
Failure-Atomic msync(): A Simple and Efficient
Mechanism for Preserving the Integrity of Durable Data

Stan Park
University of Rochester
park@cs.rochester.edu

Terence Kelly
Hewlett-Packard Laboratories

terence.p.kelly@hp.com

Kai Shen
University of Rochester
kshen@cs.rochester.edu

Abstract
Preserving the integrity of application data across updates
is difficult if power outages and system crashes may oc-
cur during updates. Existing approaches such as relational
databases and transactional key-value stores restrict pro-
gramming flexibility by mandating narrow data access in-
terfaces. We have designed, implemented, and evaluated an
approach that strengthens the semantics of a standard op-
erating system primitive while maintaining conceptual sim-
plicity and supporting highly flexible programming: Failure-
atomic msync() commits changes to a memory-mapped file
atomically, even in the presence of failures. Our Linux im-
plementation of failure-atomic msync() has preserved ap-
plication data integrity across hundreds of whole-machine
power interruptions and exhibits good microbenchmark per-
formance on both spinning disks and solid-state storage.
Failure-atomic msync() supports higher layers of fully gen-
eral programming abstraction, e.g., a persistent heap that
easily slips beneath the C++ Standard Template Library.
An STL <map> built atop failure-atomic msync() outper-
forms several local key-value stores that support transac-
tional updates. We integrated failure-atomic msync() into
the Kyoto Tycoon key-value server by modifying exactly
one line of code; our modified server reduces response times
by 26–43% compared to Tycoon’s existing transaction sup-
port while providing the same data integrity guarantees.
Compared to a Tycoon server setup that makes almost no
I/O (and therefore provides no support for data durability
and integrity over failures), failure-atomic msync() incurs
a three-fold response time increase on a fast Flash-based
SSD—an acceptable cost of data reliability for many.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

1. Introduction
Preserving the integrity of application data is the paramount
responsibility of computing systems, and sudden system
crashes due to power outages and kernel panics pose the
most serious threats to application data integrity. At a min-
imum, applications must be able to recover a consistent ap-
plication state from durable storage following such failures.

Networked data processing—increasingly the norm—
often imposes the added requirement that an application
synchronously commit a consistent state to durable media
before releasing outputs. Consider, for example, a banking
server handling a request to transfer money from a sav-
ings account to a checking account. The server must syn-
chronously commit this transaction to storage before in-
forming the client that the transfer has completed, lest a
server crash effectively erase the transfer and the client’s
checks bounce. More general distributed computing sce-
narios impose more sophisticated requirements on global
consistency [14, 21]; as in simple client-server interactions,
the need to commit data synchronously is sometimes un-
avoidable. Indeed, the motivation for our work is to provide
efficient kernel support for the Ken distributed rollback-
recovery protocol [25], currently available as a portable
open-source userspace library [24] that provides fault tol-
erance for several independent distributed systems tool-
kits [19, 22, 26, 45].

Existing support for preserving application data integrity
in the face of crashes leaves much to be desired. Most oper-
ating systems and file systems provide only ordering primi-
tives which by themselves do not guarantee atomic and con-
sistent application data updates in the face of sudden crashes.
POSIX msync(), for example, can leave file data inconsis-
tent if a crash occurs after a subset of dirty pages have been
eagerly written back to the file or if a crash occurs during
a call to msync(). Programmers have the option of writing
application-specific reliability mechanisms atop existing OS
primitives, but manually inserting checkpoints is tedious and
homebrew crash-recovery code is notoriously buggy.

Programmers therefore frequently rely upon relational
databases or key-value stores to protect application data
from crashes. While reliable, such mechanisms are not al-

ways well aligned with the style of programming that the
developer would prefer if reliability were not a requirement.
Imposing the relational model of conventional databases
on an application’s data can be awkward, and the narrow
put()/get() interface of key-value stores is seldom an
ergonomic substitute for the unrestricted manipulation of
in-memory data that programmers ordinarily enjoy.

We postulate that in many cases what programmers re-
ally want is the convenience and generality of ordinary main-
memory data structures and algorithms coupled with a sim-
ple lightweight mechanism to atomically commit data to
storage at moments when the programmer knows that the
data are consistent. A good solution would enable program-
mers to evolve application data on durable media from one
consistent state to the next without fear that sudden crashes
may destroy or corrupt data and without cumbersome pro-
gramming.

Our solution, failure-atomic msync(), is a conceptually
simple extension to the familiar POSIX mmap()/msync()

interfaces. A file mapped into memory with the new flag
mmap(MAP ATOMIC) is guaranteed to be in the state it was in
before it was mapped into memory, or the state it was in af-
ter the most recent successful msync() call, even if system
crashes occur. In our tests, failure-atomic msync() has pre-
served application data integrity across hundreds of whole-
machine power disconnections without losing or corrupting
a single byte of application data.

By itself, failure-atomic msync() directly addresses a de-
mand that programmers have explicitly voiced [29]. It also
can serve as the foundation for higher layers of programming
abstraction that inherit the strong data integrity guarantees of
failure-atomic msync(). For example, we found it easy to
build atop failure-atomic msync() a persistent heap that in
turn can replace the default C++ Standard Template Library
(STL) memory allocator. The net result is a powerful and ef-
ficient combination of durable data consistency with STL’s
comprehensive collection of data structures and algorithms.
Finally, a backward-compatible interface makes it remark-
ably easy to integrate failure-atomic msync() into large and
complex legacy applications. For example, by modifying
one line of code we enabled the Kyoto Tycoon key-value
server to take full advantage of failure-atomic msync(),
which significantly outperformed Tycoon’s native transac-
tion support while providing the same data integrity guaran-
tees.

The remainder of this paper is organized as follows: We
begin with a review of related work in Section 2. Section 3
describes the interface, semantics, and system support of
failure-atomic msync(). Section 4 explains how failure-
atomic msync() facilitates both the development of new
applications and the retrofitting of enhanced fault tolerance
onto legacy applications. Section 5 presents a series of exper-
iments that evaluate the robustness and performance of our

implementation of failure-atomic msync(), and Section 6
concludes.

2. Related Work
Transactional databases support data durability and consis-
tency through relational SQL [42] or object-oriented inter-
faces [18]. NoSQL key-value stores like Kyoto Cabinet [15]
and LevelDB [12] also preserve data integrity over sys-
tem failures. These systems mandate specific data access
interfaces that restrict programming flexibility. In compar-
ison, our failure-atomic msync() has a small, backward-
compatible addition to the POSIX I/O interface such that
it affords easy adoption and full flexibility to the program-
mers. Furthermore, it requires minimal porting effort for use
by existing applications that desire durability and integrity
for their data in memory.

Existing file system atomic I/O techniques include jour-
naling, shadowing, and soft updates. In journaling, an atomic
I/O operation is recorded in a REDO log before writing to
the file system. A failure after a partial write can be recov-
ered at system restart by scanning and committing the REDO
log. In shadowing [1, 23], writes to existing files are handled
in a copy-on-write fashion to temporary shadow blocks. The
final commit is realized through one atomic I/O write to a file
index block that points to updated shadow data/index blocks.
While the traditional shadowing requires “bubbling up to the
root” of the file system index structure, short-circuit shad-
owing [10] allows a direct change of an intermediate block
to save work at the cost of disrupting sequential writes. Fi-
nally, soft updates [17] carefully order the block writes in file
system operations such that any mid-operation failure will
always leave the file system metadata in a consistent state
(except for possible space leaking on temporarily written
blocks). However, the existing file system atomic I/O sup-
port [35] is primarily concerned with protecting file system
data structure consistency rather than application data in-
tegrity. In particular, the ext4 file system “data” mode jour-
naling cannot preserve application-level data integrity se-
mantics about which it currently has no way to know.

