Hardware Counter Driven On-the-Fly Request Signatures

Kai Shen Ming Zhong SandhyaDwarkadas ChuanpengLi Christopher Stewart Xiam@h
Department of Computer Science, University of Rochester
{kshen, zhong, sandhya, cli, stewart, xiao}@cs.rochester.edu
Abstract Identification and inference:
lUse collected metric§ as signature to l_’equest request
Today’s processors provide a rich source of statisticairimftion '”é‘;'lje:e“:;‘a"r:gf:ar}f;é:sﬁf-i';ﬁ,“;?‘ lookup_ slgnature p“:ff"y

on application execution through hardware counters. Is phaiper,
we explore the utilization of these statistics as requegiatures
in server applications for identifying requests and infegrhigh-
level request propertiee(g, CPU and I/O resource needs). Our
key finding is that effective request signatures may be cootsd
using a small amount of hardware statistics while the retjaesill

in an early stage of its execution. Sumt+the-flyrequest identifica-
tion and property inference allow guided operating systeapta-
tion at request granularitye(g, resource-aware request scheduling
and on-the-fly request classification). We address the exgdis
of selecting hardware counter metrics for signature cositvn
and providing necessary operating system support for gguast
statistics management. Our implementation in the Linuxi®.&er-
nel suggests that our approach requires low overhead &uitab
runtime deployment. Our on-the-fly request resource coipsiom
inference (averaging 7%, 3%, 20%, and 41% prediction efiars

Then determine customized system s2 p2
management policy for this request
(e.g., a low scheduling priority,
anomaly quarantine).

Request
completes

Request
begins

Metric collection phase:
Collect system metrics
associated with this request.

Figure 1. A single request’s view of our on-the-fly request signa-
ture identification and request property inference.

1. Introduction

four server workloads, TPC-C, TPC-H, J2EE-based RUBIS, and Many operating system (OS) management functions benefit fro

a trace-driven index search, respectively) is much morerate
than the online running-average based prediction (73-8266s.
Its use for resource-aware request scheduling results 5+a0Pb6
response time reduction for three CPU-bound applicatiiasise
for on-the-fly request classification and anomaly deteatidribits
high accuracy for the TPC-H workload with synthetically gen
ated anomalous requests following a typical SQL-injecatiack
pattern.

Categories and Subject DescriptorsD.4.7 [Operating Systenfis
Organization and Design

General Terms Measurement, Performance, Design, Reliability,
Experimentation

the knowledge of runtime workload properties. For instasegver
requests can be scheduled for better performance or quuddity
service if each request’s resource needs are known at daigdu
time [28, 19]. As another example, components of a disteithuiet-
work service can be better composed to save communicat&s co
if the inter-component communication patterns are knowamthe
service composition policy is determined [24]. Convendiopro-
filing approaches such as offline profiling or history-basatine
prediction rely on past request statistics to predict feitworkload
properties. However, as input parameters vary and runtionelie
tions change, the properties of individual request exeastimay
deviate significantly from general patterns of past reqésten
from very recent ones).

This paper explores a new approach for server request fdenti

Keywords Operating system adaptation, Hardware counter, Server ¢ation and property inference (illustrated in Figure 1). &@jlect-

system, Request classification, Anomaly detection

* This work was supported in part by the National Science Fatiod
(NSF) grants CCR-0306473, ITR/IIS-0312925, CNS-041112AREER
Award CCF-0448413, CNS-0509270, CNS-0615045, CNS-069.508F-
0621472, and CCF-0702505; by NIH grant 1 R21 GM079259-0%akitt
by several IBM Faculty Partnership Awards.

 Zhong is currently affiliated with Google (mzhong@googten).

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS'08, March 1-5, 2008, Seattle, Washington, USA.
Copyright(© 2008 ACM 978-1-59593-958-6/08/0003. . . $5.00

ing available system-level metrics and attributing thenspecific
request contexts, we can use such metrics as signaturesntifyd
requests and infer request properties based on known signat
to-property mappings. We construct and utilize requestatigres
while a request executes (@n-the-fly. Such on-the-fly request sig-
natures facilitate request-granularity OS adaptatiorigioigh our
goals of request identification and property inference maydal-
ized through direct application assistance or maniputatiar ap-
proach functiongransparentlyat the OSi(e., requiring no change
of or assistance from applications or middleware softwaraing

above the OS). Transparent system management provides more

general benefits and it is essential for third-party manameran-
vironments such as service hosting platforms.

Many types of system-level metrics can be transparently col
lected in today’s computing systems. For example, modevogs-
sors, through a set of counter registers, provide detaitedvbare
information such as instruction mix, rate of execution ffinstions
per cycle), branch (control flow) prediction accuracy, anehmory

access behavior (including miss rates at each level of thmane
hierarchy as well as bus activity). At the software leved @S pro-
cessing also leaves a trail of statistics such as task costéich

rate, system call frequency, and 1/O operation patternhis pa-

per, we focus on hardware counter driven request signatWves
believe this is an appropriate first-step effort due to tweeadages
of hardware counter metrics: 1) event counter maintenambarid-

ware requires no runtime overhead; 2) OS processing statisgy
be scarce in applications with few system calls and 1/O &t/
while processor hardware metrics are consistently availdbring

execution.

We address two key challenges in supporting hardware counte
driven on-the-fly request signatures. First, we derive garain-
ciples by which to guide the selection of hardware countetricse
used in the construction of request signatures. Our inyattin fo-
cuses on several factors that affect the metric effectseas a re-
quest signature: the metric normalization base, enviranahely-
namics, and application variations. One notable factoqumito
server applications is thebncurrentexecution of multiple requests
and associated frequent context switches. Second, we §gdp8
mechanisms for transparent online collection and manageofe
per-request counter metrics. This is challenging due tocthre
tinually changing request-to-process-binding in muttrponent
server systems. We employ a transparent message taggiegach
so that request contexts can be tracked across multiplerseom-
ponents with no application assistance.

Based on our on-the-fly request signature, we demonstiste it
effectiveness or potential in assisting request-granylaystem
adaptations through case studies. First, the online krugyeleof
each request’s resource needs makes it possible to rehbiriest-
remaining-time-first scheduling [21], which is known to &sfe
minimal average request response time. Further, on-theefly
quest signature identification presents the opportunity farly
request classification and anomaly detection. By clasgif@ re-
quest early, an online workload tracker may save the overfaa
further tracing and event logging on the classified requggtde-
tecting anomalous requests early, the system may applgteatg
monitoring or even online request quarantine.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 investigates several faesoci-
ated with the use of hardware counter metrics as requesa-sign
tures. Section 4 describes the OS mechanisms necessam-for o
the-fly request context tracking, per-request counterimebtilec-
tion, as well as request identification and property infeesrSec-
tion 5 provides evaluation results using several serveliGpns
and benchmarks. Section 6 illustrates possible OS adapsatinat
can benefit from on-the-fly request identification and propar-
ference. Section 7 concludes the paper with a summary offjsdi

2. Related Work

Continuous profiling (DCPI [2]) is a sampling-based profijlisys-
tem that uses hardware counters to characterize activitiérgn
the entire system. More recently, Barhaitral. (Magpie [8]), Chen
et al. (Pinpoint [12]), and Aguilerat al. [1] presented techniques
to capture the resource demands and other properties atappl
tion requests as they are serviced across components amihesc
Magpie uses clustering to classify requests and summdrezbd-
havior of a workload. The tools resulting from these studies
excellent for offline (or online history-based) performaranalysis
and debugging. However, they do not provide on-the-fly idfient
cation and behavior prediction with respect to individusduests
before their executions complete. Such on-the-fly preaticts es-
sential for request-granularity online system adaptation

For the purposes of architectural and program adaptatidor, p
work has utilized hardware counter metrics to dynamicadlgn-

tify execution phases [14, 23], and to predict other systeopgr-
ties [15]. Hardware counter metrics were also employedeatidly
appropriate simulation points for desired workloads [16]pre-
dict CPU scheduling performance [10, 29], and to detect @om
lies [25]. Our use of hardware counters as request sigrature
presents unique challenges associated with our targeersens
vironments. In particular, the effectiveness of hardwarenters as
request signatures is substantially affected by concumeguest
execution and frequent context switches. Further, it idlehg-
ing to attribute collected counter metrics to approprisgquests
on-the-fly.

