P-sel \subseteq \text{NP}/n + 1 \text{ but } P-sel \not\subseteq \text{NP}/n

Colin Pronovost David Thomas Haichuan Yang Maria Janczak Shir Maimon Brian Dickenson Nathan Kent

November 29, 2016
A/f

For any set A and any function f, A/f denotes the class of all sets L such that for some function h satisfying $(\forall n)(|h(n)| = f(n))$ it holds that

$$L = \{ x \mid \langle x, h(|x|) \rangle \in A \}$$
For any class C and any class of functions \mathcal{F}, C/\mathcal{F} denotes the class of all sets L such that

$$(\exists C \in C)(\exists f \in \mathcal{F})(L \in C/f)$$
P-sel = \{ L \mid (\exists \text{ polynomial-time 2-ary function } f) \cr (\forall x, y)(f(x, y) \in \{x, y\} \cr \wedge \{x, y\} \cap L \neq \emptyset \implies f(x, y) \in L)\}\}
The reachability function: $R_{i,G}(v)$

$R_{i,G}(v)$ is the set of vertices in graph G that can be reached from vertex v in at most i steps. $R_{0,G}(v) = \{v\}$.
Theorem 3.9: 2-reachability in a tournament

In a k-tournament G, there exists a vertex v in G such that all vertices in G can be reached from v in at most 2 steps. Formally, $(\forall k$-tournaments $G)(\exists v \in V_G)(R_{2,G}(v) = V_G)$
Proof of Theorem 3.9

The result obviously holds for 1-tournaments and 2-tournaments. Assume it holds for all k-tournaments. Consider some $k + 1$ tournament G. Let v be a vertex in G, and let G' be the k-tournament induced by the vertices of G other than v.
By induction, $(\exists u \in V_{G'}) (R_{2,G'}(u) = V_G)$. If $v \in R_{2,G}(u)$, then $R_{2,G}(u) = V_G$. Otherwise, for each vertex w in $R_{1,G}(v)$, $(v, w) \in E_G$. Therefore $R_{2,G}(v) = V_G$.
Theorem 3.10: $\text{P-sel} \subseteq \text{NP} / n + 1$
Let f be the selector function and g be the advice function, defined as

$$g(n) = \begin{cases} 1^{n+1} & L^n = \emptyset \\ 0w_n & \text{otherwise} \end{cases}$$

where $w_n \in L^n$ is the string from which all other strings in L^n can be reached via paths of length at most 2 in the tournament induced on L^n by f. By Theorem 3.9, such a string exists. Clearly, $|g(n)| = n + 1$.
The advice interpreter set A is defined as follows:

$$A = \{ \langle x, 0w \rangle \mid \text{there is a path of length at most 2 from } w \text{ to } x \text{ in the tournament induced by } f \text{ on } L^=n \}$$

$A \in \text{NP}$ (guess the path).
Because P-sel is closed under complementation,
\(\text{P-sel} \subseteq \text{NP} / \text{linear} \cap \text{coNP} / \text{linear} \).
Corollary: linear nondeterminism

Each semi-feasible set can be accepted with linear advice via an NP machine using linear nondeterminism.
Theorem 3.13: $P\text{-sel} \not\subseteq NP/n$
Proof sketch of Theorem 3.13

We define a semi-feasible set which cannot be accepted with only n bits of advice for a length n string. We use diagonalization to ensure that no NP machine accepts this set, regardless of what length n advice it is given.
Properties of the set

Let $l_0 = 2$ and let $l_i = 2^{2^{l_{i-1}}}$ for each $i > 0$. Let $Q = \{l_0, l_1, \ldots\}$. We will construct our set to have the following three properties:

1. All strings in L have lengths from Q.
2. At each length, if some string w of that length is in L, then all strings of that length lexicographically less than w are also in L.
3. $L \in \text{DTIME}[2^{2^n}]$.