For data consistency in a networked system (e.g., Web
clients/servers), it is furthermore important to commit data to
durable storage before emitting dependent output to the out-
side world. Output-triggered commits are supported in “Re-
think the Sync” [31], which contains OS-level techniques
to track dependencies between dirty file buffers and kernel
objects, enabling automatically committing dependent dirty
file buffers before any output message is released. We take a
different approach of providing a simple, intuitive program-
ming interface for direct application control. Our approach
is less automated but more flexible. Adding synchrony to
failure-atomic I/O may incur substantial overhead [39]. The
design and implementation of failure-atomic msync() at-
tempt to support durable, consistent data preservation at high
efficiency.

Atomic I/O transactions have been supported in both file
systems and in storage. Generally speaking, application-
level data integrity semantics are not visible at the stor-
age firmware and therefore storage-level transactions [36]
are not suitable for protecting application data integrity. At
the operating system level, Stasis supports transactional I/O
on memory pages through UNDO logging [38]. TxOS [34]
connects its transactional memory support with file system
journaling to enable atomic storage operations. Compared
with I/O transactions, our failure-atomic msync() presents
a simple, POSIX-compatible programming interface that is
less complex and easier to use. It is worth noting that Mi-
crosoft Windows Vista introduced an atomic file transaction
mechanism (TxF) but the vendor deprecates and may dis-
continue this feature, noting “extremely limited developer
interest ... due to its complexity and various nuances” [28].
Some transactional I/O systems [34, 38] enable atomic I/O
over failures as well as concurrent accesses. Failure-atomic
msync() focuses on failure-atomicity while leaving concur-
rency management to the applications (through mutex locks
or other synchronization means).

Rio Vista [27] was an early effort that supports data con-
sistency over operating system failures on persistent mem-
ory but did not support data consistency over power failures.
RVM [37] is similar in spirit to failure-atomic msync(),
though utilizing a different interface and focusing on virtual
memory support rather than mapped files. With continu-
ing advances in non-volatile memory (NVRAM) hardware
technologies [8, 11], recent studies have proposed a new
NVRAM-based file system design [10], new data access
primitives (including Mnemosyne [44], NV-heaps [9], and
CDDS [43]), as well as fast failure recovery [30]. Unfor-
tunately, today’s NVRAM manufacturing technologies still
suffer from low space density (or high $/GB) and stabil-
ity/durability problems. Until these problems are resolved,
today’s storage hardware (mechanical disks and NAND
Flash-based solid-state drives) and system software (block-
based file systems) are likely to remain. To realize our pri-
mary objectives of ease-of-use and fast adoption, failure-
atomic msync() targets the software/hardware stacks run-
ning in today’s systems.

Supporting a persistent heap between volatile memory
and durable storage is a classic topic. Atkinson et al. pro-
posed PS-algol, a database programming model that allows
programmers to directly manipulate data structures on a
heap [2] while an underlying system properly and promptly
moves data from the heap to persistent storage [3]. O’Toole
et al. presented a replicating garbage collector that cooper-
ates with a transaction manager to provide durable, consis-
tent storage management [32]. Guerra et al. identify a consis-
tent data version in the heap through pointer chasing from a
root data unit and atomically commit each data version [20].
At a lower level of abstraction, our failure-atomic msync()
can easily implement a persistent heap with data integrity

and high efficiency but it also allows other programming
paradigms on memory-mapped data.

The belief that programmers benefit from the conve-
nience of manipulating durable data via conventional main-
memory data structures and algorithms dates back to MUL-
TICS [4], which inspired today’s memory-mapped file inter-
faces. Failure-atomic msync() retains the ergonomic bene-
fits of memory-mapped files and couples them with strong
new data-integrity guarantees.

Finally, our work is related to data center state manage-
ment systems such as Bigtable [7] and Dynamo [13] but with
different emphases. While centrally managed data centers
can impose a unified data access model and distributed co-
ordination, failure-atomic msync() enables small local ad-
justment of existing operating system support at individual
hosts, which is more suitable for the vast majority of inde-
pendent application development scenarios.

3. Interface and System Support
Failure-atomic msync() is a simple OS-supported mech-
anism that allows the application programmer to evolve
durable application data atomically, in spite of failures such
as fail-stop kernel panics and power outages. Failure-atomic
msync() guarantees that a memory-mapped file will always
either be in the state it was in immediately after the most
recent msync() (or the state it was in at the time of mmap()
if msync() has not been called).

Because its semantics lie at the high-level interface
between the operating system and applications, failure-
atomic msync() does not fundamentally depend on partic-
ular durable media (whether block device or not)—today’s
hard disks and SSDs and forthcoming non-volatile mem-
ory are compatible. Indeed, failure-atomic msync() seems
to be an ideal interface to novel mechanisms for taking
memory checkpoints almost instantaneously by versioning
multilevel-cell NVRAM [46].

In addition to having flexibility in the underlying storage
device, the concept of failure-atomic msync() allows multi-
ple implementations. Journaling, shadow copy, and soft up-
dates are all viable techniques that allow consistent updates
to a file system. In this paper, we describe our journaling-
based system support.

3.1 Interface and Semantics
The interface to failure-atomic msync() is simply the fa-
miliar mmap() and msync() system calls. In order to en-
able failure-atomic msync(), the programmer merely needs
to specify a new MAP ATOMIC flag to mmap() in addition
to any other flags needed. The programmer can access the
memory-mapped region in the customary fashion. When the
application state is deemed consistent by the programmer,
msync(MS SYNC) is called.

Two POSIX-standardized msync() flags—which are
currently no-ops in Linux—illustrate the fundamental har-

mony between the conventional, standardized msync() con-
cept and our failure-atomicity extension.

• First, consider msync(MS ASYNC), which on Linux cur-
rently results in a no-op. POSIX allows this call to “return
immediately once all the write operations are initiated or
queued for servicing.” The composition of failure atom-
icity with MS ASYNC has clean and simple semantics—
“define and enqueue an atomic batch of updates to the
backing file, but don’t wait for the updates to be applied
to durable media.”

• Next, consider the MS INVALIDATE flag, which like
MS ASYNC currently results in a no-op on Linux. The
composition of failure atomicity with MS INVALIDATE

leads to straightforward and meaningful semantics:
msync(MS INVALIDATE) on a mmap(MAP ATOMIC) file
would abort and roll back changes made to the in-
memory mapping, leaving the backing file unchanged.

Implementing standard POSIX MS ASYNC and MS INVALIDATE

semantics in Linux is beyond the scope of our work, which
focuses on the synchronous semantics required by net-
worked applications that must commit state prior to releasing
messages. We simply note that the concept of failure atom-
icity introduces no semantic difficulties in composition with
the existing standardized interface.

Isolation, data-race prevention, or other multi-threaded or
multi-process concurrency control is not a goal of failure-
atomic msync(). Failure-atomicity adds no new complica-
tions to concurrency, leaving the programmer’s responsibili-
ties unchanged. We further discuss this issue in Section 3.3.