Cohenet al. [13] showed that a set of system metrics (mostly
in software) can serve as signatures that cluster systduaneaiof
similar types. Gniadt al.[17] used program counter-based clas-
sification to estimate application 1/0 access patterns atrécplar
point of execution. Although their studies do not addresgiest-
granularity workload identification, their choices of syist metrics
(other than hardware counters) can be incorporated intoemurest
signatures. Additional system metrics can potentiallyrionp the
effectiveness of our request signature while possiblyririeg ad-
ditional runtime overhead. Further investigation wouldrezes-
sary to evaluate the benefit and cost of such extensions.

Our on-the-fly request signature attempts to identify retgie
and infer high-level request properties. Although appiaalevel
information can infer request properties for applicationih
simple semanticse(g, request resource consumption inference
through the requested file size in a static-content web s€19§),
such application-level inference is difficult for servempépations
with more complex semantics. Further, direct applicatioroive-
ment compromises system transparency. Consequentlyeritsfib
is restricted to specific applications and it is difficult tepdoy
when application changes are not allowed.

3. Hardware Metrics As Request Signatures

We provide a simple example to motivate the use of hardwate me
rics as request signatures. Figure 2 shows the cumulativesvaf
one hardware counter metric for four different requestsifing
four different TPC-H [27] queries). In this example, the dvaare
metric (floating point operations per CPU cycle) serves asatg
signature to differentiate TPC-H Q4 and Q3. This is the casa e
when statistics are collected for only a few millisecond=zafe-
quests begin execution. However, this metric does a relgtpoor
job in differentiating Q13 from Q17 — even though, these exis
have very different CPU needs. Additional hardware metnizs/
help differentiate them.

In this section, we derive an understanding of the effentgs
of the use of individual hardware metrics as request sigeatu
Such analysis is essential to selecting an appropriatefsaet
rics in request signature construction. Metric selectnecessary
because the processor usually has a limited number of pysic
counter registers to which the hardware metrics must map. Ad
ditionally, the configurations of some counter metrics arean-
flict with each other and thus they cannot be observed simedta
ously. Although multiple sets of metrics may be mapped tatéch
counter registers through time-division multiplexing 2], they
provide inaccurate event count statistics that are ingpjate for
our on-the-fly request identification. In addition to accoouating
the limited counter registers, metric selection is alsardbte in
order to screen out hardware metrics that provide littléstasce
in identifying and differentiating requests with diffetdsehavior.

The challenge of selecting the right set of hardware meligéss
in the various factors that may affect each metric’s effectess as
a component of the request signature. Specifically, we figae
several such factors: 1) time-based normalization (pelecynet-
ric) vs. progress-based normalization (per-instructiogtnin); 2)

11 T T T T T T T T T
¢
o 10 .
(=] + W
& +
o [o 71
3 °
E 8L o + TPC-H Q4 (short, memory—heavy) |]
2 7+ 0 4 TPC-H Q3 (long, memory-heavy) | |
53 ° & . TPC-H Q13 (long, memory-light)
.§ 6F o %o o TPC-H Q17 (short, memory-light)
> _|ro MMW%
S 5[wo i
‘K'“’ .
2 4l R’%R""‘“ i
3000000 3000000 Fa000000000000000a00000000]
3 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Cumulative request execution (in millisec)

Figure 2. The cumulative floating-point-ops-per-CPU-cycle (up
to 100 ms) for four requests (running four different TPC-H]2
queries) with different CPU needs and memory usage intensit
Here we identify a request’s memory usage intensity throiigh
hardware metric of memory-bus-event-count-per-CPUeycl

environmental dynamics such as concurrent request execatid
processor hardware resource sharing; 3) applicationifspebar-
acteristics.

To facilitate our study, we define an effectiveness measure f
a hardware metric to serve as request signature. The orute-
hind our measure (calleahetric-request-correlationis as follows
— if two requests with similar hardware metric values aresljk
to be inherently similar requests, then the metric serves gsod
request signature. In the context of our study, we assedstibe
ent similarity of two requests using the difference of thesource
consumption €.g, CPU usage for CPU-bound requests). Specif-
ically, given n request-pair samples, let; be the difference of
hardware metric values for thieth request pair. Let; be the differ-
ence of their resource consumption. Furtherplets andr;’s have
expected mean®, 7, and non-zero standard deviatiang, o,.. We
calculate their correlation coefficient as:

_ Z?:l(m’i -

n:-Om:-0Or

Covariance(m,r) m)(r; — T)

Pm,r = 1)
Om * Op
A larger coefficient indicates a stronger positive corielatbe-
tween hardware metric similarity and inherent request Isirity.
Note that a correlation coefficient cannot exceed 1.0.

3.1

As a request’s execution progresses, we can acquire statde h
ware counter-based metrics by normalizing the hardwareteve
count with the elapsed time (available in CPU cycles). Hauev
in a concurrent server environment, the same request éaacut
(represented by a unique sequence of instructions) may make
deterministic progress within the same number of CPU cycles
Since many hardware event counts are linearly correlatéid ivwi
struction executions, the unstable execution progressdates
noise in these hardware event counts within a given timeogeri
This motivates a progress-based normalization, or perticison
hardware event count metric, with the goal of reducing ddpene
on environmental variations.

To assess the impact of the two alternative normalizaticesa

Impact of Normalization Bases

we show experimental results of some hardware metrics on In-

Hardware metric [
NONHALT _TICKS

Description |
Num. of ticks that CPU is in non-halt state

INSTRCTN.LRTD Num. of retired instructions

UOPSRETIRED Num. of retireduops

L1_.MISS.RTD Num. of L1 cache misses due to retired access¢s
L2_MISS.RTD Num. of L2 cache misses due to retired accessgs
L2_MISS Num. of L2 cache misses

L2_REFERENCE
DTLB_MISS.RTD
PGWKMISSDTLB

of L2 cache references
Num. of data TLB misses due to retired accessgs
Num. of page walks that page miss handler
performs due to data TLB misses

Num. of cycles in trace cache deliver/build modgs
Num. of trace cache lookup misses

Num. of page walks that page miss handler
performs due to instruction TLB misses
Num. of Data Ready and Data Busy events thaf
occur on the front side bus

Num. of transactions on the bus issued by chip

Num.

DELIVER_.MODE
TRACECACHEMS
PGWKMISSITLB

FSB.DATAREADY

BUSACCESCHIP

X87_FP_.UOP Num. of X87 float pointops

MEM_CANCEL Num. of canceled requests in the Data Cache
Address Control Unit

UOPQW Num. of validops written to the.op queue

RESSTALL Num. of stalls in the Allocator

MISPREDBRANCH Num. of mis-predicted branches

RTD_.MISPREDBRANCH Num. of retired mis-predicted branches

BRANCH
FRONT.END_EVENT

of branches
of load/storg.ops

Num.
Num.

