Mahaney’s Theorem

Alan Beadle Komail Dharsee David Fink
Gene Kim Joel Kottas
Xiangru Lian Zahra Razavi

November 2016
Definitions (cont.)

- Census function:
 For any set A, $c_A(n) = \| \{ x \in A \mid |x| \leq n \} \|$
- Examples:
 - $c_{\emptyset}(n) = 0$
 - c_{SAT} is exponential
- Density: Rate of growth of census function
Definitions (cont.)

- Finite sets have a bounded census function (if $|A| < \infty$, $\exists M \forall n \ c_A(n) \leq M$)

- Sparse sets:
 A is sparse if there is a polynomial p such that $c_A \leq p$

- Examples:
 - Any finite set
 - $\{n \mid n \text{ is a power of } 2\}$
 - A such that A contains the first n lexicographically first strings of length n
P-Isomorphic Languages

- **Definition:** Languages $A \subseteq \Sigma_1^*$ and $B \subseteq \Sigma_2^*$ are p-isomorphic if there exists a bijection $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that:
 - $x \in A \iff f(x) \in B$
 - f and f^{-1} are both polynomial-time functions.

- Berman–Hartmanis conjecture: Any two NP-complete languages are p-isomorphic.
P-Isomorphic Languages

Definition: A set A is paddable if there is an injective function f such that f and f^{-1} are polynomial-time functions, and $\forall x, y : x \in A \iff f(x, y) \in A$.

All pairs of paddable NP-complete languages are p-isomorphic.

Equivalent conjecture: all NP-complete languages are paddable.
Theorem

If an NP-Complete sparse language exists such that its census function is computable in polynomial time, then $P=NP$.

(Later we will do away with the P-time census function requirement!)
Theorem 5.6 Proof

Proof: Let S be an NP-Complete language whose census function c_s is computable in polynomial time. Denote by NT the NDTM which decides S in polynomial time.
The following nondeterministic algorithm shows that the complement language S^c of S is also in NP:

begin \{input: x\}

\begin{align*}
 n &:= |x|; \\
 k &:= c_S(n); \\
 \text{guess } y_1, \ldots, y_k \text{ in set of } k\text{-tuples of distinct words} \\
 \text{each of which has length, at most, } n; \\
 \{\text{check whether the guessed } k\text{-tuple coincides with } S_{\leq n}\} \\
 \text{for } i = 1 \text{ to } k \text{ do} \\
 \hspace{1em} \text{if } NT(y_i) \text{ rejects then reject;} \\
 \{\text{check if } x \in S_{\leq n}\} \\
 \text{for } i = 1 \text{ to } k \text{ do} \\
 \hspace{1em} \text{if } y_i = x \text{ then reject;} \\
 \text{accept;}
\end{align*}

end.
So now we have a nondeterministic P-time algorithm to decide S^c, and we also know that S is NP-complete. Then we know that both SAT and S^c can reduce to S, and also that SAT^c can reduce to S.

This is true because we know $SAT \leq S$ and $S^C \leq S$, and from this property of reductions and complements:

$A \leq B \rightarrow A^C \leq B^C$, we can say $SAT^C \leq S^C$. By transitivity then $SAT^C \leq S^C$ and $S^C \leq S$, we know $SAT^C \leq S$.

We will now use this to show that SAT is in P.
Let x be a problem instance of SAT. We construct a binary tree A_x by the following rules:

1. Label the root with the original formula x

2. If a node is labeled with y, then label its children (y_0 and y_1) with the two formulas obtained by setting the value of one variable in y to \textbf{false} and \textbf{true} and performing all resulting simplifications.
Theorem 5.6 Proof continued

Example of resulting tree:

\[(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2) \land (\neg x_2 \lor x_3)\]

\[
x_1 = t \quad x_1 = f
\]

\[
(\neg x_2) \land (\neg x_2 \lor x_3) \quad (x_2 \lor \neg x_3) \land (\neg x_2) \land (\neg x_2 \lor x_3)
\]

\[
x_2 = t \quad x_2 = f \quad x_2 = t \quad x_2 = f
\]

\[
false \quad true \quad false \quad (\neg x_3)
\]

\[
x_3 = t \quad x_3 = f
\]

\[
false \quad true
\]
Clearly x is satisfiable iff at least one leaf of A_x is labeled with \textbf{true}. Checking all of them would take exponential time, but we don’t need to do that.

We can prune the tree using a reduction f from SAT^c to S. When we visit a node labeled y, we will check whether $f(y) \in S$. If that is the case, then y is not satisfiable and we eliminate the subtree under y.
Since S is NP-complete, instead of checking it directly we will build and maintain a list of words in S while visiting the nodes, and will instead check for membership in that list. Initially the list only contains $f(\text{false})$, and whenever both children of a node are in the list, then the label of that node is added to the list. Since S is sparse, the list contains at most a polynomial number of words with respect to the length of x.
To prove that this \emph{SAT} algorithm requires a polynomial number of steps, consider two unsatisfiable formulas, y and z such that $f(y) = f(z)$ and such that the corresponding nodes are inner ones of the visited subtree (That is, they are not leaves).

\begin{itemize}
 \item These nodes must be contained in a common path from the root to one of the leaves.
 \item Otherwise, one of the nodes (for instance y) would have been visited first and $f(y)$ would have been added to the list and the search would have stopped at the node labeled z, contrary to the assumption that the node is an inner one of the visited subtree.
\end{itemize}
Sooooo, why is it polynomial time?

