Question 1 (70 points, 10 points each)

State whether the following statements are True or False:

(a) Subtraction (i.e. $f(x, y) = x - y$) is associative. __________

(b) The function $f(x, y) = 1^{2|x|} \cdot 1^{y}$ (where 1^a represents the string 1 repeated a times, and $x \cdot y$ represents x concatenated with y), is commutative. __________

(c) The function $f(x, y) = \begin{cases} 1y, & |x| \text{ is odd} \\ 0y, & |x| \text{ is even} \end{cases}$ is total. __________

(d) These two statements are equivalent:
 1. 2-ary one-way functions exist.
 2. $P \neq NP$. __________

(e) One-way functions exist if and only if strongly noninvertible, total, commutative, associative, 2-ary one-way functions exist. __________

(f) For any function $h(x)$, 2-ary function $f(x, y) = h(x)$ is associative. __________

(g) If $P \neq NP$ then there exists a one-way function f with fixed point. ($\exists x_0 \in domain(f) : f(x_0) = x_0$) __________
Question 2 (30 points, 10 points each)

Fill in the blanks based on the material covered in the previous class:

1. A total 2-ary function \(f \) is associative exactly if for all \(x, y, z \in \Sigma^* \) \(f(f(x, y), z) = \)__________.

2. A total, 2-ary function \(f \) is commutative exactly if for all \(x, y \in \Sigma^* \), \(f(x, y) = \)__________.

3. In the slides, we looked at a potential application of one-way functions in cryptography. Specifically, we outlined a possible key agreement protocol. This protocol assumed the existence of a 2-ary, one-way function \(f \) with two properties. These properties were that \(f \) is strongly noninvertible and __________.