Table 1. 22 counter-observable hardware metrics on the Intel Xeon
processors.

group counter setups. Figure 3 illustrates the comparistwéden
time-normalized metrics and progress-normalized mefiacghe
TPC-H workload.

Results in Figure 3 suggest that progress-based norniafizat
exhibits stronger or similar metric-request-correlatitor most
hardware metrics with one clear exception — DELIVEEFODE.
This result is also consistent for several other applicetiove ex-
perimented with. A closer look uncovers that the DELIVIBRODE
metric is not really an event count but rather it indicates time
duration for a particular processor state (the number ofetien
cycles during which the trace cache is in deliver mode). kénli
event counts, it is affected more by the length of executather
than by execution progress.

In summary, our finding on the normalization base is that
“event count’-style metrics should be normalized with the r
quest execution progress while “time duration”-style riwst(along
with instruction count metrics) should be normalized witte t
elapsed time. For the remainder of this paper, we use péecyc
values for INSTRCTNRTD, UOPSRETIRED, UOPQW, and
DELIVER_MODE. We use per-instruction values for other hard-
ware metrics.

3.2 Impact of Environmental Dynamics

In a server environment, the hardware execution behawefiegted
through counter metrics) of a request may vary as a resulyof d
namic environmental effects. In particular, the presenicetber
requests results in potentially frequent context switcied con-
sequently processor cache behavior may vary. Further,ucmrt
request execution on hardware resource-sharing procegsoiti-
core or hardware multi-threading) yields unstable behadige to

tel Xeon processors. We examine 22 hardware metrics that we resource contention and conflicts. Unstable metrics in ohjo&x-

are able to configure for counter observation (listed in &ab).
Among these 22 metrics, three represent instruction ekatut
progress: INSTRCTMRTD, UOPSRETIRED, and UOPQV. We
choose UOPQW — the number ofu-instructions — as the base
for progress-based normalization since it causes leadtiaoim

ecution environments introduce noise into the requestsiga.
To assess the impact of concurrent request execution
resource-sharing hardware, we experimentally examinengteic-
request-correlation in three different execution envinemts: 1)
requests run one-by-one with no concurrency in the server; 2

and

05 T T T T T T T T T T

I Time-normalized metric
[Progress—normalized metric

0.4

0.3

0.2

Metric-request-correlation

0.1

Figure 3. Comparison of time-normalized (per-cycle) metrics andgpess-normalized (per-instruction) metrics for the TP@vbtkload.
We do not show results for the three instruction count metfillSTRCTNRTD, UOPSRETIRED, and UOPQWV) since their choice of
normalization base is obvious — per-instruction normaiaaof instruction counts would yield total informationsis.

0.5

| | | | | | T T T T
I scrial request execution
[concurrent execution
[concurrent execution with hyper-threading . . .

Metric-request-correlation

Y
<
47/%

@,P %,

’&
%

Figure 4. Impact of environmental dynamics (including concurremjuest execution and hardware resource-sharing in hypeadmng) for

the TPC-H workload.

requests run concurrently on a two-processor SMP machine;

units within a processor and contention for these units exurs

3) requests run concurrently on a two-processor SMP machine stability of the related hardware metrics.

where each processor supports two hardware threads (ypeth
threading). The three environments provide increasinglteof
dynamic effects on hardware counter metrics. Figure 4 shbes
metric-request-correlation for the TPC-H workload.

Comparing serial and concurrent request executions, our re
sults show that the execution concurrency degrades theiometr
request-correlation for almost all metrics. Among the nwighifi-
cantly affected are metrics related to memory or L2 cachigfggly-
ior — L2_MISSRTD, L2 MISS, FSBDATAREADY, BUSAC-
CESCHIP, MEM_.CANCEL, and FRONTEND_EVENT. This is
intuitive since L2 cache misses and memory accesses ardyheav
influenced by frequent request context switches. L1 caclssesi
are not as affected due to the L1's fast warmup time. Note that
the L2 cache reference count reflects received workloadeat gh
cache, which is related to the L1 caching behavior.

Figure 4 also shows that the processor-level hyper-thngadi
significantly degrades the metric-request-correlatianLfb cache
related events (LMISS.RTD, L2 REFERENCE), trace cache
event (TRACECACHBMS), and TLB event (PGWKMIS®TLB).
This is also intuitive since hyper-threads share these tiomal

In summary, our finding on environmental dynamics is that
concurrent request execution in server environments antatly
degrades the effectiveness of memory and L2 cache miss re-
lated hardware metrics as request signatures. ProcessaHard-
ware resource-sharing can cause further degradation foriase
related to shared resources. Finally, it is important toenthiat
these trends may not warrant absolute metric exclusion.eSafm
fected metrics may still exhibit strong correlation for vegt iden-
tification in dynamic environments — one particular examigle
L2_ REFERENCE.

3.3 Impact of Application Variations

We are also interested in whether the effectiveness of dcratra
request signature is consistent across different senicagions.
Specifically, we examine four applications: TPC-H, TPC-ZEH-
based RUBIS, and index search (details about these appfisat
can be found in Section 5). We find large differences in medfic
fectiveness across applications. For instance, metric KRTUOP
appears to be the best request signature for TPC-H but itiesl
useless for others (likely because other applicationsoparfvery
few floating point operations).

[Application |[Selected hardware metrics to form request signature |
TPC-H L2_REFERENCE, TRACECACHBVS, X87_.FP.UOP, RESSTALL, MISPREDBRANCH, FRONTEND_EVENT
TPC-C UOPSRETIRED, L2ZREFERENCE, TRACECACHBEMS, MISPREDBRANCH, FRONT.END_EVENT
RUBIS UOPSRETIRED, L2ZREFERENCE, PGWKMIS®TLB, MISPREDBRANCH, FRONTEND_EVENT
Retriever L2_REFERENCE, DTLBMISS_RTD, PGWKMISSITLB, RTD_MISPREDBRANCH, BRANCH

Table 2. Request signature composition for four server application addition, UOPQW is always selected as the base for calculating

progress-normalized metrics.

The lack of consistent metric effectiveness across apjmita
makes it unlikely that one can construct a universally éifec
set of hardware metrics as a request signature. Insteatyacal
tion would be beneficial in order to arrive at an appropriage r
quest signature setup according to application-specifitricae-
request correlations. The final selection must also congitgs-
ical constraints for metric setup on the target procesdeusgther,
some metrics are inherently redundant and selecting one-rep
sentative from each redundant group is sufficient. A simgle c
relation analysis among metric pairs uncovers the follgwve-
dundant groups: (LMISS.RTD, L2 REFERENCE) and (MIS-
PREDBRANCH, RTD.MISPREDBRANCH). Table 2 lists the
hardware counter metrics (on Intel Xeon processors) sadeat
request signatures for the four server applications.

4. Operating System Mechanisms

We collect per-request hardware counter metrics and sgizithe
them on-the-fly. Constructed request signatures are thed tes

identify requests or to infer desired high-level requesiperties.

This section presents the OS mechanisms necessary foparans

management of hardware counter driven on-the-fly requgsisi
tures.

4.1 On-the-Fly Request Context Binding

We attribute collected hardware counter metrics to cooagng
server requests by maintaining on-the-fly request contiditg
in the system. We use threquest contexto encapsulate runtime
activities belonging to a single request execution. Thenteaiance
of on-the-fly request context binding can also support regue
granularity OS adaptation, where a customized set of Oipsli
and configurations are used for each request.