3.2 Kernel and File System Support
Design Overview Implementing failure-atomic msync()

entails two fundamental requirements that differ from the
standard behavior of msync(): First, we must ensure that the
memory-mapped file is altered only in response to explicit
msync() calls. For example, we must ensure that modified
pages of the in-memory file image are not written back
to the underlying file for other reasons, e.g., in response
to memory pressure or as a consequence of a timer-based
periodic writeback mechanism. Second, we must ensure that
when msync() is called, the set of dirty in-memory pages
must be committed in a failure-atomic fashion; following a
sudden crash during the msync() call, the file must remain
in the state it was in before the call.

Preventing premature writeback of dirty pages consists
mainly in identifying locations in the kernel where such
writebacks may occur and disabling them in a safe way.
Making msync() calls failure-atomic is simplified—at least
in principle—if we leverage the failure-atomicity proper-
ties already present in an underlying journaling mechanism.
Once an atomic set of updates is safely written to the durable
journal, they are guaranteed to survive a failure. Implement-
ing failure-atomic msync() is conceptually simple, e.g.,

modifying memory management and leveraging the failure-
atomicity properties of a journaling mechanism. In practice,
of course, the devil is in the details, which we describe at
length below. Overall, we found that extending a complex
and mature OS (Linux and ext4 journaling file system) to
support failure-atomic msync() was a manageable exercise,
and we believe that similar modifications could be made
without prohibitive effort to other Unix-like operating sys-
tems.

Implementation Failure-atomic msync() involves two
logical goals. First, a mapped file must be maintained in
a consistent state until the programmer defines the next con-
sistent state by calling msync(). That is, the file must be
protected from non-explicit modification. To this end, we
disable any writeback of pages of an atomically mapped re-
gion unless the writeback was initiated by an explicit sync-
type call. In order to identify such protected pages, we set a
new page flag Atomic when a page in an atomically mapped
region is first accessed.

Second, evolving file state must occur in such a way that
failure during evolution does not compromise the consis-
tency of the file data. In our journaling-based approach, we
leverage JBD2, the journaling layer of the ext4 file system,
to achieve failure-atomic writes to durable storage. While
JBD2 is typically used to journal file system metadata in or-
der to maintain file system consistency, it is also capable of
performing data journaling, i.e., journaling of file data. Data
journaling allows dirty data to be written to durable storage
in an out-of-place fashion, i.e., to a secondary location in lieu
of the original data location, which is necessary for main-
taining file data consistency in the case of failures during the
writeback of a set of updates.

The standard data journaling, however, provides no in-
terface for applications to specify units of atomic I/O for
consistency. In our implementation, failure-atomic msync()
collects the set of dirty pages at an msync()call and encap-
sulates them into a single handle—the unit of failure-atomic
I/O guaranteed by the journaling JBD2 layer. JBD2 is capa-
ble of providing atomic transaction guarantees via a check-
summed journal entry, so failures during an atomic msync()
will merely result in an incomplete journal entry which will
be discarded. Once the journal entry is safely on durable
storage, the actual file data can be written to the file system
in the future.

While implementing failure-atomic msync() on ext4, we
were initially tempted to use its existing I/O functions like
ext4 writepages() and ext4 writepage(). Unfortu-
nately ext4 writepages() is intended for a contiguous
range of the address space; for non-contiguous range op-
erations, ext4 writepage() is called repeatedly for each
dirty page in the range. When ext4 is mounted in data jour-
naling mode, repeatedly calling ext4 writepage() causes
each page to be journaled in a separate handle. JBD2 only
guarantees each handle to be performed atomically so it is

possible that, during this per-page journaling process, some
pages are committed to the durable storage before others. A
failure after the commit of at least one but before the full
page set (within an msync()) commits creates a window of
vulnerability in which inconsistency may occur. Therefore
we had to adopt a new implementation path without using
these existing ext4 I/O functions.

Journaled Writeback Consider a file system with REDO
log-based journaling (such as Linux ext4/JBD2). Once the
journal entry for the new pages has been safely written, the
data is effectively made durable even though the in-place file
content has not yet been updated—if the system fails at that
moment, journal recovery will ensure that the file content
will be consistent and up-to-date. Therefore, the eventual
writeback of journaled pages can be arbitrarily delayed with-
out violating data durability semantics. Note the distinction
between two kinds of dirty pages—file system-layer volatile
dirty pages that would be lost at system failures and jour-
naled dirty pages that are already made effectively durable
by journal REDO logging. We distinguish the writeback of
these two kinds of dirty pages as file system-layer writeback
and journaled writeback, respectively. We illustrate the two
kinds of dirty pages and their writeback in Figure 1.

Clean
page

Application
write to page

File system
-layer

dirty page
msync()
forces

FS-layer
writeback

Page is
journaled

to REDO log

Journaled
dirty page
(effectively

durable)
Journaled
writeback
to durable

storage

Figure 1: Lifetime of a page and two kinds of writeback.

The general operating system design has not given partic-
ular attention to the management of journaled writeback and
some (like Linux) manage it indifferently from the conven-
tional file system-layer writeback. Such oblivion can lead to
substantial performance costs for applications that make fre-
quent data I/O to the durable storage (including those that
adopt failure-atomic msync()). Particularly in Linux, when
msync() is called repeatedly on a memory-mapped file, the
processing of an msync() call does not distinguish between
file system-layer dirty pages and journaled dirty pages. Con-
sequently, all dirty pages are passed to the file system for
writeback and file systems like ext4, when seeing a write-
back request on a previously journaled page, will commit the
pages to storage. This is unnecessary for journaled pages that
are already effectively durable. We call such an approach ea-
ger journaled writeback.

Eager journaled writeback introduces additional work in
the synchronous context, which leads to additional applica-
tion wait time. We explore asynchronous writeback of al-
ready journaled pages. In particular, we distinguish between
file system-layer dirty pages and journaled dirty pages. At
msync(), we immediately writeback file system-layer dirty

pages but leave the journaled dirty pages for a possible de-
lay. While the operating system generally contains a mech-
anism for asynchronous writeback, it may not be appropri-
ate for a failure-atomic msync()-intensive system that per-
forms frequent I/O to preserve data durability and integrity.
In particular, there is a cost associated with the accumulation
of journaled dirty pages in a memory-mapped file. Specif-
ically, all dirty pages will be scanned at an msync() and
distinguishing between many dirty pages (file system-layer
or journaled) may incur high page lookup costs (and associ-
ated TLB misses). We limit such costs by placing an upper
bound on the accumulation of journaled dirty pages within a
file before the asynchronous writeback of those dirty pages
is initiated. We use 128 pages as the threshold in our experi-
ments.

While asynchronous journaled writeback generally out-
performs the eager journaled writeback due to less work in
the synchronous context, it may be less effective for faster
I/O devices. On extremely fast devices, the additional la-
tency of performing non-critical I/O in the synchronous con-
text may be outweighed by the costs of additional page
lookups and higher memory pressure. We evaluate both ap-
proaches in Section 5.

3.3 Additional Issues
Preventing asynchronous file system-layer writeback is nec-
essary to maintain file consistency under failure-atomic
msync(), but it effectively pins file system-layer dirty pages
in memory and thus constrains the operating system’s re-
sponses to memory pressure. Fortunately an OS may recon-
cile the requirements of failure-atomic msync() with mem-
ory pressure using a straightforward mechanism. Specif-
ically, when memory pressure arises, the OS may write
dirty pages in MAP ATOMIC regions to temporary durable
storage (e.g., swap space) rather than to the backing file;
when failure-atomic msync() is called, these pages can be
swapped back in. A more complex solution, which mini-
mizes expensive I/O, is to directly relink the blocks on stor-
age. We have not implemented this mechanism in our current
prototype.

