
Programming
Distributed Memory Sytems
Using OpenMP

Rudolf Eigenmann,
Ayon Basumallik, Seung-Jai Min,

School of Electrical and Computer Engineering,
Purdue University,

http://www.ece.purdue.edu/ParaMount

R. Eigenmann, Purdue HIPS 2007 2

Is OpenMP a useful programming
model for distributed systems?

 OpenMP is a parallel programming model that assumes a shared
address space
 #pragma OMP parallel for
 for (i=1; 1<n; i++) {a[i] = b[i];}

 Why is it difficult to implement OpenMP for distributed processors?
The compiler or runtime system will need to
 partition and place data onto the distributed memories
 send/receive messages to orchestrate remote data accesses
HPF (High Performance Fortran) was a large-scale effort to do so -

without success
 So, why should we try (again)?

OpenMP is an easier programming (higher-productivity?) programming
model. It

 allows programs to be incrementally parallelized starting from the serial
versions,

 relieves the programmer of the task of managing the movement of
logically shared data.

R. Eigenmann, Purdue HIPS 2007 3

Two Translation Approaches

 Use a Software Distributed Shared
Memory System

 Translate OpenMP directly to MPI

R. Eigenmann, Purdue HIPS 2007 4

Approach 1:
Compiling OpenMP for Software

Distributed Shared Memory

R. Eigenmann, Purdue HIPS 2007 5

Inter-procedural Shared Data Analysis

 SUBROUTINE DCDTZ(A, B, C)
 INTEGER A,B,C
C$OMP PARALLEL
C$OMP+PRIVATE (B, C)
 A = …
 CALL CCRANK
 …
C$OMP END PARALLEL
 END

 SUBROUTINE DUDTZ(X, Y, Z)
 INTEGER X,Y,Z
C$OMP PARALLEL
C$OMP+REDUCTION(+:X)
 X = X + …
C$OMP END PARALLEL
 END

SUBROUTINE SUB0
INTEGER DELTAT
CALL DCDTZ(DELTAT,…)
CALL DUDTZ(DELTAT,…)
END

 SUBROUTINE CCRANK()
 …
 beta = 1 – alpha
 …
 END

R. Eigenmann, Purdue HIPS 2007 6

 DO istep = 1, itmax, 1

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 u (i, j, k) = rsd (i, j, k)
!$OMP END PARALLEL DO

 CALL RHS()

 ENDDO

SUBROUTINE RHS()

!$OMP PARALLEL DO
 u (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = ...
!$OMP END PARALLEL DO

Access Pattern
Analysis

R. Eigenmann, Purdue HIPS 2007 7

=> Data Distribution-Aware
Optimization

 DO istep = 1, itmax, 1

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 rsd (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 u (i, j, k) = rsd (i, j, k)
!$OMP END PARALLEL DO

 CALL RHS()

 ENDDO

SUBROUTINE RHS()

!$OMP PARALLEL DO
 u (i, j, k) = …
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = rsd (i, j, k)..
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 … = u (i, j, k)..
 rsd (i, j, k) = ...
!$OMP END PARALLEL DO

R. Eigenmann, Purdue HIPS 2007 8

DO k = 1, z
!$OMP PARALLEL DO
 DO j = 1, N, 1
 flux(m, j) = u(3, i, j, k) + …
 ENDDO
!$OMP PARALLEL DO
DO j = 1, N, 1
 DO m = 1, 5, 1
 rsd(m, i, j, k) = … +
 flux(m, j+1)-flux(m, j-1))
 ENDDO
 ENDDO
ENDDO

init00 = (N/proc_num)*(pid-1)…
limit00 = (N/proc_num)*pid …

DO k = 1, z
 DO j = init00, limit00, 1
 flux(m, j) = u(3, i, j, k) + …
 ENDDO
 CALL TMK_BARRIER(0)
 DO j = init00, limit00, 1
 DO m = 1, 5, 1
 rsd(m, i, j, k) = … +
 flux(m, j+1)-flux(m, j-1))
 ENDDO
 ENDDO
ENDDO

Adding Redundant Computation
to Eliminate Communication

OpenMP Program S-DSM Program
Optimized S-DSM Code

init00 = (N/proc_num)*(pid-1)…
limit00 = (N/proc_num)*pid…
new_init = init00 - 1
new_limit = limit00 + 1
DO k = 1, z
 DO j = new_init, new_limit, 1
 flux(m, j) = u(3, i, j, k) + …
 ENDDO
 CALL TMK_BARRIER(0)
 DO j = init00, limit00, 1
 DO m = 1, 5, 1
 rsd(m, i, j, k) = … +
 flux(m, j+1)-flux(m, j-1))
 ENDDO
 ENDDO
ENDDO

R. Eigenmann, Purdue HIPS 2007 9

Access Privatization

Example from equake (SPEC OMPM2001)

If (master) {
shared->ARCHnodes = …..
shared->ARCHduration = …
...
}

/* Parallel Region */

N = shared->ARCHnodes ;

iter = shared->ARCHduration;

…...