A request context mostly coincides with a thread/process co
text in many cases (aside from the proper attribution of &ern
activities such as interrupt handlers). Therefore, thdesyscan
bind a thread or process to the context of the request it ¢égscu
The currently active request context is the one that thevecti
thread/process is bound to. However, the request contexiry
must be propagated when a request execution flows througit+ mul
ple threads/processes. For instance, a request may irettdiies
in an application server process and a database thread.pplie a
cation server itself may also contain multiple componeuts),(
Enterprise Java Beans in J2EE services) that a requestdesve
through.

The issue of request context binding in multi-componentessr
was addressed in several previous studies. In resourceinent
ers [6] and Pinpoint [12], applications or the component dtgel
ware must explicitly pass request context bindings acragsipre
threads/processes in the system. In Magpie [8], systenmeaza
logged regardless of their request contexts and they aibuaéd
to specific requests after request completion (online oinefflac-
cording to application-specific schema. Though Magpie iples/
a high level of flexibility in request modeling, it does nopport
on-the-fly request context binding.

We propose an OS-level approach to transparently track each
request across multiple server components. The high-lguiel-
ing principle for our transparent request tracking is thatpo-
nent activities reachable through control or data flows araanti-
cally connected, and therefore are very likely parts of cguest
context. Specifically, we consider two such control/data$tgpro-
cess/thread forking and message passing. In the first caststw
the newly forked process or thread inherit the context lrigdif its
parent. This is easy to implement in the OS and it has alreadp b
supported in past work [6]. For message passing, we inteng-to
alize the following simple propagation rule when threadgassS
sends a message to thread/prod@sélf S’s request context bind-
ing is C at the message send time, th@ninheritsC at the mes-
sage receipt time.” Below we describe how to implement thie r
for TCP/IP socket messages using a transparent messagegtagg
mechanism.

We tag each socket message header with the identifier of the
request context for the sending thread/proc@sso maintain com-
patibility with the Internet protocol standard, we store thg in a
new option field of the TCP message header. In this way, commu-
nicating peers that do not understand the tagging will syjigpiore
it but still receive the message properly. At the receiviitgswe
would like to bind the receiving thread/proce&sto the tagged
request context. SincR might not have initiated the receive oper-
ation when the message arrives, we record the associatjamof
agated request context with the buffered message at thetsétk
will inherit the context when initiating the receive opeoat When
component interactions employ connection pooling, a sisgtket
connection may be used for propagating multiple requesiests
Therefore, the socket to request context binding may chalyge
namically at runtime. Figure 5 illustrates request con@eipaga-
tions for a single request in a J2EE-based service.

There is no explicit context unbinding operation in our soke
An inherited request context expires when the thread/poce-
ceives a new context propagation or when it exits. A threadgss
in some server components may be used repeatedly to exesute r
quests (as in thread pooling and event-driven servers)s€heme
automatically handles this situation by performing a resjun-
text switch whenever a new context propagation is receivned i
socket message.

Our message-tagging based request context propagatign is a
plicable for both intra-machine or cross-machine messages
multi-machine server systems, sub-instances of a requeséxt
may exist on multiple machines and an on-the-fly aggregaifon
these sub-instances may incur significant overhead. A piuge
dling of such cross-machine aggregation falls beyond thpeof
this paper and all experiments in this paper utilize simgbkechine
servers.

Our current scheme is sufficient to support many multi-congob
server applications. However, we acknowledge two limitagithat
need to be addressed in future work. First, our scheme target
server applications in which request contexts propagatauti
process/thread forking or message passing. However, sppie a
cations contain context propagations over other meaugs thread
synchronization via shared memory). Second, there can be am

RUBIS
QueryHome

RUBIS
ItemHome

Jboss
RMI-Disc

Jboss
Invoker

Tomcat
Servelet

232

o
1044
‘,/2680::‘

%2]
s |

MySQL
Database
Request

~—14, 6

——232

‘//161;::11
[————104
‘,,,44,..<274Zi::::::::ti

1

Figure 5. lllustrated request context propagations using socket
communications for a RUBIS [20] request. RUBIS in this exam-
ple is supported by the JBoss Application server and MySQL
database. Darkened lines indicate portions of componegtuex
tions attributed to the request context. The number on eadsaye
indicates the application-level message size in bytes.rEuyuwest
propagation tag contains a small request context identfier it
only consumes an additional 12 bytes per message.

biguous request context propagation when a single recgiee o
ation reads data across the boundary of multiple messages th
bear different context bindings. These messages are tipobe
multiplexed later at application level, which is beyond OSet-
tion. Such a scenario may occur in event-driven servers.

4.2 Metric Collection and Synthesis

We maintain raw system statistics in the form of cumulativerg
counters per processor. To retrieve the event counts foratidn

of continuous execution on a processor, we only need to sampl
the counter values at the start and end of the duration and the
calculate the difference. When there is a request contektisw
on a processor, we must sample the counter values at thehswitc
time to properly attribute the before-switch and aftertsiievent
counts to the respective requests. Request context swittlag
occur at CPU context switches between different threadsésses.
They also occur when the request context binding of a running
thread/process changes. In addition to sampling at reqoaséxt
switches, it may also be desirable to sample the counteresalu
periodically to acquire fine-grained execution statistiCs our
experimental platform (Linux 2.6.10), kernel timers allag to
sample at a frequency as high as once every millisecond.

The collected counter metric trace for each request cansfst
series of metric samples in chronological order. Each saroph-
tains the elapsed CPU cycles and incremental hardware ametri
since the last sampling point. Periodic sampling at onceyawvd-
lisecond results in a 1 ms upperbound on the duration of eath m
ric sample. However, the metric samples for each requestaip
do not follow synchronized steps due to non-determinigtguest
context switches in concurrent server environments. Wtsdcue
lating cumulative event counts up to a specified executiantpo

(e.g, 3ms since the beginning of the request), there often exists

one metric sample whose duration crosses the desired @ecut

point. In this case, we approximate by discounting part efatent
counts in this metric sample with the assumption of constaent
occurrence frequency over the sample duration.

Processor-level multi-threading technologies such asl'$nt
hyper-threading allow concurrent thread execution on glsipro-
cessor. This feature slightly complicates hardware coumigtric
collection because multiple hardware threads on one palygio-
cessor share a single set of counter registers. In a typ&taps
some counter registers may be exclusive to one of the haedwar
threads. A single request may utilize different sets of teureg-
isters when it migrates over different hardware threads.

4.3 Request Identification and Property Inference

Our on-the-fly request identification is realized by matghiequest
signatures (as a composite of several hardware counteics)etr
against those in a bank of representative requests madatainthe
system. The matching request in the bank can simply be the one
with the most similar signature to the on-the-fly requestinfer
high-level request propertieg., CPU and 1/O resource usage),
the request bank also contains a signature-to-propertypimgp
which returns the property of the matching request. The hzfnk
representative requests can be constructed either offlitteaugh
online self-learning. In online self-learning, signatur@end addi-
tional properties of interest for just-completed requestsadded to
the request bank as replacements of older requests. Thistis-p
ularly useful for automatically adapting to gradual systemanges
in long-running servers.

Our approach is simplistic in that it does not need any prior
knowledge of the semantic relationships between the delec
hardware metrics and the desired request properties. Sumhilk
edge would be required for parametric prediction techrégsiech
as neural networks, hidden Markov models, and Bayesian net-
works.