We must be careful to distinguish between two concep-
tually distinct concerns that are easily conflated, in part
because terms such as “transactional” and “atomicity” are
widely used to describe them individually or in combination:
(1) integrity-preserving update of durable data in the face of
severe failures, e.g., power outages; and (2) orderly concur-
rent access to shared (but not necessarily durable) data, e.g.,
to prevent data races in multi-threaded software. For brevity
we refer to these concerns as consistent update and concur-
rency isolation, respectively. Over the past decade the rise
of multicore processors inspired intense research interest in
improved concurrency isolation mechanisms such as trans-
actional memory. More recent research has enabled transac-
tional storage [38] and transactional operating systems [34]

to provide unified support for consistent update on durable
media and concurrency isolation.

Failure-atomic msync() conforms to the traditional POSIX
approach of separating consistent update from concurrency
isolation, which has long been viewed as positively desir-
able. For example, Black argued that in the operating sys-
tem context, “[transaction support] should be subdivided
into independent components, and that each component
be isolated from its implementation by a well defined in-
terface” [6]. Failure-atomic msync() contributes a well-
defined new consistent update mechanism by strengthening
the well-known semantics of msync(). The result remains
compatible with concurrency isolation mechanisms such as
mutexes. In a multi-threaded program that employs failure-
atomic msync() on shared buffer, a simple expedient suf-
fices to prevent concurrency from wreaking havoc during
msync() calls: An ordinary reader-writer lock confers upon
threads that hold a read lock the privilege of modifying the
buffer, and grants to a thread holding a write lock the privi-
lege of calling msync() on the buffer.

While separated consistent update and concurrency iso-
lation support provides flexibility, we acknowledge, how-
ever, that it does not always produce the best performance
or programmability. Compared to an ideal transactional sys-
tem that supports both consistent update and concurrency
isolation while allowing the maximum level of concurrency
among threads, failure-atomic msync()-based support falls
short. In particular, while failure-atomic msync() can com-
bine with coarse-grained mutexes, it would restrict the con-
currency. Alternatively, failure-atomic msync() can com-
bine with fine-grained mutexes to enable concurrency but
fine-grained mutexes are hard to program. Finally, we point
out that our failure-atomicity system support (though not
our atomic msync() API) may integrate into a transactional
memory system to achieve consistent update and concur-
rency isolation. Such an effort requires further investigation
that falls beyond the scope of this paper.

4. Application Development
Failure-atomic msync() facilitates the development of new
software and also the enhancement of existing software. Sec-
tion 4.1 describes how to layer software abstractions atop
our new primitive in such a way that the higher layers in-
herit its benefits. Section 4.2 illustrates how the backward-
compatibility of failure-atomic msync() makes it easy to
strengthen the crash resilience of complex legacy applica-
tions. Performance evaluations for both scenarios are pre-
sented respectively in Section 5.3 and Section 5.4.

4.1 Persistent Heap and C++ STL
The widely-anticipated advent of non-volatile memory has
sparked interest in persistent heaps as an NVRAM inter-
face [9, 44]. The attractions of persistent heaps as a pro-
gramming abstraction, however, are independent of the un-

derlying durability technology, and recent contributions in-
clude persistent heaps designed to work with conventional
storage [20]. Failure-atomic msync() provides a convenient
foundation for persistent heaps. Here we sketch a minimalist
design that illustrates the basic concepts, works rather well
in practice, and integrates easily with rich general-purpose
programming libraries.

A large but initially sparse heap file provides storage-
backed memory. Metadata contained in the heap file in-
cludes the virtual memory address at which the file should be
mapped, free-list management metadata, and a pointer to the
root of user-defined data structures contained in the heap. An
initialization function uses failure-atomic msync() to map
the heap file into a process’s address space at the fixed lo-
cation specified in the file itself; the same init() function
handles both the very first initialization of a heap file and re-
covery of the heap from the heap file following a crash or an
orderly process shutdown. Address Space Layout Random-
ization (ASLR) could in principle thwart our attempt to map
the heap file at a fixed address; in our experience such prob-
lems do not occur, and ASLR can be disabled as a last resort.
A memory allocator that exposes a malloc()/free() in-
terface manages the memory pool and free list backed by
the heap file. A set()/get() interface allows access to the
heap’s root pointer, and a sync() function allows the user
to atomically synchronize the in-memory heap with the heap
file; under the hood, the sync() function simply invokes our
failure-atomic msync() on the entire heap mapping. Our
persistent heap implementation consists of under 200 lines
of C code.

Programming with a persistent heap based on failure-
atomic msync() differs little from ordinary in-memory pro-
gramming, except for a handful of commonsense restrictions
that also apply to alternative persistence strategies. Programs
must be able to reach data structures in the persistent heap
from the root pointer, e.g., after recovery from a crash; a
convenient way to do this is to use the root as an entry to a
hash table that maps data structure names to corresponding
pointers. Programs should not store in the persistent heap
pointers to data outside the heap. Programs may sync() the
heap whenever it is consistent; no threads may be writing
to the heap during a sync() call, just as no threads may
write to a buffer as it is being processed by a write() call.
Finally, just as the conventional heap is private to a conven-
tional process, the heap file of a persistent heap based on
failure-atomic msync() should not be used for sharing data
between concurrent processes.

We believe that the sync() interface to our persistent
heap is more convenient and less error-prone than a “be-
gin/end transaction” interface. Experience has shown that
correctly pairing begin and end calls (or lock/unlock, or
open/close, etc.) is fertile ground for bugs. The semantics
of sync() is simple and requires no pairing. A sync() call
simply means, “the heap is in a consistent state.”

The C++ Standard Template Library (STL) is designed
to make it easy for its default memory allocator to be re-
placed by a user-defined allocator. It takes roughly a dozen
lines of straightforward code to insert our persistent heap’s
malloc() and free() into STL in such a way that both
programmer-visible new and delete calls and internal al-
locations employ our functions. The result is that nearly the
full power of STL is coupled to nearly effortless persistence.
The programmer remains responsible for calling sync()

and for finding data structures in the persistent heap from
the heap’s root. Programs that employ our persistent heap
beneath STL must prevent constructors that allocate mem-
ory from being called before the persistent heap init()

function, keeping in mind that C++ static-variable construc-
tors can be called in an uncontrollable order before a pro-
gram’s main() function is called. Avoiding static-variable
constructors that allocate memory is one way to avoid trou-
ble. Overall, in our experience programming remains conve-
nient and flexible when our persistent heap is used in con-
junction with STL.

One possible concern with the composition of STL with
a persistent heap based on failure-atomic msync() is that
the latter’s sync() cost depends on the number of memory
pages dirtied between consecutive sync() calls, which STL
makes no attempt to minimize. This concern is well-founded
because containers such as the versatile and powerful STL
<set> and <map> are typically implemented with red-black
trees, whose balancing algorithm can make small changes to
several memory pages for a single insertion or deletion. We
shall revisit STL/persistent-heap performance in Section 5.3.

4.2 Kyoto Tycoon Key-Value Server
Our failure-atomic msync() provides a simple, POSIX-
compatible programming interface that can be easily retrofitted
onto existing software for efficiently preserving the integrity
of durable data. We present a case study of adopting failure-
atomic msync() in the Kyoto Tycoon key-value server [16].
Tycoon encapsulates a lightweight database engine [15] that
supports hashing-based key-value insert, replace, delete, and
lookup. Tycoon runs an HTTP server that interfaces with
(potentially concurrent) web clients. Each record modifica-
tion operation (insert, replace, or delete) involves changes to
both data and the hashing structure. Data integrity requires
that each operation must commit to durable storage atom-
ically. Consistency between clients and the server further
requires that data from each operation is made persistent
before responding to the client.