// Done by all nodes
{ ARCHnodes = …..
 ARCHduration = …
...
}

/* Parallel Region */
N = ARCHnodes;
iter = ARCHduration;
…...

READ-ONLY
SHARED VARS

PRIVATE
VARIABLES

R. Eigenmann, Purdue HIPS 2007 10

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

SPEC OMP2001M Performance

Baseline Performance Optimized Performance

wupwise swim mgrid artequakeapplu

Optimized Performance of
OMPM2001 Benchmarks

R. Eigenmann, Purdue HIPS 2007 11

A Key Question: How Close Are we
to MPI Performance ?

0

1

2

3

4

5

6

7

8

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

SPEC OMP2001 Performance

Baseline Performance

Optimized Performance

MPI Performance

wupwise swim mgrid applu

R. Eigenmann, Purdue HIPS 2007 12

Towards Adaptive Optimization
A combined Compiler-Runtime Scheme

 Compiler identifies repetitive access patterns
 Runtime system learns the actual remote

addresses and sends data early.

Ideal program characteristics:

Outer, serial
 loop

Inner, parallel
 loops

Communication
points at barriers

Data addresses are
invariant or a linear
sequence, w.r.t.
outer loop

R. Eigenmann, Purdue HIPS 2007 13

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Baseline(No Opt.) Locality Opt Locality Opt + Comp/Run Opt

wupwise swim applu SpMul CG

Current Best Performance of
OpenMP for S-DSM

R. Eigenmann, Purdue HIPS 2007 14

Approach 2:
Translating OpenMP directly to MPI

 Baseline translation
 Overlapping computation and communication

for irregular accesses

R. Eigenmann, Purdue HIPS 2007 15

Baseline Translation of
OpenMP to MPI

 Execution Model
 SPMD model

 Serial Regions are replicated on all processes
 Iterations of parallel for loops are distributed (using

static block scheduling)
 Shared Data is allocated on all nodes

 There is no concept of “owner” – only producers and
consumers of shared data

 At the end of a parallel loop, producers communicate
shared data to “potential” future consumers

 Array section analysis is used for summarizing array
accesses

R. Eigenmann, Purdue HIPS 2007 16

Baseline Translation

Translation Steps:
1. Identify all shared data
2. Create annotations for accesses to shared data

(use regular section descriptors to summarize
array accesses)

3. Use interprocedural data flow analysis to identify
potential consumers; incorporate OpenMP
relaxed consistency specifications

4. Create message sets to communicate data
between producers and consumers

R. Eigenmann, Purdue HIPS 2007 17

Message Set Generation

<write,A,1,l1(p),u1(p)>

<read,A,1,l2(p),u2(p)> <write,A,1,l3(p),u3(p)>

<read,A,1,l4(p),u4(p)>

…

…

…

Message Set at RSD vertex V1, for array
A from process p to process q
computed as

SApq = Elements of A with subscripts in
the set

{[l1(p),u1(p)]∩[l2(q),u2(q)]} U
{[l1(p),u1(p)]∩[l4(q),u4(q)]}

V1:

<read,A,1,l5(p),u5(p)>

U ([l1(p),u1(p)]∩{[l5(q),u5(q)]-
[l3(p),u3(p)]})

For every write,
determine all future reads

R. Eigenmann, Purdue HIPS 2007 18

Baseline Translation of
Irregular Accesses

 Irregular Access – A[B[i]], A[f(i)]
 Reads: assumed the whole array accessed
 Writes: inspect at runtime, communicate at

the end of parallel loop
 We often can do better than

“conservative”:
 Monotonic array values => sharpen access

regions

R. Eigenmann, Purdue HIPS 2007 19

Optimizations based on
Collective Communication

 Recognition of Reduction Idioms
 Translate to MPI_Reduce / MPI_Allreduce

functions.
 Casting sends/receives in terms of alltoall

calls
 Beneficial where the producer-consumer

relationship is many-to-many and there is
insufficient distance between producers and
consumers.

R. Eigenmann, Purdue HIPS 2007 20

Performance of the Baseline
OpenMP to MPI Translation
Platform II – Sixteen IBM SP-2 WinterHawk-II nodes connected by a high-performance switch.

R. Eigenmann, Purdue HIPS 2007 21

We can do more for
Irregular Applications ?
L1 : #pragma omp parallel for

 for(i=0;i<10;i++)
A[i] = ...

L2 : #pragma omp parallel for
 for(j=0;j<20;j++)

B[j] = A[C[j]] + ...

 Subscripts of accesses to shared
arrays not always analyzable at
compile-time

 Baseline OpenMP to MPI translation:
 Conservatively estimate that each

process accesses the entire array
 Try to deduce properties such as

monotonicity for the irregular
subscript to refine the estimate

 Still, there may be redundant
communication

 Runtime tests (inspection) are
needed to resolve accesses

Array
A

produced by
process 2

produced by
process 1

1, 3, 5, 0, 2 ….. 2, 4, 8, 1, 2 ... Array
C

accesses on
process 1

accesses on
process 2

R. Eigenmann, Purdue HIPS 2007 22

Inspection

 Inspection allows accesses to be differentiated (at runtime) as
local and non-local accesses.