To determine matching requests, we need a measure of dis-
tance between two request signatures, each of which issepted
as a vector of hardware metri¢s\t1, Mo, --- , My). We have
tried three distance measurdsl distance,L2 distance, and co-
sine distance (the cosine of the angle between two vectdrs).
find that different distance measures yield very small devia
in identification accuracy. This is because similar requésnd
to exhibit small distance under any reasonable distancesumea
For simplicity, we currently employ the normalizddl distance.
Specifically, the distance between two request signatuctoke
_(Ml[m]aMQ[IL T 7Mk[m]) and (Ml[y]aMQ[y]a to 7Mk[y])

k
> @
=1

where the weightM; is the expected mean of metriet; for all
requests.

For each request, the amount of time spent collecting nsetric
before querying the request bank for request identificatiost be
carefully assessed. Too short a metric collection phaseprayde
insufficient information for identifying a request. On thé¢her
hand, too long a metric collection phase requires largeectiin
overhead and most importantly a late-stage inference miailoor
effective system adaptation for this request. Althougts isimple
to make request identifications at a deterministic point cuest
execution, different requests in a server application meyuire
different time periods for metric collection in order to @&ve
accurate identification. We therefore consider two apgreado
determining the request identification time:

Mife] = Mily]|
M

%

1. Fixed-point identification This approach attempts to identify
all requests by querying the request bank for the closestimat
at a fixed time point€.g, after the request runs for 3ms). The

point is determined by offline calibration to achieve satisbry
request identification and property inference accuracylevhi
still being sufficiently early for effective OS adaptatioring
the inferred request property.

I Collect/10ms

I Collect/Ims

[Collect/1ms with fixed—point id.
[collect/1ms with incremental id.

2. Confidence-driven incremental identificatidfor each request,
this approach queries the request bank at incremental sstage
(e.g,1ms, 2ms, 3ms, - after the request begins) using up-to-
date cumulative metrics. At each stage, it assesses a cacdide
metric in the current request identification result and stiy-
ther identification if a high-enough confidence has been at-
tained. In our current design, a high confidence is indicated
the agreement of the identification results made during thetm
recent stages. For example, we can finalize a request identifi
cation if the property of the closest matching request (i th
request bank) at the most recent stage is withéndifference
from that at the second most recent stage.

1.5%

1%

0.5%

Server throughput degradation

0

Figure 6. System overhead for TPC-H at two different metric
collection frequencies (once per 10 ms and once per 1 ms) ks we
as two different request identification approaches (fixeitpand
incremental).

5. Implementation and Evaluation

We have developed a prototype implementation of the prabose and nine business logic components implemented as Ergerpri

request signature management in the Linux 2.6.10 kernelir®u
plementation supports the online self-learning basedesigoank
construction described in Section 4.3. Hardware countersyg-
ically accessed through privileged instructions (for canms such
as information leaking [29]), so counter value sampling trhes
performed in the OS kernel. To avoid domain crossing ovathea
all our hardware counter management is performed in theekern
It is also possible to employ a microkernel-style implenagion,
which would retain only the basic counter metric collectéord re-
quest context maintenance in the kernel while leaving theature
construction, request identification, and property infiees at the

Java Beans. RUBIS runs on the JBoss 3.2.3 application server
with an embedded Tomcat 5.0 servlet container. The back-end
is powered by the MySQL 5.0.18 database. In our application
setup, most of the server CPU consumption (around 84%) is
in the JBoss J2EE application server and its hosted apiplicat
components.

Index searchThe above workloads are all fully CPU-bound.
To enhance the workload variety, we include one data-intens
server application that provides full-text search on a wey-k
word index dataset. The dataset, acquired from the Ask.com
search engine [4], contains 1.58 million indexed web palges.

size — 2.37 GB — is slightly larger than the server memory
size. The search queries in our test workload are based @t a re
trace recorded at Ask.com in summer 2004.

user level. This alternative architecture would allow eagiolicy
changes at the cost of additional domain crossing overheads
Using our prototype, this section evaluates the overheatd an
request property inference accuracy of our system. We aso p
formed several system adaptation case studies using ouestq
signatures, which we present in the next sections. The mashi We assess the overhead of our per-request system metrazcoll
in our experimental platform each contain dual 2GHz IntebXe tion and on-the-fly request identification. We consider tviftec
processors and 2 GB memory. We configure the hardware counterent metric collection frequencies (once every 10 ms and ewee
registers to report the application-specific hardware icetisted ery 1 ms). We also consider two request identification appres
in Table 2. Each experiment in our application studies wesl (fixed-point and incremental). For the incremental reqigsesntifi-
a server and a load generation client. The client generates i cation, we assume all requests require 10 stages to complate
put workloads according to traces or synthetic setups ili@pp is an over-estimation to provide us an overhead upper bound.
tion/benchmark specifications. Figure 6 illustrates the overhead assessment result forAIPC
Our evaluation employs four server applications: We find that the hardware metric collection incurs 0.4% arg$.
overhead at the frequencies of once per 10 ms and once per 1 ms
respectively. Note that the overhead does not scale linedth
the collection frequency because the per-collection cacrenup
cost is less when the collection routine runs more often. flike
request identification approaches yield additional 0.1% @u&%
throughput reductions respectively. We believe this osathis
sufficiently low for runtime deployment.

5.1 System Overhead

e TPC-C[26] simulates a population of terminal operators ex-
ecuting Order-Entry transactions against a database.nt co
tains five types of transactions: “new order”, “payment’tder
status”, “delivery”, and “stock level”, constituting 30920%,
20%, 10%, and 20% of all requests, respectively. TPC-C runs
on the MySQL 5.0.18 database.

TPC-H[27] is a database-driven decision support benchmark.
The TPC-H workload consists of 22 complex SQL queries. 5.2 Request Property Inference Accuracy

Some queries require an excessive amount of time to finish and\yg eyaluate the effectiveness of hardware counter metiiernr
thus they are not appropriate for interactive server wadld o, yhe fly request property inference. Although our fraragkacan
We choose a subset of 17 queries in our experimentation: Q2, support many inference targets, our evaluation here faoosere-
Q3, Q4, Q5, Q6, Q7, Q8, Q9, Ql_l’ Q12, Q13 Q14.’ Q15, Q17, dicting request resource consumption, which is partidylase-
Q19, Q.ZO' and Q22. Our synthetic workload contains an equal ful for some online system adaptations (as illustrated iat&ec-
proportion of requests of each query type. TPC-H runs on the tion 6.1). For CPU-bound applications (TPC-C, TPC-H, and RU
MySQL 5.0.18 database. BiS), our prediction target is the request CPU usage. Foa-dat
RUBIS[20] is a J2EE-based multi-component online service intensive index search, our prediction target is the regu@ssize.
that implements the core functions of an auction site includ As a comparison basis to our hardware counter driven request
ing selling, browsing, and bidding. It uses a three-tieviser property inference, we look for a representative convertiap-
model, containing a front-end web server, a back-end dagba proach that is also transparent to server applicatiaes (equir-

TPC-H serial execution

100%

80%

60%

40%

Online running avg.
——— Counter inference

20%

\

Mean prediction error over all requests

1 2 3 4 5 6

Cumulative request execution (in millisec)

TPC-C concurrent execution

7

8

9

10

100%

80%

60%

——— Counter inference

Online running avg.

40%

20%

Mean prediction error over all requests

1 2 3 4 5 6

7

8

9

10

Mean prediction error over all requests

Mean prediction error over all requests

100%

80%

60%

40%

20%

100%

80%

60%

40%

20%

TPC-H concurrent execution

Online running

——— Counter inference

avg.