Tycoon uses a memory mapped region to maintain its
data structures. Memory data is committed to the storage
under two specific mechanisms. The Synchronize mecha-
nism enforces all dirty data in the memory mapped region to
be committed to the durable storage through conventional
msync(). However, the Synchronize mechanism cannot
prevent operating system background flushes that may write
an inconsistent, partial set of dirty data. Tycoon’s Transac-

tion mechanism maintains a user-level UNDO log to ensure
that each transaction is committed all or nothing despite
failure or crashes. During failure recovery, the UNDO log
is replayed backwards to roll back partially executed trans-
actions. The Transaction mechanism is expensive due to the
additional log writes and the ordering between log and data
writes. These mechanisms are selected by setting Tycoon
server’s startup parameter.

With our failure-atomic msync(), data commits in Ty-
coon’s Synchronize mechanism become atomic and there-
fore data integrity is ensured as long as an atomic data sync is
called at the end of each request (right before responding to
the client). Failure-atomic msync()effectively elevates the
cheaper Synchronize mechanism to be as powerful as the
more expensive Transaction mechanism in terms of data in-
tegrity over failures. It is extremely simple to retrofit failure-
atomic msync() onto Tycoon. One only has to change a sin-
gle line of source code—adding our MAP ATOMIC flag at one
mmap() call in kcfile.cc.

5. Experimental Evaluation
We implemented failure-atomic msync() in Linux kernel
2.6.33 and evaluated its correctness and performance. We
performed experiments on a machine with a quad-core 8-
thread 2.40 GHz Intel Xeon E5620 processor and 12 GB
memory. Our evaluation uses several mechanical and Flash-
based solid-state disks (SSDs) that will be described later.
We disable the volatile on-board write caches which cannot
survive a power failure. This is necessary for data durability
as it prevents the device from prematurely responding to a
write request before the written data has been made durable.
Our experiments utilize the ext4 file system mounted in
noatime mode. We use the default Linux CFQ I/O sched-
uler. Though the CFQ scheduler produces poor fairness on
SSDs [33], it is sufficient for our evaluation that focuses on
data reliability and performance.

We begin our evaluation of failure-atomic msync() by
verifying that it does in fact preserve the integrity of user
data across the most dangerous type of sudden crashes (Sec-
tion 5.1). We then measure the performance of our new prim-
itive alone (Section 5.2) and of our composition of failure-
atomic msync() with the C++ STL (Section 5.3). Finally,
we evaluate the performance of our fortified Tycoon server
(Section 5.4).

5.1 Data Durability and Consistency over Failures
We evaluated data durability and consistency using exper-
iments with injected power interruptions. Each power in-
terruption test cuts the power to the entire machine, which
stresses the reliability of the full system software/hardware
stack.

While testing over several storage devices, a surprising
by-product of our experiments is that some storage devices
do not behave correctly under power failures. Of the five

4 KB Write Latency
Sequential Random

HDD 8.47 msecs 7.03 msecs
SSD1 4.20 msecs 4.61 msecs
SSD2 0.08 msecs 0.11 msecs

Table 1: 4 KB write latency in milliseconds for reliable stor-
age devices, write caches disabled.

SSDs and one hard disk we tested, one SSD permanently
failed after our power failure tests. Two other SSDs lose data
for writes that completed before the injected power inter-
ruptions. These are inherent storage errors unrelated to our
failure-atomic msync(). We saw similar results from a more
comprehensive study indicating that some storage devices do
not guarantee data consistency across power failures [47].

We refer to our three reliable storage devices as “HDD,”
“SSD1,” and “SSD2.” Using these devices, we evaluated
the correctness of failure-atomic msync() in ensuring data
durability and consistency over failures. We presented a
well-defined, synchronous workload using failure-atomic
msync() to the device and periodically cut power to the
entire machine. Upon system boot, the device is checked
for data inconsistency before restarting the workload. On
each of the three reliable storage devices, we performed sev-
eral hundred power interruptions without observing any sign
of data inconsistency. These tests validate failure-atomic
msync()’s correctness on reliable storage devices.

5.2 Microbenchmark Evaluation
Table 1 presents the latency of synchronous 4 KB writes
(queue depth = 1) to the three storage devices. HDD exhibits
latency in line with the average seek / rotational latency for a
mechanical disk. SSD1 is an earlier-generation Flash-based
SSD that exhibits much slower performance than that of a
single Flash page program which is on the order of hun-
dreds of microseconds. This is because updating a Flash
page causes the SSD firmware, in particular the Flash trans-
lation layer, to update the logical-to-physical mapping tables
along with any other internal metadata and make those up-
dates durable as well, which incurs several more Flash page
writes. SSD2 is a latest-generation Flash-based SSD that,
among other optimizations, uses a supercapacitor-backed
write cache that survives power failures. Both SSD hardware
and proprietary firmware can vary greatly from vendor to
vendor, causing a wide variation in observed performance.

We evaluate failure-atomic msync() performance against
both “conventional msync()” and “data journal msync()”.
For the conventional msync() we mount the file system
journal in the default ordered mode. In ordered mode,
only metadata is journaled. However, the data blocks associ-
ated with the inode whose metadata is journaled are written
to the device first before committing the metadata. For data
journal msync(), the file system is mounted in journal

mode, in which both data and metadata blocks are written
to the journal. Note that when ext4 is mounted to use data
journaling, file data is journaled but it provides programmers
no option of controlling when data is journaled. For failure-
atomic msync(), we also mount the file system in journal
mode to utilize its failure-atomic properties with our sys-
tem interface and implementation. We also present results
on two versions of failure-atomic msync(), one utilizing an
asynchronous journaled writeback mechanism and the other
performing eager journaled writeback.

We measure performance by examining latency for msync()
calls of varying size in two scenarios: a “saturation” scenario
in which msync() is called repeatedly with no pause be-
tween consecutive calls and a “light load” scenario where the
test process sleeps for a fixed time following each msync()

call. For the light load, we use different inter-msync()
thinktime customized to specific storage devices—longer
thinktime for slower I/O device so that the relative stress to
the I/O device is balanced. The test memory-maps a file and
loads the entire file into memory. A fixed number of random
pages are dirtied and then msync() is called. The tests were
conducted for a minimum of 200 iterations and duration of
90 seconds.

Figure 2 presents mean msync() latencies for HDD,
SSD1, and SSD2 under both saturation and light load as the
number of pages per msync() increases. Mean latencies re-
flect the aggregate performance that would be observed over
a long sequence of observations. Under saturation load, for
small numbers of pages, conventional msync() exhibits the
lowest latency as it issues fewer I/O requests than msync()

using data journaling and both variants of failure-atomic
msync(). As the number of pages per msync() increases,
similar performance is observed for all systems across all
devices as the latency is dominated by large numbers of ran-
dom writes. Under light I/O load, as the number of pages
per msync() increases, failure-atomic msync() using asyn-
chronous journaled writeback offers the lowest latency of the
alternatives. By leveraging asynchronous journaled write-
back, failure-atomic msync() only performs large sequen-
tial I/O, i.e., journal commits, on the critical path; jour-
naled writeback is free to occur during inter-msync() think-
time. With msync() sizes of as little as four pages, failure-
atomic msync() is capable of matching or outperforming
the standard msync().