- Oh right. Well, the number of distinct paths from the root to the inner nodes of the visited subtree is at most $p(q(|x|))$ where p is a polynomial witnessing the sparsity of S and q is a polynomial limiting the length of f.

- Since A_x has height n, the visited subtree has at most $np(q(|x|))$ inner nodes labeled with unsatisfiable formulas. An assignment satisfying x may require the visit of $n - 1$ additional inner nodes.

- Thus the visited subtree includes at most $np(q(|x|)) + n - 1$ inner nodes. If we consider the leaves, this only increases by a factor of 2.
In summary, we just did the following:

1. Given a census function for S which is computable in polynomial time, prove that $S^c \in NP$

2. Using the previous result, reduce SAT^c to S^c and thus to S

3. Using a reduction from SAT^c to S as a pruning function, visit the tree A_x of possible assignments for x and show that the pruning is drastic enough to cut the number of visited nodes from an exponential number to a polynomial one
Theorem 5.7: Mahaney’s Theorem

Theorem

If a sparse NP-complete language exists, then P=NP.
Theorem 5.7: Mahaney’s Theorem

Theorem

If a sparse NP-complete language exists, then $P=NP$.

Proof:
Let S be a sparse NP-complete language, p a polynomial witnessing the sparsity of S and NT a NDTM which decides S in polynomial time.
Theorem 5.7: Mahaney’s Theorem

If a sparse NP-complete language exists, then $P=NP$.

Proof:
Let S be a sparse NP-complete language, p a polynomial witnessing the sparsity of S and NT a NDTM which decides S in polynomial time.

Similar to Theorem 5.6, we will show $PC(S) \in NP$ where $PC(S)$ refers to the pseudo-complement of S.
Theorem 5.7: Mahaney’s Theorem

Theorem

If a sparse NP-complete language exists, then $P = NP$.

Proof:
Let S be a sparse NP-complete language, p a polynomial witnessing the sparsity of S and NT a NDTM which decides S in polynomial time.

Similar to Theorem 5.6, we will show $PC(S) \in NP$ where $PC(S)$ refers to the pseudo-complement of S.
Theorem 5.7 Proof: Part 1 – Building a NDTM to decide $PC(S)$

This NDTM clearly runs in nondeterministic polynomial time, so $PC(S) \in NP$.

```
begin {input: x, k, 0^n}
if |x| > n \lor k > p(n) then reject;
guess y_1, \ldots, y_k in set of k-tuples of distinct values
each of which is of length, at most, n;
for i = 1 to k do
  if NT(y_i) rejects then reject;
for i = 1 to k do
  if y_i = x then reject;
accept;
end.
```
Theorem 5.7 Proof: Part 1 – Building a NDTM to decide $PC(S)$

- Note: Since $PC(S) \in NP$, we know $PC(S) \leq S$.
Theorem 5.7 Proof: Part 2 – Use our NDTM that decides $PC(S)$ to show $SAT \in P$

- Let h be the reduction from SAT to S, and p_h be its bounding polynomial
- Let g be the reduction from $PC(S)$ to S, and p_g be its bounding polynomial
- if $k = c_S(m)$ (i.e. correctly guessed k),

Mahaney’s Theorem 20/24
Theorem 5.7 Proof: Part 2 – Use our NDTM that decides $PC(S)$ to show $SAT \in P$

Case 1: Correctly guessed k
- if $k = c_S(m)$, then for an unsatisfiable y, $g(h(y), k, 0^m) \in S$

Case 2: Incorrectly guessed k
- if $k \neq (m)$, we cannot be certain about $g(h(y), k, 0^m)$’s relationship with S'
Theorem 5.7 Proof: Part 2 – Use our NDTM that decides $PC(S)$ to show $SAT \in P$

- Let us define $f_{n,k}(y) = g(h(y), k, 0^{p_h(n)})$.
- For each k, the function $f_{n,k}$ is computable in polynomial time with respect to the length of y, where $|y| \leq n$.
- This is our set of polynomially many pruning functions.
Theorem 5.7 Proof: Part 2 – Use our NDTM that decides $PC(S)$ to show $SAT \in P$

- if $k = c_s(p_h(n))$, then a constant c_1 depending on p and an integer n_0 exists such that
 \[
 |\langle y, k, 0^{p_h(n)} \rangle| \leq 2p_h(n) + c_1 \log(p_h(n)) \leq 3p_h(n), \text{ for all } n \geq n_0.
 \]
- The unsatisfiable formulas of length, at most, n are transformed from $f_{n,k}$ in, at most $p(p_g(3p_h(n)))$ distinct words of S, for each $n \geq n_0$.
Theorem 5.7 Proof: Decide SAT in \(P \) time

begin \{ \text{input: } x \} \\
\text{for } k = 0 \text{ to } p(p_h(|x|)) \text{ do} \\
\text{begin} \\
\text{execute the tree-visiting algorithm described in the} \\
\text{proof of Theorem 5.6 using } f_{|x|,k} \text{ as a pruning function} \\
\text{and visiting, at most, } |x|p(p_g(3p_h(|x|))) + |x| - 1 \text{ inner nodes;} \\
\text{if the algorithm accepts then accept;} \\
\text{end;} \\
\text{reject;} \\
\text{end.}

\begin{itemize}
 \item This clearly runs in polynomial time, therefore \(SAT \in P \)
\end{itemize}