 Inspection can also map iterations to accesses. This mapping
can then be used to re-order iterations so that iterations with
the same data source are clubbed together.
 Communication of remote data can be overlapped with the

computation of iterations that access local data (or data already
received)

Array
A

1, 3, 5, 0, 2 ….. 2, 5, 8, 1, 2 ... C[i]

accesses on
process 1

accesses on
process 2

 0, 1, 2, 3, 4, …….. 10, 11, 12, 13, 14 ... Index i

0, 1, 2, 3, 5 ….. . 5, 8, 1, 2, 2, ...
 3, 0, 4, 1, 2, …….. 11, 12, 13, 10, 14 ...

accesses on
process 1

accesses on
process 2

reorder
iterations

R. Eigenmann, Purdue HIPS 2007 23

Loop Restructuring

 Simple iteration reordering may
not be sufficient to expose the
full set of possibilities for
computation-communication
overlap.

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)

p[i] = x[i] + alpha*r[i] ;

L2 : #pragma omp parallel for
 for(j=0;j<N;j++) {

w[j] = 0 ;
for(k=rowstr[j];k<rowstr[j+1];k++)

S2: w[j] = w[j] +
a[k]*p[col[k]] ;

 }

Reordering loop L2 may still not club
together accesses from different sources

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

Distribute loop
L2 to form loops
L2-1 and L2-2

R. Eigenmann, Purdue HIPS 2007 24

Loop Restructuring contd.
L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L2-2: #pragma omp parallel for
 for(j=0;j<N;j++) {
 for(k=rowstr[j];k<rowstr[j+1];k++)
 S2: w[j] = w[j] + a[k]*p[col[k]] ;
 }

L1 : #pragma omp parallel for
 for(i=0;i<N;i++)
 p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
 for(j=0;j<N;j++) {
 w[j] = 0 ;
 }

L3: for(i=0;i<num_iter;i++)
w[T[i].j] = w[T[i].j] +
 a[T[i].k]*p[T[i].col] ;

Coalesce nested
loop L2-2 to form
loop L3

Reorder iterations of
loop L3 to achieve
computation-
communication overlap

Final restructured and reordered loopThe T[i] data structure is created
and filled in by the inspector

R. Eigenmann, Purdue HIPS 2007 25

Achieving actual overlap of
computation and communication

 Non-blocking send/recv calls may not actually
progress concurrently with computation.
 Use a multi-threaded runtime system with separate

computation and communication threads – on dual CPU
machines these threads can progress concurrently.

 The compiler extracts the send/recvs along with the
packing/unpacking of message buffers into a
communication thread.

R. Eigenmann, Purdue HIPS 2007 26

Initiate sends to process q,r

Execute iterations that
access local data

Wait for receives from process q
to complete

Execute iterations that access data
received from process q

Pack data and send to
processes q and r.

Receive data from process q

Wait for receives from process r
to complete

Computation Thread on
Process p

Communication Thread
on Process p

Receive data from process r

Execute iterations that access data
received from process r

Program
Timeline

tsend

trecv-q

trecv-r

tcomp-
p

tcomp-
q

tcomp-r

twait-r

twait-q

Wake up communication thread

R. Eigenmann, Purdue HIPS 2007 27

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16

Number of Processors

T
im

e
 (

in
 S

e
c

o
n

d
s

)

Actual Time Spent in Send/Recv Computation available for Overlapping

Actual Wait Time

Performance of
Equake

Computation-
communication
overlap in Equake

0

200

400

600

800

1000

1200

1 2 4 8 16

Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

s
)

Hand-Coded MPI Baseline (No Inspection)

Inspection (No Reordering) Inspection and Reordering

R. Eigenmann, Purdue HIPS 2007 28

0

2

4

6

8

10

12

1 2 4 8 16

Number of Nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Time spent in Send/Recv Computation Available for Overlapping Actual Wait Time

0

20

40

60

80

100

120

140

1 2 4 8 16

Number of Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

s
)

Hand-coded MPI Baseline Inspector without Reordering Inspection and Reordering

Performance of
Moldyn

Computation-
communication
overlap in Moldyn

R. Eigenmann, Purdue HIPS 2007 29

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Number of Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

in
 s

e
c

o
n

d
s

)

NPB-2.3-MPI Baseline Translation

Inspector without Reordering Inspector with Iteration Reordering

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Number of Nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Time spent in Send/Recv Computation available for Overlap Actual Wait Time

169
339

Performance of CG

Computation-
communication
overlap in CG

R. Eigenmann, Purdue HIPS 2007 30

Conclusions

 There is hope for easier programming models on distributed systems

 OpenMP can be translated effectively onto DPS; we have used
benchmarks from
 SPEC OMP
 NAS
 additional irregular codes

 Direct Translation of OpenMP to MPI outperforms translation via S-DSM
 “Fall back” of S-DSM for irregular accesses incurs significant overhead

 Caveats:
 Data scalability is an issue
 Black-belt programmers will always be able to do better
 Advanced compiler technology is involved. There will be performance

surprises.