We note that the performance benefit of asynchronous
journaled writebacks is less at saturation load compared to
its benefit under light load. The reason is simple—delegating
some work asynchronously is only beneficial when there is
free device time to perform such work at no cost. We also ob-
serve that the benefit of asynchronous journaled writebacks
is least on the fastest I/O device—SSD2. As explained at the
end of Section 3.2, the additional latency of synchronously
performing non-critical I/O on fast storage devices may be

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

mean msync() latency, HDD

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

(a) HDD

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

mean msync() latency, HDD, light load

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

(b) HDD, 4 secs inter-msync() thinktime

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

mean msync() latency, SSD1

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

(c) SSD1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

mean msync() latency, SSD1, light load

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

(d) SSD1, 1 sec inter-msync() thinktime

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

mean msync() latency, SSD2

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

(e) SSD2

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

mean msync() latency, SSD2, light load

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

(f) SSD2, 100 msecs inter-msync() thinktime

Figure 2: Mean msync() latency as a function of number of dirty pages sync’d.

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

la
te

nc
y

(m
ill

is
ec

on
ds

)

number of pages msync’d

median msync() latency, SSD1

conventional msync
data journal msync

failure-atomic, eager
failure-atomic, async

Figure 3: Median latency as a function of number of dirty
pages sync’d.

outweighed by the costs of additional page lookups and
higher memory pressure.

Figure 3 presents the median latency for saturation work-
loads running on SSD1. Comparing Figure 3 and Figure 2c,
we see that the mean latency is notably higher than the
median latency for the asynchronous journaled writeback
variant of failure-atomic msync(). Recall that the distinc-
tion between our two variants is when the random in-place
writes are dispatched to the file system. The eager failure-
atomic msync() will initiate writes on previously journaled
pages on the subsequent encounter, i.e., the next msync().
While this reduces memory pressure, it suffers from syn-
chronously initiating work that is not semantically critical to
the atomic operation and then waiting for unnecessary I/O
to complete, resulting in performance similar that of data
journaled msync(). When failure-atomic msync() utilizes
asynchronous journaled writeback, it defers writes so that
they are not issued on the critical path. While this deferment
allows most msync()calls to exhibit low latency, a conse-
quence of this deferment is that the pool of dirty but jour-
naled pages can quickly grow large in the background, par-
ticularly under saturation load. When journaled writeback is
initiated, a significant amount of work is issued to the de-
vice, which can interleave and interfere with the sequential
journal write for a period of time.

5.3 Persistent Heap and C++ STL
We now return to the simple composition of the C++ Stan-
dard Template Library (STL) with a persistent heap based on
failure-atomic msync(), outlined in Section 4.1. We com-
pare the performance of an STL <map> container with a
range of alternative local databases capable of storing key-
value pairs and capable of supporting transactional updates,
with varying levels of feature-richness:

SQLite is a software library that supports conventional
relational database manipulation via SQL [40]. Client code
links directly with the SQLite library and manipulates data in
memory, but may define ACID transactions to storage using
an atomic commit mechanism [41]. We use version 3.7.14.1
in our tests.

Kyoto Cabinet is a library that stores key-value pairs in
a B+ Tree in memory and allows client code to define ACID
transactions to storage [15]. We use version 1.2.76 in our
tests.

LevelDB is a key-value storage library by Dean &
Ghemawat of Google [12]. LevelDB supports put(key,

value), get(key), and delete(key) operations, which
may be grouped into failure-atomic batches. We use ver-
sion 1.6.0 in our tests.

Our tests do not include the well-known Berkeley Database
(BDB) because our tests run on a journaling file system
(ext4), and BDB does not guarantee recovery from sudden
crashes on journaling file systems [5, p. 185].

We ran performance comparisons on a conventional spin-
ning disk and two solid-state drives (“HDD”, “SSD1”, and
“SSD2” in Table 1). We configured each library and corre-
sponding client software to perform each data-manipulation
operation in failure-atomic synchronous fashion; we other-
wise retained all configuration defaults. Each system per-
formed the following sequence of operations on a universe
of 1,000 keys: 1) insert all keys along with random 1 KB
values; 2) replace the value associated with each key with a
different random 1 KB value; and 3) delete all keys. Each of
the above three steps visits keys in a different random order,
i.e., we randomly permute the universe of keys before each
step.

Table 2 presents mean per-operation times in millisec-
onds for the four libraries considered. We present results us-
ing the same set of “thinktimes” between operations as used
in the experiments summarized in Figure 2. One prominent
difference between the STL <map>/failure-atomic msync()
combination and the other systems is that the former ex-
hibits more consistent mean per-operation latencies than the
others. On the HDD, for example, Kyoto Cabinet insert
is roughly 3× slower than replace; LevelDB delete is
roughly twice as fast as replace; and SQLite insert is
considerably slower than delete. Comparable differences
are evident on the two solid-state storage devices. Failure-
atomic msync() performance is more uniform because the
STL <map> dirties roughly the same number of pages for all
three types of operations.

Our system is usually faster than Kyoto Cabinet and
SQLite on all three storage devices, often by a factor of
2–4×. Dean & Ghemawat’s lean and efficient LevelDB li-
brary outperforms all of the other systems by a wide margin,
typically beating our system by 3–4× and the others by
up to 6–9×. (A comparison between LevelDB and SQLite
isn’t entirely fair because they represent opposite ends of

hard disk (HDD) solid-state (SSD1) solid-state (SSD2)

thinktime 4 secs thinktime 1 sec thinktime 100 millisecs
insert replace delete insert replace delete insert replace delete

STL <map>/persistent heap/
failure-atomic msync() 37.230 35.787 36.039 8.894 8.297 9.376 0.827 0.591 0.784

Kyoto Cabinet 145.057 54.949 83.281 23.188 8.626 13.251 1.659 0.649 0.938
SQLite 111.746 92.887 81.858 18.331 16.629 14.984 1.352 1.307 0.988

LevelDB 22.383 22.306 12.904 3.199 3.332 2.457 0.303 0.293 0.194

thinktime zero thinktime zero thinktime zero
insert replace delete insert replace delete insert replace delete

STL <map>/persistent heap/
failure-atomic msync() 36.538 37.382 45.017 11.867 10.632 12.455 0.586 0.581 0.690

Kyoto Cabinet 146.763 54.434 92.951 25.541 8.230 12.632 1.488 0.579 0.942
SQLite 117.067 100.089 84.817 22.491 19.024 17.984 1.229 1.128 1.047

LevelDB 19.385 19.669 8.645 4.130 3.837 2.362 0.212 0.220 0.116

Table 2: Mean per-operation timings (milliseconds) with and without thinktimes between consecutive operations.

a functionality spectrum, with the latter providing the full
power of transactional SQL.) Our simple composition of
STL’s <map> with a persistent heap based on failure-atomic
msync() holds up rather well, but falls short of LevelDB’s
performance for the simple reason noted in Section 4.1: The
red-black tree beneath the <map> makes no attempt to be
frugal with respect to the dirtying of pages during write op-
erations. By contrast, LevelDB implements atomic updates
by compact writes to a log file.

5.4 Kyoto Tycoon Key-Value Server
Section 4.2 showed that a single line of source code change
allows the Kyoto Tycoon key-value server to adopt our
failure-atomic msync(). By using failure-atomic msync(),
the Tycoon server can guarantee the integrity of durable
data over failures without using its expensive Transaction
mechanism. We compare the performance of three data man-
agement approaches for Tycoon—its native Synchronize
mechanism, its Transaction mechanism, and failure-atomic
msync().