H,,_,_,_H | V,,,

Mean prediction error over all requests

TPC-H concurrent execution w. hyper-threading

100%

80%

60%

40%

20%

Online running avg.
——— Counter inference

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Cumulative request execution (in millisec) Cumulative request execution (in millisec)
RUBIS concurrent execution ® Index search concurrent execution
»n 100%
[
3
o
[
= 80%
©
g
& 60%y : :
§ \N—H—H
@
S A0% - -
8
S
=]
Online running avg. Sy g 20% Online running avg.
——— Counter inference c ——— Counter inference

g

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Cumulative request execution (in millisec)

Cumulative request execution (in millisec)

Cumulative request execution (in millisec)

Figure 7. The accuracy of predicting request CPU usage (I/O size ®dtta-intensive index search) using our hardware couniterd
inference and using an online running average. For our rem@lwounter driven method, we show the prediction accuramgwp to 10 ms
of execution statistics for each request. The mean full@sgiexecution time (mean CPU time for each request to cog)pkei00.8 ms,
25.9ms, 29.3ms, and 16.3ms for TPC-H, TPC-C, RUBIS, andxiséarch respectively. The prediction error for a particueguest is

defined as prediction—actual

actual

ing no application instrumentation or assistance). Furetdaily,
without on-the-fly information about an incoming requekgre is
little other choice but to use recent past workloads as tlséshia
predict incoming workloads [11, 22, 9]. Specifically, we daypa
transparent workload property prediction method — onlinaing
average — as our comparison basis. In this method, the piyopier
the next runtime request is estimated as the averag¥ ofcent
past requests. We find that the prediction accuracy is ngtsemn-
sitive to the parameteN and our reported results were produced
using N = 10.

Figure 7 illustrates the inference accuracy for our fouvseap-
plications (we also show the serial execution and hypezatthing-
enabled results for TPC-H). With 10 ms execution statisticeach
request, the prediction errors for TPC-C, TPC-H, RUBIS, isaigx

search are 7%, 3%, 20%, and 41% respectively. They are all sub

stantially lower than the online running average-basedliptien
(73-82% errors).
Comparing across the four applications, the predictiomamzy

of TPC-C and TPC-H is much better than that of RUBIS and index

search. Further, TPC-C and TPC-H requests can reach higicpre
tion accuracy with no more than 3 ms request execution statis
Both RUBIS and index search require more statistics. Outi-app
cation studies suggest the following explanation. For T®@&nd
TPC-H, different requests exhibit clearly differentiatexecution
behaviors early in their executions. In contrast, all indearch re-
quests follow similar code paths, which makes them veryailiffi
to differentiate. Finally, RUBIS requests start with alriaentical

code paths due to common processing for Enterprise JavasBean

but they deviate later with processing behaviors uniquénéore-
spective request functions.

Note that this definition of error may exceed 100% and we tit@s 100% in such cases.

5.3 Request Identification Timing

Determining the time at which request identification is parfed
is critical since the need to achieve reasonable predicitgu-
racy must be balanced by the need to ensure that the idetitifica
is early enough to guide request-granularity system atiaptan
Section 4.3, we described two approaches to determinisgithée:
fixed-point request identification and confidence-driverrémen-
tal identification. Results in Figure 7 can directly guide thoice
of the fixed inference time poing(g, 2 ms for TPC-H requests and
9 ms for RUBIS requests).

In the confidence-driven incremental approach, requesttiide
fications are performed incrementally.g, every millisecond) and
only those with high confidence are finalized at each stagevaie
uate this approach using our simple confidence measureiledcr
in Section 4.3. Here, we focus on RUBIS and index search since
their request identification accuracy is more dependenheiden-
tification timing. Figure 8 shows that by making request gy
predictions only when the confidence is high, higher préaticac-
curacy can be achieved for the requests identified (comparta:
prediction error when using a fixed cumulative window, ascgpe
fied on the X-axis, for all requests). However, this comebatbst
of incomplete request identifications, as shown in Figure 9.

6. Operating System Adaptations

Our hardware counter driven request signature supportiefity
request identification and inference of high-level requesiper-
ties. This makes it possible to adapt system management er a p
request basis using the request identification or inferreggrties.
This section explores several such adaptations: res@wege re-

RUBIS

100%

Index search

100%

100%

I RuBis

—— All requests
——<—— Confident requests only

80% 80%

—— All requests
——<—— Confident requests only

[Index search

80%

60% 60%

40% 40%

Mean prediction error
Mean prediction error

20% 20%

Sieesa

RigassSe

60%

40%

Proportion of requests

20%

2 3 4 5 6 7 8 9 10
Cumulative request execution (in millisec)

2 3 4 5 6

2 3

8
Cumulative request execution (in millisec)

4 5 6 7 9 10

7 8 9 10

Cumulative request execution (in millisec)

Figure 8. Request property inference accuracy when identificatiomasle only for

requests demonstrating a high confidence.

quest scheduling, on-the-fly request classification, andaty de-
tection.

6.1 Resource-Aware Request Scheduling

It is well known that user request rates for server systenms ca
fluctuate dramatically over time. Consequently, it is intpat to
manage requests efficiently under high load conditions viedge

of request resource usage at scheduling time is essentalleast
helpful in realizing several request management schemes:

¢ Shortest-remaining-processing-time (SRPT) schedidikgown
to achieve minimal average request response time [21].&ans
and Harchol-Balter [7] further showed that concern over its
unfairness to long-running tasks is unwarranted.

Deadline-driven schedulindnteractive users often desire ser-
vice responses within a certain time limit. Deadline-dnive
scheduling can benefit from advance knowledge of whether
a request can be completed before its deadline.

Resource-aware admission contr8icenarios in which a rela-
tively few resource-hungry requests in a server consums-a di
proportionately large amount of resources are not uncommon

Figure 9. The cumulative proportion of re-
quest identifications made under high confi-
dence.

maining processing time, and move this task to the head dasie
gueue so that it will be chosen at the subsequent scheduing p
Note that our simple implementation is not perfect SRPTesine
do not interfere with the Linux task quantum managementctvhi
may force round-robin scheduling when the task quanta agd us
up.
Our on-the-fly request resource usage inference can enable
SRPT request scheduling. Note that a running request daes no
have inferred resource usage during its metric collectibase
before our signature-based identification is made. Ourdidke
always gives such unidentified requests higher priorityr dhiese

that are already identified. We compare the performance ofesu
quest scheduling scheme against three alternative apgmead)
Default Linuxscheduling; 2) SRPT scheduling usingline run-

ning averagebased request resource usage estimation; and 3) a
hypotheticaloracle SRPT scheduling that has perfect knowledge
of request resource usage before execution.

Figure 10 illustrates the mean request response time uriider d
ferent request scheduling schemes when the workload reues
approach server saturation load levels. Since only CPUwb@yp-
plications are affected by CPU scheduling, here we only show
results for RUBIS, TPC-C, and TPC-H. The results demorestrat

An overloaded system may want to drop these resource-hungry hat our counter-driven scheduling yields 15-27% less estje-

requests in order to achieve higher request throughput.

sponse time compared to the online running average baseddeh

Despite these benefits, acquiring request resource usage ining. Its improvement over default Linux is greater (up to 768

formation before a request completes is challenging. Aigfo
application-level information can infer request resouto@sump-
tion for applications with simple semantics.g, inferred through
file size in a static-content web server [19]), such infeeeiscdif-
ficult for applications with more complex semantics. Furliee
involvement of application information compromises systeans-
parency. As a different design point, Capriccio [28] acgsiappli-
cation resource consumption information through extensivm-
piler and language-level runtime support. However, sucthous
are not applicable to many existing applications or newiapfibns
written in unsupported programming languages. In contraist
OS-level inference of request resource usage providesteléigl
of transparency that requires no application assistanchanmge.

