias towards unique definites and non-unique indefinites is
too strong, although this may be in part due to users view-
ing objects which are not on the map as prototypes: that is,
more like widgets on a toolbar than unique entities on a map.
Further research is certainly necessary both in automatically



learning the weights assigned to the various categories of re-
sponse and whether these categories are sufficient across the
fruitcart dialogues.

Utterance 15 demonstrates that learning of the interpola-
tion weights is probably necessary, quite possibly tying the
interpolation weight to the function of the candidate NP in a
larger, top-down structure. The bias in the continuous parser
against “the corner”, since corners are not unique, is enough
to ensure that “a square with a diamond on the corner” is
never constructed as a candidate NP (at least not before a
complete parse is found). Again, it seems that the bias to-
wards unique interpretations for definite NPs and multiple
interpretations for indefinite NPs is too strong; here weights
could be learned for a top-down parser based on the role that
the NP was filling: i.e. as NP modifier or indirect object.

The final error introduced by the continuous parser is
quite interesting. The user intended “a triangle with a star
in the center” to refer to a triangle with a star centred on
one edge, and the standard parser interpreted this with the
correct low attachment. However, in the domain, triangles
are containers, so there are no triangles with stars in their
centers. In this case, the KB biases the search away from
star-filled triangles, arguably an appropriate reaction. Ex-
amples like this bring up numerous questions surrounding
evaluations of correctness for continuous parsers, an area of
research we are hoping to explore in this domain.

All four errors that the continuous understanding parser
made could have been mediated by another advisor; while
the parse achieved struck the best balance for the continuous
parser in terms of having each NP interpretable in the real
world, there is no advice flowing back into the parser about
how interpretable each VP is. A command advisor which re-
quires that VPs make sense in the domain would likely have
resulted in the search continuing to find an interpretation that
struck a balance between the competing demands of having
interpretable objects and interpretable commands.

An overall improvement of 26% in the parser’s efficiency
over the course of processing the dialogue is a strong re-
sult despite the decrease in accuracy for one particular gram-
matical construction. Moreover, the efficiency improvement
came, for the most part, in the utterances that the continu-
ous parser got correct; in the four offending sentences the
parser builds 4% more constituents, and in the remaining 23
sentences the performance improvement is 34%.

Feedback and Speech Lattices
In true speech understanding systems, we rarely have the
luxury of a perfect stream of unambiguous words flowing
from the speech recognition component; much more likely
is a lattice, a tightly packed encoding of the ambiguities re-
maining after the speech recognition process.

While multiple word ambiguities in the input will obvi-
ously complicate processing for any system, a continuous
understanding system has significant resources to bring to
bear to help resolve some of these ambiguities, or at least
ensure that the final interpretation is correct in spite of them.

Consider the case of “put the square/pear near the flag in
the park”, where there is a recognition ambiguity at the site

of the third word. In the extreme case, when no pear ex-
ists in the real world, feedback from reference will allow the
parser to resolve the ambiguity almost immediately. Even
if there are both pears and squares in the current instantia-
tion of the world, in many cases, context will help with the
disambiguation.

What’s even better, these efficiency gains are orthogonal
to those demonstrated above involving attachment ambigui-
ties. Regardless of the presence or absence of pears, the sys-
tem will make the same attachment decisions about squares
that it would have anyway. Thus, with a lattice, the refer-
ence interaction prunes all search spaces in parallel, mak-
ing future attachment decisions easier because of the smaller
number of candidates.

It is anticipated that many of the speech recognition am-
biguities packed in the lattice will be uninterpretable relative
to domain knowledge and knowledge about the state of the
real world, and that the increase in interpretation accuracy
will have the rather nice side effect of more often selecting
the correct underlying words from the input speech latice.

Future Work
We plan to have the first version of the full fruit carts system
operational by early Fall 2005. At that time, we will be in-
tegrating theTRIPS components with an initial incremental
ASR output developed by our collaborators at SRI, Andreas
Stolcke and Liz Shriberg. With the full system running, we
will be able to begin to evaluate the benefits of a continu-
ous understanding system from a human-computer interface
angle.

In the interim, we plan to continue research on a contin-
uous understanding parser, working first with the transcripts
of the fruitcart dialogues, and eventually with actual speech
lattice input.

Tests against a hand-tuned parser for accuracy and effi-
ciency are apt to give a somewhat distorted picture of re-
sults, especially where accuracy is concerned, and present
problems with comparability of these results with others in
the parsing literature. We intend to do further experiments
with a version of the parser which learns probabilistic rule
weights.

The feedback classes and the weights reported in this pa-
per were chosen by intuition, and the interpolation parame-
ter was selected in the context of a completely different do-
main; it is expected that learning values for these parameters
from the marked-up fruitcart dialogues will improve the per-
formance of the continuous parser.

As mentioned above, another avenue for development is
the incorporation of an additional command advisor that will
ensure that verb phrase commands can be appropriately in-
terpreted in the domain; such a module would serve as a nice
complement to the current advisor, which only provides in-
put on the suitability of individual noun phrases.

Finally, we plan to provide the parser with lattice output
from a speech recognizer in order to test our intuitions about
continuous understanding providing significant advantages
when applied to the word disambiguation and utterance seg-
mentation tasks.



Conclusion
We designed the fruit carts task domain to be especially pro-
ductive for research in continuous understanding, building
on our earlier experiences with moving towards continu-
ous understanding in less suitable domains. The fruit carts
dialogues are a rich source of language that cannot accu-
rately be interpreted without continuous understanding, and
the proof-in-principle presented here suggests that the con-
tinuous understanding aspects of the fruit carts system will
achieve major improvements in parsing efficiency and accu-
racy, and are likely to result in significant gains in semantic
accuracy as well.

The dialogue results show significant improvements in
efficiency, but highlight the need to develop more princi-
pled parameter selection in the continuous understanding
domain. However, moving from layered sequential archi-
tectures to continuous understanding systems is a major
paradigm shift in natural language processing, and we be-
lieve that the fruit carts system represents a significant ad-
vance in that direction.
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