Our experiments use the Tycoon server version 0.9.56.
We run client(s) from a different machine in the same local-
area network. The ICMP ping round-trip latency between the
client and server machines is around 190 µsecs. We measure
the Tycoon key-value server performance at two conditions.
First, we measure the request response time under light load,
when a single client issues requests with 10 msecs thinktime
between consecutive requests. We also measure the server
throughput under high load, when four clients concurrently
issue requests without inter-request thinktime (each issues a
new request as soon as the previous one is responded).

Figure 4 illustrates the performance of the Tycoon server
under different data management approaches. Among the
three approaches, only Tycoon Transaction and failure-
atomic msync() guarantee data integrity over failures.
While Tycoon Transaction performs a similar amount of
I/O as failure-atomic msync() (REDO log and correspond-
ing data write), it performs both an UNDO log write and
the corresponding data write synchronously. In comparison,
failure-atomic msync()does less synchronous work due to
our asynchronous journaled writebacks.

Under light load (left column in Figure 4), we find that
failure-atomic msync() reduces the response time of Ty-
coon Transaction by 43%, 33%, and 42% for record insert,
replace, and delete respectively on SSD1. Less performance
enhancement on record replace is probably due to less work
in a replace (compared to a record insert or delete that must
also change the key-value hashing structure). On the faster
SSD2, the response time reductions are 33%, 26%, 33% for
the three operations. Failure-atomic msync() produces less
performance advantage on SSD2 because the I/O time is less
dominant on a faster storage device and an I/O-accelerating
technique would appear less significant.

Under high load (right column of Figure 4), we find that
failure-atomic msync() achieves 1.79×, 1.37×, and 1.73×
speedup over Tycoon Transaction for record insert, replace,
and delete respectively on SSD1. On the faster SSD2, the
throughput enhancements are 1.36×, 1.20×, and 1.33× for
the three operations.

Furthermore, the performance of failure-atomic msync()
is quite close to Tycoon’s Synchronize mechanism despite
that Tycoon Synchronize does not guarantee data integrity
over failures. This can be attributed to the asynchronous

Insert Replace Delete
0

10

20

30

40

50

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

se
cs

)

Response time under light load, SSD1

Tycoon Synchronize

Tycoon Transaction

Failure−atomic msync()

Insert Replace Delete
0

10

20

30

40

T
hr

ou
gh

pu
t (

in
 r

eq
s/

se
c)

Throughput under high load, SSD1

Insert Replace Delete
0

0.5

1

1.5

2

2.5

M
ea

n
re

sp
on

se
 ti

m
e

(in
 m

se
cs

)
Response time under light load, SSD2

Insert Replace Delete
0

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t (

in
 r

eq
s/

se
c)

Throughput under high load, SSD2

Figure 4: Kyoto Tycoon server insert, replace, and delete performance under different data management approaches on two
Flash-based SSDs. The left column shows the response time under light load, when a single client issues requests with 10 msecs
thinktime between consecutive requests. The right column shows throughput under high load, when four clients concurrently
issue requests without inter-request thinktime (each issues a new request as soon as the previous one is responded).

Response time under light load Throughput under high load
insert replace delete insert replace delete

no-sync 0.47 msecs 0.45 msecs 0.44 msecs 6,646 reqs/s 6,772 reqs/s 7,406 reqs/s
failure-atomic msync() 1.49 msecs 1.38 msecs 1.41 msecs 805 reqs/s 919 reqs/s 784 reqs/s

Table 3: Performance comparison (on SSD2) between failure-atomic msync()-based Kyoto Tycoon server and the server
that makes no explicit effort to commit data to durable storage (thus paying almost no I/O overhead at a large memory
configuration).

journaled writeback technique described in Section 3.2—
though failure-atomic msync() does more I/O work, much
of it is not done on the critical application execution path.
One exception is that failure-atomic msync()’s throughput
at high load on SSD2 is clearly slower than Tycoon Syn-
chronize. This is because failure-atomic msync()’s asyn-
chronous journaled writeback isn’t effective on a highly
loaded system with no idle device time for asynchronous
work.

Cost of Data Reliability In the final evaluation, we as-
sess the cost of failure-atomic msync()-based data reliabil-
ity compared to a system, called no-sync, that makes no ex-
plicit effort to commit data to durable storage (thus paying
almost no I/O overhead at a large memory configuration).
Although the conventional wisdom is that the cost of data

reliability is high due to slow I/O, emerging fast I/O devices
are gradually reducing this cost. Using SSD2, we compare
the performance of the Kyoto Tycoon key-value server un-
der failure-atomic msync() and that under no-sync.

Table 3 shows that failure-atomic msync() leads to a
three-fold response time increase compared to no-sync. Such
a cost for data reliability is probably acceptable to many who
have feared orders of magnitude performance degradation
due to slow I/O. Note that our experiments were performed
in a local-area network with a small client-server latency.
The cost of data reliability would appear even smaller if the
network cost were higher.

However, Table 3 also shows that failure-atomic msync()
incurs up to nine-fold throughput reduction under high load.
This is because no-sync is effectively CPU-bound and its

throughput can benefit from parallel executions over the four
CPU cores on our test machine. Similarly, failure-atomic
msync() would achieve better throughput in a parallel stor-
age array with multiple fast SSDs.

6. Conclusion
We have described the design, implementation, and evalua-
tion of a new mechanism that enables programmers to evolve
application data on durable storage from one consistent state
to the next even in the presence of sudden crashes caused
by power outages or system software panics. Failure-atomic
msync() is conceptually simple and its interface is a com-
patible extension of standardized system call semantics. On
suitable and appropriately configured storage devices, our
implementation of failure-atomic msync() in the Linux ker-
nel preserves the integrity of application data from sudden
whole-machine power interruptions, the most challenging
type of crash failure. Because it writes dirty pages to the
journal sequentially, the asynchronous-writeback variant of
failure-atomic msync() is actually faster than the conven-
tional msync() for updates of medium or large size. Our
new mechanism supports flexible and very general higher
layers of software abstraction, and it is remarkably easy to
retrofit onto complex legacy applications.

Acknowledgments
This work was partially supported by the U.S. Department of
Energy under Award Number DE–SC0005026 (see http:
//www.hpl.hp.com/DoE-Disclaimer.html for
additional information) and by the National Science Foun-
dation grants CCF-0937571 and CNS-1217372. Kai Shen
was also supported by a Google Research Award. We thank
Ted Ts’o for several helpful suggestions that guided our im-
plementation strategy, and we thank Joe Tucek for helping
us to design our whole-machine power-interruption tests to
evaluate the reliability of storage devices. We also thank the
anonymous EuroSys reviewers for comments that helped
improve this paper. Finally, we thank our shepherd Rodrigo
Rodrigues for assistance in the final revision.

References
[1] M. Astrahan, M. Blasgen, K. Chamberlain, K. Eswaran,

J. Gravy, P. Griffiths, W. King, I. Traiger, B. Wade, and V. Wat-
son. System R: Relational approach to database management.
ACM Trans. on Database Systems, 1(2):97–137, June 1976.

[2] M. Atkinson, P. Bailey, K. Chisholm, W. Cockshott, and
R. Morrison. PS-Algol: A language for persistent program-
ming. In Proc. of the 10th Australian National Computer Con-
ference, pages 70–79, Melbourne, Australia, 1983.

[3] M. Atkinson, K. Chisholm, P. Cockshott, and R. Marshall.
Algorithms for a persistent heap. Software: Practice and
Experience, 13(3):259–271, Mar. 1983.