An Empirical Evaluation of SRPT Scheduling We measure the
effectiveness of our hardware counter driven request resaisage
inference in supporting the SRPT request scheduling. Tititée
this study, we implemented a simple SRPT scheduling schame i
the Linux kernel. Our implementation mainly involves an angn-
tation each time the Linux CPU scheduler is about to pick & tas
from the head of the ready task queue. Specifically, at tis, tive
search for the ready task whose request binding has thesshost

sponse time reduction). More importantly, the performaofceur
approach is within 5% that of the oracle scheduler, indizaits
ability to realize the full benefit of resource-aware schiedu

6.2 On-the-Fly Request Classification and Anomaly
Detection

In a server system, online continuous collection of peresq
information can help construct workload models, classifyrky
load patterns, and support performance projections. Fsiate,
grouping similar requests into clusters helps understaedpro-
portion of requests with different levels of resource canption,
which consequently enables performance projection on mew p
cessor/memory platforms. As far as we know, existing ontige
quest modeling techniques (and Magpie [8] in particulaassify
each request into a request cluster after it completes. @thne-fly
request signature makes it possible to classify a requesthfter
it begins execution. By classifying a request early, anraiork-
load tracker may save the overhead for further tracing armhtev
logging on the classified request. Further, early requessifica-
tion allows on-the-fly flagging of potentially anomalous wegts
— those that do not fall into any existing request clustee $is-

RUBIS
1200

600

TPC-C

TPC-H

——+—— Default Linux
———— Online running avg.
—— Counter inference
—=©6—— Oracle

1000

©
=]
=)

@
o
=]

N
o
=)

N
=}
s}

Mean request response time (in millisec)

Mean request response time (in millisec)

1062ms for Linyx

Mean request response time (in sec)

o
a1
=}

58 60
Request rate (in requests/sec)

62

72
Request rate (in requests/sec)

74 76 3.2 33 3.4 35

Request rate (in requests/sec)

Figure 10. Performance of shortest-remaining-processing-time dudiveg when workload request rates approach server saiorédad

levels.

x10°

Floating point ops per p-instruction

)

°
B
1 2 3 4 5 6 7 8

Trace cache lookup misses per p—instruction

Figure 11. Per-request 10 ms-cumulative values of two hardware
counter metrics (floating point operations and trace caob&up
misses pep-instruction) for an execution of TPC-H requests. The
plotincludes 1227 normal TPC-H requests (marked as dots1én
anomalous requests (marked as circles).

tem may then apply targeted monitoring or even online quaran
on those requests.

We provide a simple illustration to motivate the use of haakv
metrics for request classification and anomaly detectiayure 11
shows the per-request 10 ms-cumulative values of two hamiwa
counter metrics for an execution of over 1000 TPC-H requéstis
execution includes some anomalous requests generateaetynt
cally following the pattern of SQL-injection attacks, whienay
enable the attackers to bypass authentication and exeasitise
data [3, 18]. In particular, a tautology-based attack isjedt code
in one or more SQL conditional statements so that they always
evaluate to true (or they are effectively removed from caonjive
conditions). For each of the 17 TPC-H query types (except, Q13
which does not contain a conditionalere clause), we generated
one anomalous request by removing one or two conditionsg-sta
ments at the end of theiere clause. Results in Figure 11 indicate
that normal requests do tend to form clusters according tly-ea
execution hardware metrics and anomalous requests aratiypi
distant from these clusters. Note that this plot only comsidwo
hardware metrics due to illustrative limitation while outlfrequest
signature includes more metrics.

An Empirical Study of Request ClassificationUsing a simple
empirical study, we assess the potential of our requestsiga
enabled on-the-fly request classification. To facilitate gtudy, we
implemented a simple request classifier. First, we defineltrster
signatureas the centroid of all signatures (hardware metric vectors)
of requests in the cluster. For each new request, we matahmnits
the-fly signature with the cluster signatures of all exigtiequest
clusters. If the closest match exhibits a small enough sigea
difference, the request is then classified into the corneding
request cluster. Otherwise, it initiates a new cluster.

Figure 12 illustrates the accuracy of our on-the-fly requéss-
sification for TPC-H (without anomalous requests). We shew r
sults using different windows for per-request metric octilen (up
to 100 ms since request begins execution). We dgferéect clas-
sificationas the one that groups requests according to similar CPU
usage. We then define the error of an on-the-fly classificasoits
deviation from the perfect classification. More specifigadl mis-
classifiedrequest is one that is put into a cluster of requests with
predominantly different CPU usage. Aaver-classifiedrequest is
not mis-classified but it (along with other similar requestshe
same cluster) should be merged into another (larger) clugis-
classification is much more worrisome since it would yieldber
neous information in the produced workload model. In corigoar,
over-classification only incurs some additional clustenegement
overhead.

Results in Figure 12 show that our on-the-fly request clas-
sification can achieve zero mis-classification with as lowaas
2 ms window of cumulative request execution statistics. V-
classification rate is less than 25% with a 4 ms or higher windo
of cumulative statistics. Since the mean TPC-H requestutixec
time is around 600 ms, on-the-fly request classification withs
cumulative statistics can potentially save up to 99% of estu
monitoring and tracing overhead.

An Empirical Study of Anomaly Detection We perform another
simple empirical study to assess the potential of our regsigs
nature enabled on-the-fly anomaly detection. Building onreu
quest classifier, we consider requests in unusually smatets as
anomalous requests. We use two measures to evaluate ttiveffe
ness of our anomaly detection:

of correctly detected anomalies
of actual anomalies

of correctly identified normal requests
of actual normal requests

A high anomaly recall indicates that most anomalies are gutgp

detected while a high normal request recall indicates thastm

normal requests are not misclassified as anomalies. Notehtha

anomaly recalE=

normal request reca:

100% T T T T
80%
60%

40%

Proportion of requests

20%

4

I\

T T T T
———— Over—classification of requests
——e—— Mis—classification of requests

Iy

40

50

60 70

Cumulative request execution (in millisec)

Figure 12. Classification accuracy of hardware counter driven onfiheequest classification for TPC-H (without anomalous esig). We
show results using different windows for per-request neetdllection (up to 100 ms since request begins execution).

100%

80%

60%

40%

20%

Recall ratios for anomalous/normal requests

0 | | | |

———e—— Anomaly recall
—+—— Normal request recall

10 20 30 40

50
Cumulative request execution (in millisec)

60 70 80 90 100

Figure 13. Detection accuracy of hardware counter driven on-the-flynaaly detection for TPC-H (including 1227 normal requesis 46

SQL-injection-style anomalous requests).

second measure is necessary since a trivial detector tlggat &
requests as anomalous would achieve the perfect anomall. rec
Figure 13 shows the accuracy of our on-the-fly anomaly de-
tection for TPC-H (with some SQL-injection-style anomaae-
quests). For this experiment, small clusters containieg tean 1%
of all requests are considered as anomalous. Results $ubges
high recall ratios (around 90% or higher) for both anomahesl
normal requests can be achieved with only a 4ms or higher win-
dow of cumulative statistics for each request.

7. Conclusion

This paper makes the case for constructing on-the-fly recpigs
natures using hardware counter metrics available on mopien
cessors. The signature enables on-the-fly request ideitiicand
inference of high-level request properties, which subsatjy al-
low request-granularity system adaptations that are wfiserim-
possible (or difficult). We address two key challenges inizea
ing such on-the-fly request signatures: deriving generiacples
to guide the selection of hardware counter metrics, andqsiog
OS mechanisms for transparent online management of peeseq
counter metrics. Our experiments using four server apfina
demonstrate the high accuracy of our on-the-fly requesttiiiten
cation and request resource usage inference. We alsaélieghe
effectiveness of request signature-enabled OS adapgaiticiud-
ing resource-aware request scheduling, on-the-fly reqtiassifi-
cation, and anomaly detection.