We claim (and will prove) that any set with these properties is semi-feasible.
Sets with these properties are semi-feasible

Any set L with the aforementioned properties is semi-feasible. Define the selector function f as follows:

$$f(x, y) = \begin{cases}
 x & |y| \not\in Q \\
 y & |x| \not\in Q \land |y| \in Q \\
 \min_{\text{lex}}\{x, y\} & |x| \in Q \land |y| \in Q \land |x| = |y| \\
 \min_{\text{lex}}\{x, y\} & |x| \in Q \land |y| \in Q \land |x| \neq |y| \land \min_{\text{lex}}\{x, y\} \in L \\
 \max_{\text{lex}}\{x, y\} & |x| \in Q \land |y| \in Q \land |x| \neq |y| \land \min_{\text{lex}}\{x, y\} \not\in L
\end{cases}$$
Rightmost strings

Let N_1, N_2, \ldots be an enumeration of nondeterministic polynomial-time Turing machines in which each machine appears infinitely often. At each $k \in Q$, we let $i = ||\{j \mid j \in Q \land j \leq k\}||$. That is, $k = l_{i-1}$.

We define $rightmost_y$ for each length k string y as follows:

\[
rightmost_y = \begin{cases}
1^{k-1} & \text{if } X = \emptyset \\
\max_{\text{lex}} X & \text{otherwise}
\end{cases}
\]

Let $X = \{ x \mid |x| = k \land N_i(\langle x, y \rangle) \text{ accepts} \}$
Let $j_k = \min_{\text{lex}} \left(\left(\Sigma^k \cup \{1^{k-1}\} \right) - \{z \mid (\exists y \in \Sigma^k)(\text{rightmost}_y = z)\} \right)$

In other words, j_k is the lexicographically minimal string that was not a rightmost string.

Let $L^{=k} = \{x \mid |x| = k \land x \leq_{\text{lex}} j_k\}$

That is, $L^{=k}$ is the set of all length k strings which are lexicographically less than or equal to j_k. If the construction takes more than 2^{2^k} steps, set $L^{=k} = \emptyset$. By construction, the three properties mentioned in the previous section hold, therefore L is semi-feasible.
Definitions

Theorem 3.9: $\text{P-sel} \subseteq \text{NP/}n + 1$

Theorem 3.13: $\text{P-sel} \not\subseteq \text{NP/}n$

Proof outline

Properties of the set

Construction of the set L

$L \not\in \text{NP/}n$

The construction eventually completes for all machines

For strings of length k, in order to perform the construction, we must loop over 2^k advice strings and 2^k input strings, and take time $(2^{bk^c})^2$ to simulate an NP machine with a brute-force EXP machine. Note that b and c are properties of the machine, not the input string. In total, the construction takes $2^k 2^k (2^{bk^c})^2 = 2^{2k+2bk^c}$ steps, which is less than 2^{2k} for sufficiently large k. Because each machine appears infinitely often in the enumeration, each machine will eventually be paired with a k large enough for the construction to complete.
Let \(k \) be such that the construction completes. Let \(i \) be defined as above (\(k = l_{i-1} \)). By construction, none of the \(2^k \) advice strings of length \(k \) can be given to \(N_i \) to yield \(L =^k \). There are two cases:
Case 1: $|j_k| = k - 1$

If $|j_k| = k - 1$ ($j_k = 1^{k-1}$), then $L^{=k} = \emptyset$. However, for each advice string y, there is an x for which N_i accepts $\langle x, y \rangle$. If there was some y for which N_i rejected $\langle x, y \rangle$ for all x, then rightmost$_y$ would equal 1^{k-1}, and therefore j_k could not equal 1^{k-1}. Therefore $L \notin \text{NP} / n$.
Case 2: $|j_k| = k$

If $|j_k| = k$, then for each advice string y, either N_i rejects $\langle j_k, y \rangle$ or N_i accepts $\langle z, y \rangle$ for some $z >_{\text{lex}} j_k$. If there was some y for which N_i accepted $\langle j_k, y \rangle$ but did not accept $\langle z, y \rangle$ for any string z which is lexicographically greater than j_k, then rightmost_y would equal j_k. However, j_k is defined to be a string which is not rightmost_y for any y. Therefore $L \notin \text{NP} / n$.