[4] A. Bensoussan, C. Clingen, and R. Daley. The MULTICS
virtual memory: Concepts and design. Communications of
the ACM, 15(5):308–318, May 1972.

[5] Oracle Berkeley DB Programmer’s Reference Guide, 11g Re-
lease 2, Dec. 2011. http://docs.oracle.com/cd/
E17076_02/html/programmer_reference/BDB_
Prog_%Reference.pdf.

[6] A. P. Black. Understanding transactions in the operating
system context. In Fourth ACM SIGOPS European Workshop,
pages 73–76, Bologna, Italy, Sept. 1990.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data. ACM Trans.
on Computer Systems, 26(2), June 2008.

[8] Choi et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth. In Proc. of the Int’l Solid-State Circuits Conf., San
Francisco, CA, Feb. 2012.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making per-
sistent objects fast and safe with next-generation, non-volatile
memories. In Proc. of the 16th Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Newport Beach, CA, Mar. 2011.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In Proc. of the 22nd ACM
Symp. on Operating Systems Principles (SOSP), pages 133–
146, Big Sky, MT, Oct. 2009.

[11] De Sandre et al. A 4 Mb LV MOS-selected embedded phase
change memory in 90 nm standard CMOS technology. IEEE
Journal of Solid-State Circuits, 46(1):52–63, Jan. 2011.

[12] J. Dean and S. Ghemawat. leveldb – A fast and lightweight
key/value database library by Google. http://code.
google.com/p/leveldb/.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. of the 21st ACM Symp. on Operating
Systems Principles (SOSP), pages 205–220, Stevenson, WA,
Oct. 2007.

[14] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys, 34(3):375–408,
Sept. 2002.

[15] FAL Labs. Kyoto Cabinet: a straightforward implementation
of DBM. http://fallabs.com/kyotocabinet/.

[16] FAL Labs. Kyoto Tycoon: a handy cache/storage server.
http://fallabs.com/kyototycoon/.

[17] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N.
Patt. Soft updates: A solution to the metadata update problem
in file systems. ACM Trans. on Computer Systems, 18(2):127–
153, May 2000.

[18] J. F. Garza and W. Kim. Transaction management in an object-
oriented database system. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 37–45, Chicago, IL, Sept.
1988.

[19] G. V. Ginderachter. V8Ken. https://github.com/
supergillis/v8-ken/.

[20] J. Guerra, L. Mármol, D. Campello, C. Crespo, R. Ran-
gaswami, and J. Wei. Software persistent memory. In Proc. of
the USENIX Annual Technical Conf., Boston, MA, June 2012.

[21] R. Guerraoui and L. Rodrigues. Introduction to Reliable
Distributed Programming. Springer, 2010.

[22] D. Harnie, J. D. Koster, and T. V. Cutsem. SchemeKen.
https://github.com/tvcutsem/schemeken.

[23] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. In Proc. of the USENIX Winter
Technical Conf., San Francisco, CA, Jan. 1994.

[24] T. Kelly. Ken open-source distribution. http://ai.eecs.
umich.edu/˜tpkelly/Ken/.

[25] T. Kelly, A. H. Karp, M. Stiegler, T. Close, and H. K. Cho.
Output-valid rollback-recovery. Technical report, HP Labs,
2010. http://www.hpl.hp.com/techreports/
2010/HPL-2010-155.pdf.

[26] C. Killian and S. Yoo. MaceKen open-source distribution.
http://www.macesystems.org/maceken/.

[27] D. E. Lowell and P. M. Chen. Free transactions with Rio
Vista. In Proc. of the 16th ACM Symp. on Operating Systems
Principles (SOSP), pages 92–101, Saint Malo, France, Oct.
1997.

[28] Microsoft. Alternatives to using Transactional NTFS.
http://msdn.microsoft.com/en-us/library/
hh802690.aspx.

[29] How to have a checkpoint file using mmap which is only
synced to disk manually? http://stackoverflow.
com/questions/3146496/.

[30] D. Narayanan and O. Hodson. Whole-system persistence
with non-volatile memories. In Proc. of the 17th Int’l Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), London, UK, Mar. 2012.

[31] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.
Rethink the sync. ACM Trans. on Computer Systems, 26(3),
Sept. 2008.

[32] J. O’Toole, S. Nettles, and D. Gifford. Concurrent compacting
garbage collection of a persistent heap. In Proc. of the 14th
ACM Symp. on Operating Systems Principles (SOSP), pages
161–174, Asheville, NC, Dec. 1993.

[33] S. Park and K. Shen. FIOS: A fair, efficient Flash I/O sched-
uler. In Proc. of the 10th USENIX Conf. on File and Storage
Technologies (FAST), San Jose, CA, Feb. 2012.

[34] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and
E. Witchel. Operating system transactions. In Proc. of the
22nd ACM Symp. on Operating Systems Principles (SOSP),
pages 161–176, Big Sky, MT, Oct. 2009.

[35] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Analysis and evolution of journaling file systems.
In Proc. of the USENIX Annual Technical Conf., pages 105–
120, Anaheim, CA, Apr. 2005.

[36] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transactional
Flash. In Proc. of the 8th USENIX Symp. on Operating

Systems Design and Implementation (OSDI), pages 147–160,
San Diego, CA, Dec. 2008.

[37] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler. Lightweight recoverable virtual memory. In
Proc. of the 14th ACM Symp. on Operating Systems Principles
(SOSP), pages 146–160, Asheville, NC, Dec. 1993.

[38] R. Sears and E. Brewer. Stasis: Flexible transactional storage.
In Proc. of the 7th USENIX Symp. on Operating Systems
Design and Implementation (OSDI), Seattle, WA, Nov. 2006.

[39] M. I. Seltzer, G. R. Granger, M. K. McKusick, K. A. Smith,
C. A. N. Soules, and C. A. Stein. Journaling versus soft
updates: Asynchronous meta-data protection in file systems.
In Proc. of the USENIX Annual Technical Conf., San Deigo,
CA, June 2000.

[40] SQLite, Oct. 2012. http://www.sqlite.org/.

[41] SQLite atomic commit, Oct. 2012. http://www.
sqlite.org/atomiccommit.html.

[42] M. Stonebraker. Operating system support for database man-
agement. Communications of the ACM, 24(7):412–418, July
1981.

[43] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Camp-
bell. Consistent and durable data structures for non-volatile
byte-addressable memory. In Proc. of the 9th USENIX Conf.
on File and Storage Technologies (FAST), San Jose, CA, Feb.
2011.

[44] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proc. of the 16th Int’l
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 91–103, Newport
Beach, CA, Mar. 2011.

[45] S. Yoo, C. Killian, T. Kelly, H. K. Cho, and S. Plite. Com-
posable reliability for asynchronous systems. In Proceedings
of USENIX Annual Technical Conference, 2012. https:
//www.usenix.org/system/files/conference/
atc12/atc12-final206-7-2%0-12.pdf.

[46] D. H. Yoon, R. S. Schreiber, J. Chang, N. Murali-
manohar, P. Ranganathan, and P. Faraboschi. VerMem:
Versioned Memory using Multilevel-Cell NVRAM.
In Non-Volatile Memories Workshop, Mar. 2012.
https://lph.ece.utexas.edu/users/dhyoon/
pubs/vermem_poster_nvmw12.pdf.

[47] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge. Understanding
the robustness of SSDs under power fault. In Proc. of the 11th
USENIX Conf. on File and Storage Technologies (FAST), San
Jose, CA, Feb. 2013.