Our experience allows us to make several important coramgsi
that can guide the practical deployment of our techniquestFa
number of factors may influence the effectiveness of harewwaat-

rics as request signatures in a concurrent server envirotine
particular, metrics that are most susceptible to concuegrealated
environmental perturbations tend to be less effectiveoBacde-
pendence on application characteristics makes it unlitefind a
small but universally useful set of hardware metrics as aiest
signature. Instead, application-specific calibrationdeded to de-
rive the appropriate request signature composition fohesrver
application. Third, quick and accurate request identiidcais more
likely for those server applications whose requests pesseariety
of different semantics and tend to exhibit differentiatipatterns
of execution early. Identification is more difficult for apgtions
whose requests only bifurcate in behavior later in theircexien
path (such as RUBIS in our study) but they may still benefitnfro
our technique.

Today's hardware counter interfaces are non-standardsscro
processor versions and are not "architected” for genertiaoe
utilization. While our experiments in this paper employ ags
x86 processor platform, almost all of the metrics we collecy,
floating point operations, L1 misses, number of loads, staad
branches, CPI) are available on every processor platfornanee
familiar with (including Power and other x86 versions). Mam-
portantly, along with several other recent studies [25,24], we
demonstrate the potential importance of their use in imipigpgoft-
ware system performance and dependability. This may hélip-in
ence the standardization of processor hardware metricghaid
broad exploitation in computer systems.

References

[1] M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance Debugging for Distributed
Systems of Black Boxes. IRroc. of the 19th ACM Symp. on
Operating Systems Principlesages 74—89, Bolton Landing,
NY, October 2003.

[2] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Hen-
zinger, S.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Wald
spurger, and W.E. Weihl. Continuous Profiling: Where Have
All the Cycles Gone?ACM Trans. on Computer System$
(4):357-390, November 1997.

[3] C. Anley. Advanced SQL Injection in SQL Server Applica-
tions. Technical report, Next Generation Security Sofevar
Ltd., 2002.

[4] Ask.com Search Engine (formerly Ask Jeeves). http:Aww
.ask.com.

[5] R. Azimi, M. Stumm, and R. W. Wisniewski. Online Per-
formance Analysis by Statistical Sampling of Microproa@ss
Performance Counters. Rroc. of the 19th ACM Conf. on Su-
percomputingpages 101-110, Cambridge, MA, June 2005.

G. Banga, P. Druschel, and J.C. Mogul. Resource Contine

(6]

A New Facility for Resource Management in Server Systems.
In Proc. of the Third USENIX Symp. on Operating Systems

Design and Implementatiopages 45-58, New Orleans, LA,
February 1999.

N. Bansal and M. Harchol-Balter. Analysis of SRPT ScHedu
ing: Investigating Unfairness. IRroc. of the ACM SIGMET-
RICS pages 279-290, Cambridge, MA, June 2001.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modeling. In

(7]

(8]

Proc. of the 6th USENIX Symp. on Operating Systems Design

and Implementatiorpages 259-272, San Francisco, CA, De-
cember 2004.

[9] J.M. Blanquer, A. Batchelli, K. Schauser, and R. Wolgpuo-
rum: Flexible Quality of Service for Internet Services. In

Proc. of the Second USENIX Symp. on Networked Systems De

sigh and Implementatigrpages 159-174, Boston, MA, May
2005.

[10] J.B. Bulpin and I.A. Pratt. Hyper-Threading Aware Pzes
Scheduling Heuristics. IRroc. of the USENIX Annual Tech-
nical Conf, pages 103-106, Anaheim, CA, April 2005.

[11] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdatl an

[15] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Chaiact
ing and Predicting Program Behavior and its Variability. In
Proc. of the Int'l Conf. on Parallel Arch. and Compilation
Tech, pages 220-231, New Orleans, LA, September 2003.

[16] L. Eeckhout, H. Vandierendonck, and K.D. BosschererkA/o
load Design: Selecting Representative Program-InpusPlair
Proc. of Int'l Conf. on Parallel Arch. and Compilation Tech.
pages 83-94, Charlottesville, VA, September 2002.

[17] C. Gniady, A.R. Butt, and Y.C. Hu. Program-Counter-8as
Pattern Classification in Buffer Caching. Rroc. of the 6th
USENIX Symp. on Operating Systems Design and Implemen-
tation, pages 395-408, San Francisco, CA, December 2004.

[18] W.G.J. Halfond, J. Viegas, and A. Orso. A Classificatadn
SQL Injection Attacks and Countermeasures.Irtl Symp.
on Secure Software Engineerinfylington, VA, March 2006.

[19] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agaa
Size-Based Scheduling to Improve Web Performan8€M
Trans. on Computer Systen24(2):207-233, May 2003.

[20] RUBIS: Rice University Bidding System. http://rubis
.objectweb.org.

[21] L.E. Schrage and L.W. Miller. The Queue M/G/1 with the
Shortest Remaining Processing Time Discipli@perations
Research14(4):670-684, 1966.

[22] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resaurc
Management for Cluster-based Internet ServicesPrbt. of
the 5th USENIX Symp. on Operating Systems Design and Im-
plementationpages 225-238, Boston, MA, December 2002.

[23] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and
Prediction. InProc. of the 30th Int'l Symp. on Computer Arch.
pages 336—-349, San Diego, CA, June 2003.

[24] C. Stewart and K. Shen. Performance Modeling and System
Management for Multi-component Online Services.Pioc.
of the Second USENIX Symp. on Networked Systems Design
and Implementatiorpages 71-84, Boston, MA, May 2005.

[25] P.F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Di-
wan, D. Grove, and M. Hind. Using Hardware Performance
Monitors to Understand the Behaviors of Java Applications.
In Proc. of the Third USENIX Virtual Machine Research and
Technology Symppages 57-72, San Jose, CA, May 2004.

[26] TPC Benchmark C. http://www.tpc.org/tpcc.
[27] TPC Benchmark H. http://www.tpc.org/tpch.

R.P. Doyle. Managing Energy and Server Resources in Host- [28] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and

ing Centers. IrProc. of the 18th ACM Symp. on Operating
Systems Principleppages 103-116, Banff, Canada, October
2001.

[12] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-Based Failure and Evolution
Management. IrProc. of the First USENIX Symp. on Net-
worked Systems Design and Implementatpages 309-322,
San Francisco, CA, March 2004.

[13] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kellyd a
A. Fox. Capturing, Indexing, Clustering, and RetrievingsSy
tem History. InProc. of the 20th ACM Symp. on Operating
Systems Principlegpages 105-118, Brighton, United King-
dom, October 2005.

[14] A.S. Dhodapkar and J.E. Smith. Managing Multi-
Configuration Hardware via Dynamic Working Set Analysis.
In Proc. of the 29th Int'l Symp. on Computer Arcpages
233-244, Anchorage, AL, May 2002.

E. Brewer. Capriccio: Scalable Threads for Internet Sewic
In Proc. of the 19th ACM Symp. on Operating Systems Prin-
ciples pages 268-281, Bolton Landing, NY, October 2003.

[29] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Pro-
cessor Hardware Counter Statistics As A First-Class System
Resource. IrProc. of the 11th Workshop on Hot Topics in
Operating System$&an Diego, CA, May 2007.

